Application progress of immunoassays for blood biomarkers of Alzheimer's disease

Qiyong CAI, Xixiong KANG, Zhaohui LI

Chinese Journal of Alzheimer's Disease and Related Disorders ›› 2024, Vol. 7 ›› Issue (2) : 122-128.

PDF(918 KB)
Home Journals Chinese Journal of Alzheimer's Disease and Related Disorders
Chinese Journal of Alzheimer's Disease and Related Disorders

Abbreviation (ISO4): Chinese Journal of Alzheimer's Disease and Related Disorders      Editor in chief: Jun WANG

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(918 KB)
Chinese Journal of Alzheimer's Disease and Related Disorders ›› 2024, Vol. 7 ›› Issue (2) : 122-128. DOI: 10.3969/j.issn.2096-5516.2024.02.007
Review

Application progress of immunoassays for blood biomarkers of Alzheimer's disease

Author information +
History +

Abstract

With further research on Alzheimer's Disease (AD), the application of blood markers as a non-invasive test in the diagnosis and monitoring of the disease course of AD has received extensive attention. This review focuses on the progress of the application of immunoassay methods for blood markers in AD, which provides a comprehensive analysis of the principles, advantages, and limitations of single molecule array, electrochemiluminescence, immunomagnetic reduction, chemiluminescence and immunoprecipitation-mass spectrometry technologies in the detection of blood biomarkers for AD. Additionally, it explores how these technologies improve the sensitivity and specificity of detection and standardization of clinical applications.

Key words

Alzheimer's disease / Blood biomarkers / Immunoassays

Cite this article

Download Citations
Qiyong CAI , Xixiong KANG , Zhaohui LI. Application progress of immunoassays for blood biomarkers of Alzheimer's disease[J]. Chinese Journal of Alzheimer's Disease and Related Disorders. 2024, 7(2): 122-128 https://doi.org/10.3969/j.issn.2096-5516.2024.02.007

References

[1]
Gustavsson A, Norton N, Fast T, et al. Global estimates on the number of persons across the Alzheimer's disease continuum[J]. Alzheimers Dement, 2023, 19 (2): 658-670.
[2]
Xiao J, Li J, Wang J, et al. 2023 China Alzheimer's disease: facts and figures[J]. Human Brain, 2023, 2 (3).
[3]
Costanzo E, Lengyel I, Parravano M, et al. Ocular biomarkers for alzheimer disease dementia: an umbrella review of systematic reviews and meta-analyses[J]. JAMA Ophthalmol, 2023, 141 (1): 84-91.
Several ocular biomarkers have been proposed for the early detection of Alzheimer disease (AD) and mild cognitive impairment (MCI), particularly fundus photography, optical coherence tomography (OCT), and OCT angiography (OCTA).
[4]
Klyucherev TO, Olszewski P, Shalimova AA, et al. Advances in the development of new biomarkers for Alzheimer's disease[J]. Transl Neurodegener, 2022, 11 (1): 25.
Alzheimer's disease (AD) is a complex, heterogeneous, progressive disease and is the most common type of neurodegenerative dementia. The prevalence of AD is expected to increase as the population ages, placing an additional burden on national healthcare systems. There is a large need for new diagnostic tests that can detect AD at an early stage with high specificity at relatively low cost. The development of modern analytical diagnostic tools has made it possible to determine several biomarkers of AD with high specificity, including pathogenic proteins, markers of synaptic dysfunction, and markers of inflammation in the blood. There is a considerable potential in using microRNA (miRNA) as markers of AD, and diagnostic studies based on miRNA panels suggest that AD could potentially be determined with high accuracy for individual patients. Studies of the retina with improved methods of visualization of the fundus are also showing promising results for the potential diagnosis of the disease. This review focuses on the recent developments of blood, plasma, and ocular biomarkers for the diagnosis of AD.© 2022. The Author(s).
[5]
Guerrero A, De Strooper B, Arancibia-Cárcamo IL, et al. Cellular senescence at the crossroads of inflammation and Alzheimer's disease[J]. Trends Neurosci, 2021, 44 (9): 714-727.
Aging is a key risk factor for Alzheimer's disease (AD), but the reasons for this association are not well understood. Senescent cells accumulate in aged tissues and have been shown to play causal roles in age-related pathologies through their proinflammatory secretome. The question arises whether senescence-induced inflammation might contribute to AD and bridge the gap between aging and AD. Here, we highlight the role of cellular senescence as a driver of the aging phenotype, and discuss the current evidence that connects senescence with AD and neurodegeneration.Copyright © 2021 Elsevier Ltd. All rights reserved.
[6]
Keshavarz M, Xie K, Schaaf K, et al. Targeting the “hallmarks of aging” to slow aging and treat age-related disease: fact or fiction?[J]. Mol Psychiatry, 2023, 28 (1): 242-255.
Aging is a major risk factor for a number of chronic diseases, including neurodegenerative and cerebrovascular disorders. Aging processes have therefore been discussed as potential targets for the development of novel and broadly effective preventatives or therapeutics for age-related diseases, including those affecting the brain. Mechanisms thought to contribute to aging have been summarized under the term the “hallmarks of aging” and include a loss of proteostasis, mitochondrial dysfunction, altered nutrient sensing, telomere attrition, genomic instability, cellular senescence, stem cell exhaustion, epigenetic alterations and altered intercellular communication. We here examine key claims about the “hallmarks of aging”. Our analysis reveals important weaknesses that preclude strong and definitive conclusions concerning a possible role of these processes in shaping organismal aging rate. Significant ambiguity arises from the overreliance on lifespan as a proxy marker for aging, the use of models with unclear relevance for organismal aging, and the use of study designs that do not allow to properly estimate intervention effects on aging rate. We also discuss future research directions that should be taken to clarify if and to what extent putative aging regulators do in fact interact with aging. These include multidimensional analytical frameworks as well as designs that facilitate the proper assessment of intervention effects on aging rate.
[7]
Gómez-Isla T, Frosch MP. Lesions without symptoms: understanding resilience to Alzheimer disease neuropathological changes[J]. Nat Rev Neurol, 2022, 18 (6): 323-332.
Since the original description of amyloid-β plaques and tau tangles more than 100 years ago, these lesions have been considered the neuropathological hallmarks of Alzheimer disease (AD). The prevalence of plaques, tangles and dementia increases with age, and the lesions are considered to be causally related to the cognitive symptoms of AD. Current schemes for assessing AD lesion burden examine the distribution, abundance and characteristics of plaques and tangles at post mortem, yielding an estimate of the likelihood of cognitive impairment. Although this approach is highly predictive for most individuals, in some instances, a striking mismatch between lesions and symptoms can be observed. A small subset of individuals harbour a high burden of plaques and tangles at autopsy, which would be expected to have had devastating clinical consequences, but remain at their cognitive baseline, indicating 'resilience'. The study of these brains might provide the key to understanding the 'black box' between the accumulation of plaques and tangles and cognitive impairment, and show the way towards disease-modifying treatments for AD. In this Review, we begin by considering the heterogeneity of clinical manifestations associated with the presence of plaques and tangles, and then focus on insights derived from the rare yet informative individuals who display high amounts of amyloid and tau deposition in their brains (observed directly at autopsy) without manifesting dementia during life. The resilient response of these individuals to the gradual accumulation of plaques and tangles has potential implications for assessing an individual's risk of AD and for the development of interventions aimed at preserving cognition.© 2022. Springer Nature Limited.
[8]
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease[J]. Lancet, 2021, 397 (10284): 1577-1590.
In this Seminar, we highlight the main developments in the field of Alzheimer's disease. The most recent data indicate that, by 2050, the prevalence of dementia will double in Europe and triple worldwide, and that estimate is 3 times higher when based on a biological (rather than clinical) definition of Alzheimer's disease. The earliest phase of Alzheimer's disease (cellular phase) happens in parallel with accumulating amyloid β, inducing the spread of tau pathology. The risk of Alzheimer's disease is 60-80% dependent on heritable factors, with more than 40 Alzheimer's disease-associated genetic risk loci already identified, of which the APOE alleles have the strongest association with the disease. Novel biomarkers include PET scans and plasma assays for amyloid β and phosphorylated tau, which show great promise for clinical and research use. Multidomain lifestyle-based prevention trials suggest cognitive benefits in participants with increased risk of dementia. Lifestyle factors do not directly affect Alzheimer's disease pathology, but can still contribute to a positive outcome in individuals with Alzheimer's disease. Promising pharmacological treatments are poised at advanced stages of clinical trials and include anti-amyloid β, anti-tau, and anti-inflammatory strategies.Copyright © 2021 Elsevier Ltd. All rights reserved.
[9]
Liang CS, Li DJ, Yang FC, et al. Mortality rates in Alzheimer's disease and non-Alzheimer's dementias: a systematic review and meta-analysis[J]. Lancet Healthy Longev, 2021, 2(8): e479-e488.
[10]
Joyce RC, Nicholas JA, Thomas KK, et al. Blood-based high sensitivity measurements of beta-amyloid and phosphorylated tau as biomarkers of Alzheimer's disease: a focused review on recent advances[J]. J Neurol Neurosurg Psychiatry, 2021, 92 (11): 1231.
Discovery and development of clinically useful biomarkers for Alzheimer's disease (AD) and related dementias have been the focus of recent research efforts. While cerebrospinal fluid and positron emission tomography or MRI-based neuroimaging markers have made the in vivo detection of AD pathology and its consequences possible, the high cost and invasiveness have limited their widespread use in the clinical setting. On the other hand, advances in potentially more accessible blood-based biomarkers had been impeded by lack of sensitivity in detecting changes in markers of the hallmarks of AD, including amyloid-β (Aβ) peptides and phosphorylated tau (P-tau). More recently, however, emerging technologies with superior sensitivity and specificity for measuring Aβ and P-tau have reported high concordances with AD severity. In this focused review, we describe several emerging technologies, including immunoprecipitation-mass spectrometry (IP-MS), single molecule array and Meso Scale Discovery immunoassay platforms, and appraise the current literature arising from their use to identify plaques, tangles and other AD-associated pathology. While there is potential clinical utility in adopting these technologies, we also highlight the further studies needed to establish Aβ and P-tau as blood-based biomarkers for AD, including validation with existing large sample sets, new independent cohorts from diverse backgrounds as well as population-based longitudinal studies. In conclusion, the availability of sensitive and reliable measurements of Aβ peptides and P-tau species in blood holds promise for the diagnosis, prognosis and outcome assessments in clinical trials for AD.© Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.
[11]
Zetterberg H, Blennow K. Blood biomarkers: democratizing Alzheimer's diagnostics[J]. Neuron, 2020, 106 (6): 881-883.
Currently available biomarkers for Alzheimer's disease are of limited availability due to high costs and perceived invasiveness. New studies reveal that Alzheimer's pathologies now can be reliably quantified in vivo using regular blood tests.Copyright © 2020 Elsevier Inc. All rights reserved.
[12]
Mahaman YAR, Embaye KS, Huang F, et al. Biomarkers used in Alzheimer's disease diagnosis, treatment, and prevention[J]. Ageing Res Rev, 2022, 74: 101544.
[13]
Teunissen CE, Verberk IMW, Thijssen EH, et al. Blood-based biomarkers for Alzheimer's disease: towards clinical implementation[J]. Lancet Neurol, 2022, 21 (1): 66-77.
[14]
Hansson O, Blennow K, Zetterberg H, et al. Blood biomarkers for Alzheimer's disease in clinical practice and trials[J]. Nature Aging, 2023, 3 (5): 506-519.
Blood-based biomarkers hold great promise to revolutionize the diagnostic and prognostic work-up of Alzheimer's disease (AD) in clinical practice. This is very timely, considering the recent development of anti-amyloid-β (Aβ) immunotherapies. Several assays for measuring phosphorylated tau (p-tau) in plasma exhibit high diagnostic accuracy in distinguishing AD from all other neurodegenerative diseases in patients with cognitive impairment. Prognostic models based on plasma p-tau levels can also predict future development of AD dementia in patients with mild cognitive complaints. The use of such high-performing plasma p-tau assays in the clinical practice of specialist memory clinics would reduce the need for more costly investigations involving cerebrospinal fluid samples or positron emission tomography. Indeed, blood-based biomarkers already facilitate identification of individuals with pre-symptomatic AD in the context of clinical trials. Longitudinal measurements of such biomarkers will also improve the detection of relevant disease-modifying effects of new drugs or lifestyle interventions.© 2023. Springer Nature America, Inc.
[15]
Feng L, Li J, Zhang R, et al. Current research status of blood biomarkers in Alzheimer's disease: diagnosis and prognosis[J]. Ageing Res Rev, 2021, 72: 101492.
[16]
Hampel H, Hu Y, Cummings J, et al. Blood-based biomarkers for Alzheimer's disease: Current state and future use in a transformed global healthcare landscape[J]. Neuron, 2023, 111(18): 2781-2799.
Timely detection of the pathophysiological changes and cognitive impairment caused by Alzheimer's disease (AD) is increasingly pressing because of the advent of biomarker-guided targeted therapies that may be most effective when provided early in the disease. Currently, diagnosis and management of early AD are largely guided by clinical symptoms. FDA-approved neuroimaging and cerebrospinal fluid biomarkers can aid detection and diagnosis, but the clinical implementation of these testing modalities is limited because of availability, cost, and perceived invasiveness. Blood-based biomarkers (BBBMs) may enable earlier and faster diagnoses as well as aid in risk assessment, early detection, prognosis, and management. Herein, we review data on BBBMs that are closest to clinical implementation, particularly those based on measures of amyloid-β peptides and phosphorylated tau species. We discuss key parameters and considerations for the development and potential deployment of these BBBMs under different contexts of use and highlight challenges at the methodological, clinical, and regulatory levels.Copyright © 2023 Elsevier Inc. All rights reserved.
[17]
Hampel H, Hardy J, Blennow K, et al. The amyloid-β pathway in Alzheimer's disease[J]. Mol Psychiatry, 2021, 26 (10): 5481-5503.
Breakthroughs in molecular medicine have positioned the amyloid-β (Aβ) pathway at the center of Alzheimer’s disease (AD) pathophysiology. While the detailed molecular mechanisms of the pathway and the spatial-temporal dynamics leading to synaptic failure, neurodegeneration, and clinical onset are still under intense investigation, the established biochemical alterations of the Aβ cycle remain the core biological hallmark of AD and are promising targets for the development of disease-modifying therapies. Here, we systematically review and update the vast state-of-the-art literature of Aβ science with evidence from basic research studies to human genetic and multi-modal biomarker investigations, which supports a crucial role of Aβ pathway dyshomeostasis in AD pathophysiological dynamics. We discuss the evidence highlighting a differentiated interaction of distinct Aβ species with other AD-related biological mechanisms, such as tau-mediated, neuroimmune and inflammatory changes, as well as a neurochemical imbalance. Through the lens of the latest development of multimodal in vivo biomarkers of AD, this cross-disciplinary review examines the compelling hypothesis- and data-driven rationale for Aβ-targeting therapeutic strategies in development for the early treatment of AD.
[18]
Zhang Y, Chen H, Li R, et al. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future[J]. Signal Transduct Tar, 2023, 8 (1): 248.
[19]
Xu C, Zhao L, Dong C, et al. A review of application of aβ 42/40 ratio in diagnosis and prognosis of Alzheimer's disease[J]. J Alzheimers Dis, 2022, 90: 495-512.
The number of patients with Alzheimer’s disease (AD) and non-Alzheimer’s disease (non-AD) has drastically increased over recent decades. The amyloid cascade hypothesis attributes a vital role to amyloid-β protein (Aβ) in the pathogenesis of AD. As the main pathological hallmark of AD, amyloid plaques consist of merely the 42 and 40 amino acid variants of Aβ (Aβ42 and Aβ40). The cerebrospinal fluid (CSF) biomarker Aβ42/40 has been extensively investigated and eventually integrated into important diagnostic tools to support the clinical diagnosis of AD. With the development of highly sensitive assays and technologies, blood-based Aβ42/40, which was obtained using a minimally invasive and cost-effective method, has been proven to be abnormal in synchrony with CSF biomarker values. This paper presents the recent progress of the CSF Aβ42/40 ratio and plasma Aβ42/40 for AD as well as their potential clinical application as diagnostic markers or screening tools for dementia.
[20]
Alawode DOT, Heslegrave AJ, Ashton NJ, et al. Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer's disease[J]. J Intern Med, 2021, 290 (3): 583-601.
Alzheimer's disease (AD) is increasingly prevalent worldwide, and disease-modifying treatments may soon be at hand; hence now, more than ever, there is a need to develop techniques that allow earlier and more secure diagnosis. Current biomarker-based guidelines for AD diagnosis, which have replaced the historical symptom-based guidelines, rely heavily on neuroimaging and cerebrospinal fluid (CSF) sampling. Whilst these have greatly improved the diagnostic accuracy of AD pathophysiology, they are less practical for application in primary care, population-based and epidemiological settings, or where resources are limited. In contrast, blood is a more accessible and cost-effective source of biomarkers in AD. In this review paper, using the recently proposed amyloid, tau and neurodegeneration [AT(N)] criteria as a framework towards a biological definition of AD, we discuss recent advances in biofluid-based biomarkers, with a particular emphasis on those with potential to be translated into blood-based biomarkers. We provide an overview of the research conducted both in CSF and in blood to draw conclusions on biomarkers that show promise. Given the evidence collated in this review, plasma neurofilament light chain (N), and phosphorylated tau (p-tau; T) show particular potential for translation into clinical practice. However, p-tau requires more comparisons to be conducted between its various epitopes before conclusions can be made as to which one most robustly differentiates AD from non-AD dementias. Plasma amyloid beta (A) would prove invaluable as an early screening modality, but it requires very precise tests and robust pre-analytical protocols.This article is protected by copyright. All rights reserved.
[21]
Karikari TK, Ashton NJ, Brinkmalm G, et al. Blood phospho-tau in Alzheimer disease: analysis, interpretation, and clinical utility[J]. Nat Rev Neurol, 2022, 18 (7): 400-418.
Well-authenticated biomarkers can provide critical insights into the biological basis of Alzheimer disease (AD) to enable timely and accurate diagnosis, estimate future burden and support therapeutic trials. Current cerebrospinal fluid and molecular neuroimaging biomarkers fulfil these criteria but lack the scalability and simplicity necessary for widespread application. Blood biomarkers of adequate effectiveness have the potential to act as first-line diagnostic and prognostic tools, and offer the possibility of extensive population screening and use that is not limited to specialized centres. Accelerated progress in our understanding of the biochemistry of brain-derived tau protein and advances in ultrasensitive technologies have enabled the development of AD-specific phosphorylated tau (p-tau) biomarkers in blood. In this Review we discuss how new information on the molecular processing of brain p-tau and secretion of specific fragments into biofluids is informing blood biomarker development, enabling the evaluation of preanalytical factors that affect quantification, and informing harmonized protocols for blood handling. We also review the performance of blood p-tau biomarkers in the context of AD and discuss their potential contexts of use for clinical and research purposes. Finally, we highlight outstanding ethical, clinical and analytical challenges, and outline the steps that need to be taken to standardize inter-laboratory and inter-assay measurements.© 2022. Springer Nature Limited.
[22]
Mielke MM, Dage JL, Frank RD, et al. Performance of plasma phosphorylated tau 181 and 217 in the community[J]. Nat Med, 2022, 28: 1398-1405.
Plasma phosphorylated tau 181 (P-tau181) and 217 (P-tau217) are indicators of both amyloid and tau pathology in clinical settings, but their performance in heterogeneous community-based populations is unclear. We examined P-tau181 and P-tau217 (n = 1,329, aged 30-98 years), in the population-based Mayo Clinic Study of Aging. Continuous, unadjusted plasma P-tau181 and P-tau217 predicted abnormal amyloid positron-emission tomography (PET) (area under the receiver operating characteristic curve (AUROC) = 0.81-0.86) and tau PET entorhinal cortex (AUROC > 0.80), but was less predictive of a tau PET temporal region of interest (AUROC < 0.70). Multiple comorbidities were associated with higher plasma P-tau181 and P-tau217 levels; the difference between participants with and without chronic kidney disease (CKD) was similar to the difference between participants with and without elevated brain amyloid. The exclusion of participants with CKD and other comorbidities affected the establishment of a normal reference range and cutpoints. Understanding the effect of comorbidities on P-tau181 and P-tau217 levels is important for their future interpretation in the context of clinical screening, diagnosis or prognosis at the population level.© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
[23]
Milà-Alomà M, Ashton NJ, Shekari M, et al. Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer's disease[J]. Nat Med, 2022, 28 (9): 1797-1801.
Blood biomarkers indicating elevated amyloid-β (Aβ) pathology in preclinical Alzheimer's disease are needed to facilitate the initial screening process of participants in disease-modifying trials. Previous biofluid data suggest that phosphorylated tau231 (p-tau231) could indicate incipient Aβ pathology, but a comprehensive comparison with other putative blood biomarkers is lacking. In the ALFA+ cohort, all tested plasma biomarkers (p-tau181, p-tau217, p-tau231, GFAP, NfL and Aβ42/40) were significantly changed in preclinical Alzheimer's disease. However, plasma p-tau231 reached abnormal levels with the lowest Aβ burden. Plasma p-tau231 and p-tau217 had the strongest association with Aβ positron emission tomography (PET) retention in early accumulating regions and associated with longitudinal increases in Aβ PET uptake in individuals without overt Aβ pathology at baseline. In summary, plasma p-tau231 and p-tau217 better capture the earliest cerebral Aβ changes, before overt Aβ plaque pathology is present, and are promising blood biomarkers to enrich a preclinical population for Alzheimer's disease clinical trials.© 2022. The Author(s).
[24]
Jung Y, Damoiseaux JS. The potential of blood neurofilament light as a marker of neurodegeneration for Alzheimer's disease[J]. Brain, 2024, 147 (1): 12-25.
Over the past several years, there has been a surge in blood biomarker studies examining the value of plasma or serum neurofilament light (NfL) as a biomarker of neurodegeneration for Alzheimer's disease. However, there have been limited efforts to combine existing findings to assess the utility of blood NfL as a biomarker of neurodegeneration for Alzheimer's disease. In addition, we still need better insight into the specific aspects of neurodegeneration that are reflected by the elevated plasma or serum concentration of NfL.
[25]
Alcolea D, Beeri MS, Rojas JC, et al. Blood biomarkers in neurodegenerative diseases[J]. Neurology, 2023, 101 (4): 172-180.
Blood-based biomarkers offer a major advance in the clinical evaluation of neurodegenerative diseases. Currently, research studies have reported robust assays of blood markers for the detection of amyloid and tau pathologies specific to Alzheimer's disease (Aß peptides, p-tau), as well as non-specific blood markers of neuronal (neurofilament light, ß-synuclein, ubiquitin-C-terminal-hydrolase-L1) and glial degeneration (glial fibrillary acidic protein) that can measure key pathophysiological processes in several neurodegenerative diseases. In the near future, these markers may be used for screening, diagnosis or disease and treatment response monitoring. Blood-based biomarkers for neurodegenerative diseases have been rapidly implemented in research, and they have the potential to enter clinical use soon in different clinical settings. In this review, we will describe the main developments and their potential implications for the general neurologist.© 2023 American Academy of Neurology.
[26]
Beyer L, Stocker H, Rujescu D, et al. Amyloid-beta misfolding and GFAP predict risk of clinical Alzheimer's disease diagnosis within 17 years[J]. Alzheimers Dement, 2023, 19 (3): 1020-1028.
[27]
Chatterjee P, Pedrini S, Stoops E, et al. Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer's disease[J]. Transl Psychiat, 2021, 11 (1): 27.
Glial fibrillary acidic protein (GFAP), an astrocytic cytoskeletal protein, can be measured in blood samples, and has been associated with Alzheimer's disease (AD). However, plasma GFAP has not been investigated in cognitively normal older adults at risk of AD, based on brain amyloid-β (Aβ) load. Cross-sectional analyses were carried out for plasma GFAP and plasma Aβ1-42/Aβ1-40 ratio, a blood-based marker associated with brain Aβ load, in participants (65-90 years) categorised into low (Aβ-, n = 63) and high (Aβ+, n = 33) brain Aβ load groups via Aβ positron emission tomography. Plasma GFAP, Aβ1-42, and Aβ1-40 were measured using the Single molecule array (Simoa) platform. Plasma GFAP levels were significantly higher (p < 0.00001), and plasma Aβ1-42/Aβ1-40 ratios were significantly lower (p < 0.005), in Aβ+ participants compared to Aβ- participants, adjusted for covariates age, sex, and apolipoprotein E-ε4 carriage. A receiver operating characteristic curve based on a logistic regression of the same covariates, the base model, distinguished Aβ+ from Aβ- (area under the curve, AUC = 0.78), but was outperformed when plasma GFAP was added to the base model (AUC = 0.91) and further improved with plasma Aβ1-42/Aβ1-40 ratio (AUC = 0.92). The current findings demonstrate that plasma GFAP levels are elevated in cognitively normal older adults at risk of AD. These observations suggest that astrocytic damage or activation begins from the pre-symptomatic stage of AD and is associated with brain Aβ load. Observations from the present study highlight the potential of plasma GFAP to contribute to a diagnostic blood biomarker panel (along with plasma Aβ1-42/Aβ1-40 ratios) for cognitively normal older adults at risk of AD.
[28]
Shen XN, Huang SY, Cui M, et al. Plasma glial fibrillary acidic protein in the Alzheimer disease continuum: relationship to other biomarkers, differential diagnosis, and prediction of clinical progression[J]. Clin Chem, 2023, 69 (4): 411-421.
Plasma glial fibrillary acidic protein (GFAP) has emerged as a promising biomarker in neurological disorders, but further evidence is required in relation to its usefulness for diagnosis and prediction of Alzheimer disease (AD).
[29]
Janelidze S, Bali D, Ashton NJ, et al. Head-to-head comparison of 10 plasma phospho-tau assays in prodromal Alzheimer's disease[J]. Brain, 2023, 146 (4): 1592-1601.
Plasma phospho-tau (p-tau) species have emerged as the most promising blood-based biomarkers of Alzheimer's disease. Here, we performed a head-to-head comparison of p-tau181, p-tau217 and p-tau231 measured using 10 assays to detect abnormal brain amyloid-β (Aβ) status and predict future progression to Alzheimer's dementia. The study included 135 patients with baseline diagnosis of mild cognitive impairment (mean age 72.4 years; 60.7% women) who were followed for an average of 4.9 years. Seventy-one participants had abnormal Aβ-status (i.e. abnormal CSF Aβ42/40) at baseline; and 45 of these Aβ-positive participants progressed to Alzheimer's dementia during follow-up. P-tau concentrations were determined in baseline plasma and CSF. P-tau217 and p-tau181 were both measured using immunoassays developed by Lilly Research Laboratories (Lilly) and mass spectrometry assays developed at Washington University (WashU). P-tau217 was also analysed using Simoa immunoassay developed by Janssen Research and Development (Janss). P-tau181 was measured using Simoa immunoassay from ADxNeurosciences (ADx), Lumipulse immunoassay from Fujirebio (Fuji) and Splex immunoassay from Mesoscale Discovery (Splex). Both p-tau181 and p-tau231 were quantified using Simoa immunoassay developed at the University of Gothenburg (UGOT). We found that the mass spectrometry-based p-tau217 (p-tau217WashU) exhibited significantly better performance than all other plasma p-tau biomarkers when detecting abnormal Aβ status [area under curve (AUC) = 0.947; Pdiff &amp;lt; 0.015] or progression to Alzheimer's dementia (AUC = 0.932; Pdiff &amp;lt; 0.027). Among immunoassays, p-tau217Lilly had the highest AUCs (0.886–0.889), which was not significantly different from the AUCs of p-tau217Janss, p-tau181ADx and p-tau181WashU (AUCrange 0.835–0.872; Pdiff &amp;gt; 0.09), but higher compared with AUC of p-tau231UGOT, p-tau181Lilly, p-tau181UGOT, p-tau181Fuji and p-tau181Splex (AUCrange 0.642–0.813; Pdiff ≤ 0.029). Correlations between plasma and CSF values were strongest for p-tau217WashU (R = 0.891) followed by p-tau217Lilly (R = 0.755; Pdiff = 0.003 versus p-tau217WashU) and weak to moderate for the rest of the p-tau biomarkers (Rrange 0.320–0.669). In conclusion, our findings suggest that among all tested plasma p-tau assays, mass spectrometry-based measures of p-tau217 perform best when identifying mild cognitive impairment patients with abnormal brain Aβ or those who will subsequently progress to Alzheimer's dementia. Several other assays (p-tau217Lilly, p-tau217Janss, p-tau181ADx and p-tau181WashU) showed relatively high and consistent accuracy across both outcomes. The results further indicate that the highest performing assays have performance metrics that rival the gold standards of Aβ-PET and CSF. If further validated, our findings will have significant impacts in diagnosis, screening and treatment for Alzheimer's dementia in the future.
[30]
蔡齐勇, 雷杨, 李朝辉, 等. 单分子阵列技术在疾病诊断中的应用进展[J]. 分析化学, 2021, 49 (7): 1154-1165.
[31]
Rissin DM, Kan CW, Campbell TG, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations[J]. Nat Biotechnol, 2010, 28 (6): 595-599.
The ability to detect single protein molecules in blood could accelerate the discovery and use of more sensitive diagnostic biomarkers. To detect low-abundance proteins in blood, we captured them on microscopic beads decorated with specific antibodies and then labeled the immunocomplexes (one or zero labeled target protein molecules per bead) with an enzymatic reporter capable of generating a fluorescent product. After isolating the beads in 50-fl reaction chambers designed to hold only a single bead, we used fluorescence imaging to detect single protein molecules. Our single-molecule enzyme-linked immunosorbent assay (digital ELISA) approach detected as few as approximately 10-20 enzyme-labeled complexes in 100 microl of sample (approximately 10(-19) M) and routinely allowed detection of clinically relevant proteins in serum at concentrations (<10(-15) M) much lower than conventional ELISA. Digital ELISA detected prostate-specific antigen (PSA) in sera from patients who had undergone radical prostatectomy at concentrations as low as 14 fg/ml (0.4 fM).
[32]
Cai Q, Jin S, Zong H, et al. A quadruplex ultrasensitive immunoassay for simultaneous assessment of human reproductive hormone proteins in multiple biofluid samples[J]. Anal Chem, 2023, 95 (31): 11641-11648.
[33]
Moscoso A, Grothe MJ, Ashton NJ, et al. Time course of phosphorylated-tau181 in blood across the Alzheimer's disease spectrum[J]. Brain, 2021, 144 (1): 325-339.
Tau phosphorylated at threonine 181 (p-tau181) measured in blood plasma has recently been proposed as an accessible, scalable, and highly specific biomarker for Alzheimer's disease. Longitudinal studies, however, investigating the temporal dynamics of this novel biomarker are lacking. It is therefore unclear when in the disease process plasma p-tau181 increases above physiological levels and how it relates to the spatiotemporal progression of Alzheimer's disease characteristic pathologies. We aimed to establish the natural time course of plasma p-tau181 across the sporadic Alzheimer's disease spectrum in comparison to those of established imaging and fluid-derived biomarkers of Alzheimer's disease. We examined longitudinal data from a large prospective cohort of elderly individuals enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI) (n = 1067) covering a wide clinical spectrum from normal cognition to dementia, and with measures of plasma p-tau181 and an 18F-florbetapir amyloid-β PET scan at baseline. A subset of participants (n = 864) also had measures of amyloid-β1-42 and p-tau181 levels in CSF, and another subset (n = 298) had undergone an 18F-flortaucipir tau PET scan 6 years later. We performed brain-wide analyses to investigate the associations of plasma p-tau181 baseline levels and longitudinal change with progression of regional amyloid-β pathology and tau burden 6 years later, and estimated the time course of changes in plasma p-tau181 and other Alzheimer's disease biomarkers using a previously developed method for the construction of long-term biomarker temporal trajectories using shorter-term longitudinal data. Smoothing splines demonstrated that earliest plasma p-tau181 changes occurred even before amyloid-β markers reached abnormal levels, with greater rates of change correlating with increased amyloid-β pathology. Voxel-wise PET analyses yielded relatively weak, yet significant, associations of plasma p-tau181 with amyloid-β pathology in early accumulating brain regions in cognitively healthy individuals, while the strongest associations with amyloid-β were observed in late accumulating regions in patients with mild cognitive impairment. Cross-sectional and particularly longitudinal measures of plasma p-tau181 were associated with widespread cortical tau aggregation 6 years later, covering temporoparietal regions typical for neurofibrillary tangle distribution in Alzheimer's disease. Finally, we estimated that plasma p-tau181 reaches abnormal levels ∼6.5 and 5.7 years after CSF and PET measures of amyloid-β, respectively, following similar dynamics as CSF p-tau181. Our findings suggest that plasma p-tau181 increases are associated with the presence of widespread cortical amyloid-β pathology and with prospective Alzheimer's disease typical tau aggregation, providing clear implications for the use of this novel blood biomarker as a diagnostic and screening tool for Alzheimer's disease.© The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain.
[34]
Palmqvist S, Tideman P, Cullen N, et al. Prediction of future Alzheimer's disease dementia using plasma phospho-tau combined with other accessible measures[J]. Nat Med, 2021, 27(6): 1034-1042.
A combination of plasma phospho-tau (P-tau) and other accessible biomarkers might provide accurate prediction about the risk of developing Alzheimer's disease (AD) dementia. We examined this in participants with subjective cognitive decline and mild cognitive impairment from the BioFINDER (n = 340) and Alzheimer's Disease Neuroimaging Initiative (ADNI) (n = 543) studies. Plasma P-tau, plasma Aβ42/Aβ40, plasma neurofilament light, APOE genotype, brief cognitive tests and an AD-specific magnetic resonance imaging measure were examined using progression to AD as outcome. Within 4 years, plasma P-tau217 predicted AD accurately (area under the curve (AUC) = 0.83) in BioFINDER. Combining plasma P-tau217, memory, executive function and APOE produced higher accuracy (AUC = 0.91, P < 0.001). In ADNI, this model had similar AUC (0.90) using plasma P-tau181 instead of P-tau217. The model was implemented online for prediction of the individual probability of progressing to AD. Within 2 and 6 years, similar models had AUCs of 0.90-0.91 in both cohorts. Using cerebrospinal fluid P-tau, Aβ42/Aβ40 and neurofilament light instead of plasma biomarkers did not improve the accuracy significantly. The clinical predictions by memory clinic physicians had significantly lower accuracy (4-year AUC = 0.71). In summary, plasma P-tau, in combination with brief cognitive tests and APOE genotyping, might greatly improve the diagnostic prediction of AD and facilitate recruitment for AD trials.
[35]
Karikari TK, Pascoal TA, Ashton NJ, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer's disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts[J]. Lancet Neurol, 2020, 19 (5): 422-433.
CSF and PET biomarkers of amyloid β and tau accurately detect Alzheimer's disease pathology, but the invasiveness, high cost, and poor availability of these detection methods restrict their widespread use as clinical diagnostic tools. CSF tau phosphorylated at threonine 181 (p-tau181) is a highly specific biomarker for Alzheimer's disease pathology. We aimed to assess whether blood p-tau181 could be used as a biomarker for Alzheimer's disease and for prediction of cognitive decline and hippocampal atrophy.We developed and validated an ultrasensitive blood immunoassay for p-tau181. Assay performance was evaluated in four clinic-based prospective cohorts. The discovery cohort comprised patients with Alzheimer's disease and age-matched controls. Two validation cohorts (TRIAD and BioFINDER-2) included cognitively unimpaired older adults (mean age 63-69 years), participants with mild cognitive impairment (MCI), Alzheimer's disease, and frontotemporal dementia. In addition, TRIAD included healthy young adults (mean age 23 years) and BioFINDER-2 included patients with other neurodegenerative disorders. The primary care cohort, which recruited participants in Montreal, Canada, comprised control participants from the community without a diagnosis of a neurological condition and patients referred from primary care physicians of the Canadian National Health Service for specialist care. Concentrations of plasma p-tau181 were compared with established CSF and PET biomarkers and longitudinal measurements using Spearman correlation, area under the curve (AUC), and linear regression analyses.We studied 37 individuals in the discovery cohort, 226 in the first validation cohort (TRIAD), 763 in the second validation cohort (BioFINDER-2), and 105 in the primary care cohort (n=1131 individuals). In all cohorts, plasma p-tau181 showed gradual increases along the Alzheimer's disease continuum, from the lowest concentrations in amyloid β-negative young adults and cognitively unimpaired older adults, through higher concentrations in the amyloid β-positive cognitively unimpaired older adults and MCI groups, to the highest concentrations in the amyloid β-positive MCI and Alzheimer's disease groups (p<0·001, Alzheimer's disease vs all other groups). Plasma p-tau181 distinguished Alzheimer's disease dementia from amyloid β-negative young adults (AUC=99·40%) and cognitively unimpaired older adults (AUC=90·21-98·24% across cohorts), as well as other neurodegenerative disorders, including frontotemporal dementia (AUC=82·76-100% across cohorts), vascular dementia (AUC=92·13%), progressive supranuclear palsy or corticobasal syndrome (AUC=88·47%), and Parkinson's disease or multiple systems atrophy (AUC=81·90%). Plasma p-tau181 was associated with PET-measured cerebral tau (AUC=83·08-93·11% across cohorts) and amyloid β (AUC=76·14-88·09% across cohorts) pathologies, and 1-year cognitive decline (p=0·0015) and hippocampal atrophy (p=0·015). In the primary care cohort, plasma p-tau181 discriminated Alzheimer's disease from young adults (AUC=100%) and cognitively unimpaired older adults (AUC=84·44%), but not from MCI (AUC=55·00%).Blood p-tau181 can predict tau and amyloid β pathologies, differentiate Alzheimer's disease from other neurodegenerative disorders, and identify Alzheimer's disease across the clinical continuum. Blood p-tau181 could be used as a simple, accessible, and scalable test for screening and diagnosis of Alzheimer's disease.Alzheimer Drug Discovery Foundation, European Research Council, Swedish Research Council, Swedish Alzheimer Foundation, Swedish Dementia Foundation, Alzheimer Society Research Program.Copyright © 2020 Elsevier Ltd. All rights reserved.
[36]
Xiao Z, Wu W, Ma X, et al. Plasma p-tau217, p-tau181, and NfL as early indicators of dementia risk in a community cohort: The Shanghai Aging Study[J]. Alzheimers Dement, 2023, 15 (4): e12514.
[37]
Du F, Chen Y, Meng C, et al. Recent advances in electrochemiluminescence immunoassay based on multiple-signal strategy[J]. Curr Opin Electroche, 2021, 28: 100725.
[38]
Lv W, Ye H, Yuan Z, et al. Recent advances in electrochemiluminescence-based simultaneous detection of multiple targets[J]. TrAC Trends Anal Chem, 2020, 123: 115767.
[39]
Haar J, Blazevic D, Strobel B, et al. MSD-based assays facilitate a rapid and quantitative serostatus profiling for the presence of anti-AAV antibodies[J]. Mol Ther-Meth Clin D, 2022, 25: 360-369.
Adeno-associated virus (AAV) vector applications are often limited by capsid-directed humoral immune responses, mainly through neutralizing antibodies (NAbs), which are present throughout the human population due to natural AAV infections. Currently, antibody levels are often quantified via ELISA-based protocols or by cellular NAb assays and less frequently by NAb assays in mice. These methods need optimization for each serotype and are often not applicable to AAV variants with poor transduction. To tackle these limitations, we have established Meso Scale Discovery (MSD)-based assays for the quantification of binding antibodies (BAbs) and NAbs against the three most commonly used AAV serotypes, AAV2, AAV8, and AAV9. Both assays detect anti-AAV-IgG with high sensitivity and consistency as shown in a screen of sera from 40 healthy human donors. Subsequently, BAb and NAb titers were determined for identification of seronegative animals in a non-human primate (NHP) cohort. Moreover, the MSD-based BAb assay protocol was extended to a panel of 14 different AAV serotypes. In summary, our platform allows a rapid and quantitative assessment of the immunological properties of any natural or engineered AAV variant irrespective of transduction efficiency and enables high-throughput screens.© 2022 The Author(s).
[40]
Carlgren MN, Salvadó G, Ashton NJ, et al. Prediction of longitudinal cognitive decline in preclinical alzheimer disease using plasma biomarkers[J]. JAMA Neurol, 2023, 80(4): 360-369.
Alzheimer disease (AD) pathology starts with a prolonged phase of β-amyloid (Aβ) accumulation without symptoms. The duration of this phase differs greatly among individuals. While this disease phase has high relevance for clinical trial designs, it is currently unclear how to best predict the onset of clinical progression.
[41]
Kuhle J, Barro C, Andreasson U, et al. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa[J]. Clin Chem Lab Med, 2016, 54(10): 1655-1661.
Neuronal damage is the morphological substrate of persisting neurological disability. Neurofilaments (Nf) are specific cytoskeletal proteins of neurons and their quantification has shown encouraging results as a biomarker for axonal injury.We aimed at comparing a widely used conventional ELISA for Nf light chain (NfL) with an electrochemiluminescence-based method (ECL assay) and a newly developed single-molecule array (Simoa) method in clinically relevant cerebrospinal fluid (CSF) and serum samples.Analytical sensitivity was 0.62 pg/mL for Simoa, 15.6 pg/mL for the ECL assay, and 78.0 pg/mL for the ELISA. Correlations between paired CSF and serum samples were strongest for Simoa (r=0.88, p<0.001) and the ECL assay (r=0.78, p<0.001) and weaker for ELISA measurements (r=0.38, p=0.030). CSF NfL measurements between the platforms were highly correlated (r=1.0, p<0.001). Serum NfL levels were highly related between ECL assay and Simoa (r=0.86, p<0.001), and this was less visible between ELISA-ECL assay (r=0.41, p=0.018) and ELISA-Simoa (r=0.43, p=0.013). Multiple sclerosis (MS) patients had significantly higher serum NfL levels than controls when measured with Simoa (p=0.001) but not with the other platforms.We found Simoa to be more sensitive than ELISA or the ECL assay. Our results support the feasibility of quantifying NfL in serum; the results correlate with the more-established CSF NfL test. The highly sensitive Simoa technology deserves further studies in larger patient cohorts to clarify whether serum NfL could be used in the future to measure disease severity and determine prognosis or response to treatment interventions in neurological diseases.
[42]
Lue LF, Kuo YM, Sabbagh M, et al. Advance in plasma ad core biomarker development: current findings from immunomagnetic reduction-based SQUID technology[J]. Neurol Ther, 2019, 8 (2): 95-111.
[43]
Yang SY, Wu JL, Tso CH, et al. A novel quantitative immunomagnetic reduction assay for Nervous necrosis virus[J]. J Vet Diagn Invest, 2012, 24 (5): 911-917.
Rapid, sensitive, and automatic detection platforms are among the major approaches of controlling viral diseases in aquaculture. An efficient detection platform permits the monitoring of pathogen spread and helps to enhance the economic benefits of commercial aquaculture. Nervous necrosis virus (NNV), the cause of viral encephalopathy and retinopathy, is among the most devastating aquaculture viruses that infect marine fish species worldwide. In the present study, a highly sensitive magnetoreduction assay was developed for detecting target biomolecules with a primary focus on NNV antigens. A standard curve of the different NNV concentrations that were isolated from infected Malabar grouper (Epinephelus malabaricus) was established before experiments were conducted. The test solution was prepared by homogeneous dispersion of magnetic nanoparticles coated with rabbit anti-NNV antibody. The magnetic nanoparticles in the solution were oscillated by magnetic interaction with multiple externally applied, alternating current magnetic fields. The assay's limit of detection was approximately 2 × 10(1) TCID(50)/ml for NNV. Moreover, the immunomagnetic reduction readings for other aquatic viruses (i.e., 1 × 10(7) TCID(50)/ml for Infectious pancreatic necrosis virus and 1 × 10(6.5) TCID(50)/ml for grouper iridovirus) were below the background noise in the NNV solution, demonstrating the specificity of the new detection platform.
[44]
Liu HC, Lin WC, Chiu MJ, et al. Development of an assay of plasma neurofilament light chain utilizing immunomagnetic reduction technology[J]. PLoS One, 2020, 15 (6): e0234519.
[45]
Liu HC, Chen HH, Ho CS, et al. Investigation of the number of tests required for assaying plasma biomarkers associated with alzheimer's disease using immunomagnetic reduction[J]. Neurol Ther, 2021, 10 (2): 1015-1028.
[46]
Zhao L, Xu J, Xiong L, et al. Recent development of chemiluminescence for bioanalysis[J]. TrAC Trends Anal Chem, 2023, 166: 117213.
[47]
Bun S, Ito D, Tezuka T, et al. Performance of plasma Aβ42/40, measured using a fully automated immunoassay, across a broad patient population in identifying amyloid status[J]. Alzheimers Res Ther, 2023, 15 (1): 149.
Plasma biomarkers have emerged as promising screening tools for Alzheimer's disease (AD) because of their potential to detect amyloid β (Aβ) accumulation in the brain. One such candidate is the plasma Aβ42/40 ratio (Aβ42/40). Unlike previous research that used traditional immunoassay, recent studies that measured plasma Aβ42/40 using fully automated platforms reported promising results. However, its utility should be confirmed using a broader patient population, focusing on the potential for early detection.We recruited 174 participants, including healthy controls (HC) and patients with clinical diagnoses of AD, frontotemporal lobar degeneration, dementia with Lewy bodies/Parkinson's disease, mild cognitive impairment (MCI), and others, from a university memory clinic. We examined the performance of plasma Aβ42/40, measured using the fully automated high-sensitivity chemiluminescence enzyme (HISCL) immunoassay, in detecting amyloid-positron emission tomography (PET)-derived Aβ pathology. We also compared its performance with that of Simoa-based plasma phosphorylated tau at residue 181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL).Using the best cut-off derived from the Youden Index, plasma Aβ42/40 yielded an area under the receiver operating characteristic curve (AUC) of 0.949 in distinguishing visually assessed F-Florbetaben amyloid PET positivity. The plasma Aβ42/40 had a significantly superior AUC than p-tau181, GFAP, and NfL in the 167 participants with measurements for all four biomarkers. Next, we analyzed 99 participants, including only the HC and those with MCI, and discovered that plasma Aβ42/40 outperformed the other plasma biomarkers, suggesting its ability to detect early amyloid accumulation. Using the Centiloid scale (CL), Spearman's rank correlation coefficient between plasma Aβ42/40 and CL was -0.767. Among the 15 participants falling within the CL values indicative of potential future amyloid accumulation (CL between 13.5 and 35.7), plasma Aβ42/40 categorized 61.5% (8/13) as Aβ-positive, whereas visual assessment of amyloid PET identified 20% (3/15) as positive.Plasma Aβ42/40 measured using the fully automated HISCL platform showed excellent performance in identifying Aβ accumulation in the brain in a well-characterized cohort. This equipment may be useful for screening amyloid pathology because it has the potential to detect early amyloid pathology and is readily applied in clinical settings.© 2023. BioMed Central Ltd., part of Springer Nature.
[48]
Nakamura A, Kaneko N, Villemagne VL, et al. High performance plasma amyloid-β biomarkers for Alzheimer's disease[J]. Nat, 2018, 554 (7691): 249-254.
[49]
Gaya ML, Benedet AL, Tissot C, et al. Mass spectrometric simultaneous quantification of tau species in plasma shows differential associations with amyloid and tau pathologies[J]. Nat Aging, 2023, 3 (6): 661-669.
Blood phosphorylated tau (p-tau) biomarkers, at differing sites, demonstrate high accuracy to detect Alzheimerʼs disease (AD). However, knowledge on the optimal marker for disease identification across the AD continuum and the link to pathology is limited. This is partly due to heterogeneity in analytical methods. In this study, we employed an immunoprecipitation mass spectrometry method to simultaneously quantify six phosphorylated (p-tau181, p-tau199, p-tau202, p-tau205, p-tau217 and p-tau231) and two non-phosphorylated plasma tau peptides in a total of 214 participants from the Paris Lariboisière and Translational Biomarkers of Aging and Dementia cohorts. Our results indicate that p-tau217, p-tau231 and p-tau205 are the plasma tau forms that best reflect AD-related brain changes, although with distinct emergences along the disease course and correlations with AD features—amyloid and tau. These findings support the differential association of blood p-tau variants with AD pathology, and our method offers a potential tool for disease staging in clinical trials.
[50]
Gaya ML, Alosco ML, Yhang E, et al. Optimal blood tau species for the detection of Alzheimer's disease neuropathology: an immunoprecipitation mass spectrometry and autopsy study[J]. Acta Neuropathol, 2023, 147 (1): 5.
Plasma-to-autopsy studies are essential for validation of blood biomarkers and understanding their relation to Alzheimer’s disease (AD) pathology. Few such studies have been done on phosphorylated tau (p-tau) and those that exist have made limited or no comparison of the different p-tau variants. This study is the first to use immunoprecipitation mass spectrometry (IP-MS) to compare the accuracy of eight different plasma tau species in predicting autopsy-confirmed AD. The sample included 123 participants (AD = 69, non-AD = 54) from the Boston University Alzheimer’s disease Research Center who had an available ante-mortem plasma sample and donated their brain. Plasma samples proximate to death were analyzed by targeted IP-MS for six different tryptic phosphorylated (p-tau-181, 199, 202, 205, 217, 231), and two non-phosphorylated tau (195–205, 212–221) peptides. NIA-Reagan Institute criteria were used for the neuropathological diagnosis of AD. Binary logistic regressions tested the association between each plasma peptide and autopsy-confirmed AD status. Area under the receiver operating curve (AUC) statistics were generated using predicted probabilities from the logistic regression models. Odds Ratio (OR) was used to study associations between the different plasma tau species and CERAD and Braak classifications. All tau species were increased in AD compared to non-AD, but p-tau217, p-tau205 and p-tau231 showed the highest fold-changes. Plasma p-tau217 (AUC = 89.8), p-tau231 (AUC = 83.4), and p-tau205 (AUC = 81.3) all had excellent accuracy in discriminating AD from non-AD brain donors, even among those with CDR &lt; 1). Furthermore, p-tau217, p-tau205 and p-tau231 showed the highest ORs with both CERAD (ORp-tau217 = 15.29, ORp-tau205 = 5.05 and ORp-tau231 = 3.86) and Braak staging (ORp-tau217 = 14.29, ORp-tau205 = 5.27 and ORp-tau231 = 4.02) but presented increased levels at different amyloid and tau stages determined by neuropathological examination. Our findings support plasma p-tau217 as the most promising p-tau species for detecting AD brain pathology. Plasma p-tau231 and p-tau205 may additionally function as markers for different stages of the disease.
[51]
Jia L, Qiu Q, Zhang H, et al. Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid[J]. Alzheimers Dement, 2019, 15 (8): 1071-1080.
Neuronal-derived exosomal Aβ42, T-tau, and P-T181-tau have been demonstrated to be biomarkers of Alzheimer's disease (AD). However, no study has assessed the association of Aβ42, T-tau, and P-T181-tau between exosomes and CSF.This was a multicenter study with two-stage design. The subjects included 28 AD patients, 25 aMCI patients, and 29 controls in the discovery stage; the results of which were confirmed in the validation stage (73 AD, 71 aMCI, and 72 controls).The exosomal concentrations of Aβ42, T-tau, and P-T181-tau in AD group were higher than those in aMCI and control groups (all P < .001). The level of each exosomal biomarker was highly correlated with that in CSF.This study verified the agreement between CSF and blood exosomal biomarkers and confirmed that exosomal Aβ42, T-tau, and P-T181-tau have the same capacity as those in CSF for the diagnosis of AD and aMCI.Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
[52]
Jia L, Zhu M, Kong C, et al. Blood neuro-exosomal synaptic proteins predict Alzheimer's disease at the asymptomatic stage[J]. Alzheimers Dement, 2021, 17 (1): 49-60.
PDF(918 KB)

Accesses

Citation

Detail

Sections
Recommended

/