
Advances in the study of the association between ketogenic diet and cognitive function in Alzheimer's disease
Lu YU, Wei LI, Ling YUE, Xia LI
Chinese Journal of Alzheimer's Disease and Related Disorders ›› 2024, Vol. 7 ›› Issue (2) : 147-150.
Abbreviation (ISO4): Chinese Journal of Alzheimer's Disease and Related Disorders
Editor in chief: Jun WANG
Advances in the study of the association between ketogenic diet and cognitive function in Alzheimer's disease
This paper reviews the progress of research on the association between ketogenic diet and cognitive function in Alzheimer's disease (AD). Alzheimer's disease is a common neurodegenerative disorder that is primarily characterised by impairment of cognitive function. The ketogenic diet, a diet with a high-fat, low-carbohydrate pattern, has been shown to be protective against some neurodegenerative diseases. In recent years, an increasing number of studies have focused on the effects of the ketogenic diet on cognitive function in Alzheimer's disease. Studies have shown that the ketogenic diet improves cognitive function in Alzheimer's disease patients, including memory, learning and attention. The ketogenic diet improves cognitive function by regulating energy metabolism and reducing inflammatory responses in the brain. The ketogenic diet also increases the production of neuroprotective factors in the brain, which promotes the survival and functional recovery of nerve cells. However, there are some controversies and limitations in the current research on the association between ketogenic diet and cognitive function in Alzheimer's disease. The inconsistent results of some studies may be related to factors such as sample size, study design, and duration of dietary intervention. In addition, ketogenic diets may lead to some adverse effects in long-term application, such as elevated cholesterol and increased renal burden. In conclusion, ketogenic diet may have some improvement effects on cognitive function in Alzheimer's disease, but further studies are needed to clarify its effectiveness and safety. Future studies should focus on optimising the study design, increasing the sample size and study duration, as well as exploring the long-term effects of the ketogenic diet on cognitive function. In addition, attention should be paid to the applicable population and the optimal timing of intervention for the ketogenic diet in order to achieve the goal of personalised treatment.
Alzheimer's disease / Ketogenic diet / Cognitive function / Mechanisms of influence
[1] |
2023 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2023, 19(4): 1598-1695.
This article describes the public health impact of Alzheimer's disease, including prevalence and incidence, mortality and morbidity, use and costs of care, and the overall impact on family caregivers, the dementia workforce and society. The Special Report examines the patient journey from awareness of cognitive changes to potential treatment with drugs that change the underlying biology of Alzheimer's. An estimated 6.7 million Americans age 65 and older are living with Alzheimer's dementia today. This number could grow to 13.8 million by 2060 barring the development of medical breakthroughs to prevent, slow or cure AD. Official death certificates recorded 121,499 deaths from AD in 2019, and Alzheimer's disease was officially listed as the sixth-leading cause of death in the United States. In 2020 and 2021, when COVID-19 entered the ranks of the top ten causes of death, Alzheimer's was the seventh-leading cause of death. Alzheimer's remains the fifth-leading cause of death among Americans age 65 and older. Between 2000 and 2019, deaths from stroke, heart disease and HIV decreased, whereas reported deaths from AD increased more than 145%. This trajectory of deaths from AD was likely exacerbated by the COVID-19 pandemic in 2020 and 2021. More than 11 million family members and other unpaid caregivers provided an estimated 18 billion hours of care to people with Alzheimer's or other dementias in 2022. These figures reflect a decline in the number of caregivers compared with a decade earlier, as well as an increase in the amount of care provided by each remaining caregiver. Unpaid dementia caregiving was valued at $339.5 billion in 2022. Its costs, however, extend to family caregivers' increased risk for emotional distress and negative mental and physical health outcomes - costs that have been aggravated by COVID-19. Members of the paid health care workforce are involved in diagnosing, treating and caring for people with dementia. In recent years, however, a shortage of such workers has developed in the United States. This shortage - brought about, in part, by COVID-19 - has occurred at a time when more members of the dementia care workforce are needed. Therefore, programs will be needed to attract workers and better train health care teams. Average per-person Medicare payments for services to beneficiaries age 65 and older with AD or other dementias are almost three times as great as payments for beneficiaries without these conditions, and Medicaid payments are more than 22 times as great. Total payments in 2023 for health care, long-term care and hospice services for people age 65 and older with dementia are estimated to be $345 billion. The Special Report examines whether there will be sufficient numbers of physician specialists to provide Alzheimer's care and treatment now that two drugs are available that change the underlying biology of Alzheimer's disease.© 2023 the Alzheimer's Association.
|
[2] |
中华医学会神经病学分会痴呆与认知障碍学组. 阿尔茨海默病源性轻度认知障碍诊疗中国专家共识2021[J]. 中华神经科杂志, 2022(5): 421-440.
|
[3] |
Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019[J]. Lancet Public Health, 2022, 7(2): e105-e125.
Given the projected trends in population ageing and population growth, the number of people with dementia is expected to increase. In addition, strong evidence has emerged supporting the importance of potentially modifiable risk factors for dementia. Characterising the distribution and magnitude of anticipated growth is crucial for public health planning and resource prioritisation. This study aimed to improve on previous forecasts of dementia prevalence by producing country-level estimates and incorporating information on selected risk factors.We forecasted the prevalence of dementia attributable to the three dementia risk factors included in the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 (high body-mass index, high fasting plasma glucose, and smoking) from 2019 to 2050, using relative risks and forecasted risk factor prevalence to predict GBD risk-attributable prevalence in 2050 globally and by world region and country. Using linear regression models with education included as an additional predictor, we then forecasted the prevalence of dementia not attributable to GBD risks. To assess the relative contribution of future trends in GBD risk factors, education, population growth, and population ageing, we did a decomposition analysis.We estimated that the number of people with dementia would increase from 57·4 (95% uncertainty interval 50·4-65·1) million cases globally in 2019 to 152·8 (130·8-175·9) million cases in 2050. Despite large increases in the projected number of people living with dementia, age-standardised both-sex prevalence remained stable between 2019 and 2050 (global percentage change of 0·1% [-7·5 to 10·8]). We estimated that there were more women with dementia than men with dementia globally in 2019 (female-to-male ratio of 1·69 [1·64-1·73]), and we expect this pattern to continue to 2050 (female-to-male ratio of 1·67 [1·52-1·85]). There was geographical heterogeneity in the projected increases across countries and regions, with the smallest percentage changes in the number of projected dementia cases in high-income Asia Pacific (53% [41-67]) and western Europe (74% [58-90]), and the largest in north Africa and the Middle East (367% [329-403]) and eastern sub-Saharan Africa (357% [323-395]). Projected increases in cases could largely be attributed to population growth and population ageing, although their relative importance varied by world region, with population growth contributing most to the increases in sub-Saharan Africa and population ageing contributing most to the increases in east Asia.Growth in the number of individuals living with dementia underscores the need for public health planning efforts and policy to address the needs of this group. Country-level estimates can be used to inform national planning efforts and decisions. Multifaceted approaches, including scaling up interventions to address modifiable risk factors and investing in research on biological mechanisms, will be key in addressing the expected increases in the number of individuals affected by dementia.Bill & Melinda Gates Foundation and Gates Ventures.Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
|
[4] |
To examine the association of blood pressure (BP) with incident Alzheimer's disease (AD) dementia.This work is based on a longitudinal, cohort study of 18 years, the Chicago Health and Aging Project (CHAP) performed in 2,137 participants (55% black) with systolic BP measured around 8.1 years before incident AD dementia.The association of BP with risk of AD dementia was U-shaped, with the lowest risks of AD dementia near the center of the systolic BP (SBP) and diastolic BP (DBP) distributions, and modestly elevated risk at lower BPs, and greater risk at higher BPs. The degree of U-shape and the range of lowest risk (threshold ranges) varied with antihypertensive medication use and presence of the APOE ε4 allele. The U-shape was most prominent for the subgroup not taking antihypertensive medications and having an APOE ε4 allele. At higher BPs, those having the APOE ε4 allele and not receiving antihypertensive medication were at greater risk of AD dementia than other groups: The risk of incident AD dementia increased by 100% (relative risk [RR] = 2.00; 95% confidence interval [CI] = 1.70, 2.31) for every 10 mm Hg increase in SBP above 140 mm Hg. For DBP, the risk of incident of AD dementia increased by 57% (RR = 1.57; 95% CI = 1.33, 1.86) for every 5 mm Hg increase in DBP above 76 mm Hg.The BP risk of AD dementia association is U-shaped, with elevated risk at lower and higher BPs. People having the APOE ε4 allele and not receiving antihypertensive medication with higher BPs have notably elevated risk of AD dementia. Ann Neurol 2018;83:935-944.© 2018 American Neurological Association.
|
[5] |
Obesity is a global epidemic, affecting roughly 30% of the world’s population and predicted to rise. This disease results from genetic, behavioral, societal, and environmental factors, leading to excessive fat accumulation, due to insufficient energy expenditure. The adipose tissue, once seen as a simple storage depot, is now recognized as a complex organ with various functions, including hormone regulation and modulation of metabolism, inflammation, and homeostasis. Obesity is associated with a low-grade inflammatory state and has been linked to neurodegenerative diseases like multiple sclerosis (MS), Alzheimer’s (AD), and Parkinson’s (PD). Mechanistically, reduced adipose expandability leads to hypertrophic adipocytes, triggering inflammation, insulin and leptin resistance, blood-brain barrier disruption, altered brain metabolism, neuronal inflammation, brain atrophy, and cognitive decline. Obesity impacts neurodegenerative disorders through shared underlying mechanisms, underscoring its potential as a modifiable risk factor for these diseases. Nevertheless, further research is needed to fully grasp the intricate connections between obesity and neurodegeneration. Collaborative efforts in this field hold promise for innovative strategies to address this complex relationship and develop effective prevention and treatment methods, which also includes specific diets and physical activities, ultimately improving quality of life and health.
|
[6] |
Hypertension is an established risk factor for stroke and vascular dementia but recent meta-analyses examining the association between Alzheimer's disease (AD) and hypertension have found no significant association. These meta-analyses included short term studies starting in late life which may have obscured the real effect of midlife hypertension.To examine the association of AD with midlife hypertension, by including only studies with a sufficiently long follow up duration.Relevant studies were found by searches of MEDLINE, EMBASE, and PubMed. Study outcomes were grouped by measures of blood pressure and definition of hypertension (e.g., systolic hypertension > 140 mmHg or > 160 mmHg). We assessed pooled effect estimates using random effects models and heterogeneity of pooled estimates through the I2 statistic.Literature search found 3,426 publications of which 7 were eligible studies. There was a significant association between systolic hypertension (>160 mm Hg) and AD (HR 1.25, 95CI 1.06 - 1.47, p = 0.0065). Similarly, for systolic hypertension > 140 mm Hg, there was a smaller but still significant association (HR 1.18, 95CI 1.02 - 1.35, p = 0.021). For diastolic hypertension, all four studies found no significant associations between diastolic hypertension and AD, and these data could not be pooled due to heterogeneity in reporting.Our study found that midlife stage 1 and stage 2 systolic hypertension is associated with increased risk of AD by 18 and 25%, respectively, although no association was found for diastolic hypertension. It is likely that assertive control of systolic hypertension starting in midlife is important to preventing AD.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
Alzheimer's disease (AD) is a neurodegenerative disease that affects almost 1 million people in France and 55 million in the world. This pathology is a global health preoccupation because of the lack of efficient curative treatment and the increase of its prevalence. During the last decade, the comprehension of pathophysiological mechanisms involved in AD have been improved. Amyloid plaques and neurofibrillary tangles accumulation are characteristic of Alzheimer's brain patients, accompanied by increased brain inflammation and oxidative stress, impaired cerebral metabolism of glucose and mitochondrial function. Treatment of AD includes different approaches, as pharmacology, psychology support, physiotherapy, and speech therapy. However, these interventions do not have a curative effect, but only compensatory on the disease. Ketogenic diet (KD), a low-carbohydrates and high-fat diet, associated with a medium-chain triglycerides intake (MCTs) might induce benefices for Alzheimer disease patients. Carbohydrate restriction and MCTs promotes the production of ketone bodies from fatty acid degradation. These metabolites replacing glucose, serve the brain as energetic substrates, and induce neuroprotective effects. Such a nutritional support might slow down the disease progression and improve cognitive abilities of patients. This review aims to examine the neuroprotective mechanisms of KD in AD progression and describes the advantages and limitations of KD as a therapeutic strategy.© Société de Biologie, 2023.
|
[13] |
We assessed the feasibility and cognitive effects of a ketogenic diet (KD) in participants with Alzheimer's disease.The Ketogenic Diet Retention and Feasibility Trial featured a 3-month, medium-chain triglyceride-supplemented KD followed by a 1-month washout in clinical dementia rating (CDR) 0.5, 1, and 2 participants. We obtained urine acetoacetate, serum β-hydroxybutyrate, food record, and safety data. We administered the Alzheimer's Disease Assessment Scale-cognitive subscale and Mini-Mental State Examination before the KD, and following the intervention and washout.We enrolled seven CDR 0.5, four CDR 1, and four CDR 2 participants. One CDR 0.5 and all CDR 2 participants withdrew citing caregiver burden. The 10 completers achieved ketosis. Most adverse events were medium-chain triglyceride-related. Among the completers, the mean of the Alzheimer's Disease Assessment Scale-cognitive subscale score improved by 4.1 points during the diet ( = .02) and reverted to baseline after the washout.This pilot trial justifies KD studies in mild Alzheimer's disease.
|
[14] |
|
[15] |
Unlike for glucose, uptake of the brain's main alternative fuel, ketones, remains normal in mild cognitive impairment (MCI). Ketogenic medium chain triglycerides (kMCTs) could improve cognition in MCI by providing the brain with more fuel.Fifty-two subjects with MCI were blindly randomized to 30 g/day of kMCT or matching placebo. Brain ketone and glucose metabolism (quantified by positron emission tomography; primary outcome) and cognitive performance (secondary outcome) were assessed at baseline and 6 months later.Brain ketone metabolism increased by 230% for subjects on the kMCT (P < .001) whereas brain glucose uptake remained unchanged. Measures of episodic memory, language, executive function, and processing speed improved on the kMCT versus baseline. Increased brain ketone uptake was positively related to several cognitive measures. Seventy-five percent of participants completed the intervention.A dose of 30 g/day of kMCT taken for 6 months bypasses a significant part of the brain glucose deficit and improves several cognitive outcomes in MCI.Copyright © 2019 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
|
[16] |
Clinical and animal studies suggested that a medium-chain triglyceride (MCT)-based ketogenic diet provides an alternative energy substrate to the brain and has neuroprotective effects, but the clinical evidence is still scarce. Here we examined the effect of an MCT-based ketogenic formula on cognitive function in patients with Alzheimer's disease (AD). The subjects were 20 Japanese patients with mild-to-moderate AD (11 males, nine females, mean age 73.4 ± 6.0 years) who, on separate days, underwent neurocognitive tests 120 min after consuming 50 g of a ketogenic formula (Ketonformula) containing 20 g of MCTs or an isocaloric placebo formula without MCTs. The patients then took 50 g of the ketogenic formula daily for up to 12 weeks, and underwent neurocognitive tests monthly. In the first trial, although the patients' plasma levels of ketone bodies were successfully increased 120 min after the single intake of the ketogenic formula, there was no significant difference in any cognitive test results between the administrations of the ketogenic and placebo formulae. In the subsequent chronic intake trial of the ketogenic formula, 16 of the 20 patients completed the 12-week regimen. At 8 weeks after the trial's start, the patients showed significant improvement in their immediate and delayed logical memory tests compared to their baseline scores, and at 12 weeks they showed significant improvements in the digit-symbol coding test and immediate logical memory test compared to the baseline. The chronic consumption of the ketogenic formula was therefore suggested to have positive effects on verbal memory and processing speed in patients with AD.Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
|
[17] |
张敏. 生酮饮食调控AD小鼠Uch-L1(C)改善大脑能量代谢和认知功能[J]. 医药卫生科技, 2024(1):34-52.
|
[18] |
张营丽. 生酮饮食对阿尔茨海默病患者神经损伤及焦虑抑郁情绪的影响[J]. 中国实用神经疾病杂志, 2021, 24(1): 49-53.
|
[19] |
The effects of a low carbohydrate/high fat (LCHF) diet on health are debated. This study aims to explore the effects of a diet with less than 20 g carbohydrates per day (LCHF) on plasma low density lipoprotein cholesterol (LDL-C) in young and healthy adults. The secondary aim is the assessment of lipid profile and peripheral blood mononuclear cells (PBMC) gene expression.This was a randomized controlled parallel-designed intervention study. Participants were either assigned to a three-week LCHF diet or a control group continuing habitual diet ad libitum, in both groups.In total, 30 healthy normal weight participants completed the study. Nine subjects did not complete it due to adverse events or withdrawn consent. In the LCHF diet group (n = 15), plasma LDL-C increased from (mean ± SD) 2.2 ± 0.4 mmol/l before intervention to 3.1 ± 0.8 after, while in the control group (n = 15), LDL-C remained unchanged: 2.5 ± 0.8 mmol/l (p < 0.001 between groups). There was a significant increase in apolipoprotein B, total cholesterol, high-density lipoprotein cholesterol, free fatty acids, uric acid and urea in the LCHF group versus controls. Plasma levels of triglycerides, lipoprotein (a), glucose, C-peptide or C-reactive protein (CRP), blood pressure, body weight or body composition did not differ between the groups. PBMC gene expression of sterol regulator element binding protein 1 (SREBP-1) was increased in the LCHF group versus controls (p ≤ 0.01). The individual increase in LDL-C from baseline varied between 5 and 107% in the LCHF group.An LCHF diet for three weeks increased LDL-C with 44% versus controls. The individual response on LCHF varied profoundly.Copyright © 2018 Elsevier B.V. All rights reserved.
|
[20] |
The ketogenic diet (KD) entails a high intake of fat, moderate intake of protein, and a very limited intake of carbohydrates. Ketogenic dieting has been proposed as an effective intervention for type 2 diabetes and obesity since glycemic control is improved and sustained weight loss can be achieved. Interestingly, hyperketonemia is also associated with beneficial cardiovascular effects, possibly caused by improved cardiac energetics and reduced oxygen use. Therefore, the KD has the potential to both treat and prevent cardiovascular disease. However, the KD has some adverse effects that could counteract the beneficial cardiovascular properties. Of these, hyperlipidemia with elevation of triglycerides and LDL cholesterol levels are the most important. In addition, poor diet adherence and lack of knowledge regarding long-term effects may also reduce the broader applicability of the KD. The objective of this narrative review is to provide insights into the KD and its effects on myocardial ketone body utilization and, consequently, cardiovascular health.
|
[21] |
Little prospective long-term information is available on the effect of a ketogenic diet on plasma lipoproteins in children with difficult-to-control seizures.To determine the effect in children with intractable seizures of a high-fat ketogenic diet on plasma levels of the major apolipoprotein B (apoB)-containing lipoproteins, low-density lipoprotein (LDL) and very LDL (VLDL); and the major apolipoprotein A-I (apoA-I)-containing lipoprotein, high-density lipoprotein (HDL).A 6-month prospective cohort study of 141 children (mean [SD] age, 5.2 [3.8] years for 70 boys and 6.1 [4.4] years for 71 girls) with difficult-to-treat seizures who were hospitalized for initiation of a high-fat ketogenic diet and followed up as outpatients. This cohort constituted a subgroup of the 371 patients accepted into the ketogenic diet program between 1994 and 2001. A subset of the cohort was also studied after 12 (n = 59) and 24 (n = 27) months.A ketogenic diet consisting of a high ratio of fat to carbohydrate and protein combined (4:1 [n = 102], 3.5:1 [n = 7], or 3:1 [n = 32]). After diet initiation, the calories and ratio were adjusted to maintain ideal body weight for height and maximal urinary ketosis for seizure control.Differences at baseline and 6-month follow-up for levels of total, VLDL, LDL, HDL, and non-HDL cholesterol; triglycerides; total apoB; and apoA-I.At 6 months, the high-fat ketogenic diet significantly increased the mean plasma levels of total (58 mg/dL [1.50 mmol/L]), LDL (50 mg/dL [1.30 mmol/L]), VLDL (8 mg/dL [0.21 mmol/L]), and non-HDL cholesterol (63 mg/dL [1.63 mmol/L]) (P<.001 vs baseline for each); triglycerides (58 mg/dL [0.66 mmol/L]) (P<.001); and total apoB (49 mg/dL) (P<.001). Mean HDL cholesterol decreased significantly (P<.001), although apoA-I increased (4 mg/dL) (P =.23). Significant but less marked changes persisted in children observed after 12 and 24 months.A high-fat ketogenic diet produced significant increases in the atherogenic apoB-containing lipoproteins and a decrease in the antiatherogenic HDL cholesterol. Further studies are necessary to determine if such a diet adversely affects endothelial vascular function and promotes inflammation and formation of atherosclerotic lesions.
|
[22] |
The interplay of gut microbiota, host metabolism, and metabolic health has gained increased attention. Gut microbiota may play a regulatory role in gastrointestinal health, substrate metabolism, and peripheral tissues including adipose tissue, skeletal muscle, liver, and pancreas via its metabolites short-chain fatty acids (SCFA). Animal and human data demonstrated that, in particular, acetate beneficially affects host energy and substrate metabolism via secretion of the gut hormones like glucagon-like peptide-1 and peptide YY, which, thereby, affects appetite, via a reduction in whole-body lipolysis, systemic pro-inflammatory cytokine levels, and via an increase in energy expenditure and fat oxidation. Thus, potential therapies to increase gut microbial fermentation and acetate production have been under vigorous scientific scrutiny. In this review, the relevance of the colonically and systemically most abundant SCFA acetate and its effects on the previously mentioned tissues will be discussed in relation to body weight control and glucose homeostasis. We discuss in detail the differential effects of oral acetate administration (vinegar intake), colonic acetate infusions, acetogenic fiber, and acetogenic probiotic administrations as approaches to combat obesity and comorbidities. Notably, human data are scarce, which highlights the necessity for further human research to investigate acetate’s role in host physiology, metabolic, and cardiovascular health.
|
[23] |
|
[24] |
Ketogenic diet (KD) compromised the microstructure of cancellous bone and the mechanical property in the appendicular bone of mice, while the effects of KD on the axial bone have not been reported. This study aimed to compare the changes in the microstructure and mechanical properties of the forth lumbar (L4) vertebra in KD and ovariectomized (OVX) mice. Forty eight-week-old female C57BL/6J mice were assigned into four groups: SD (standard diet) + Sham, SD + OVX, KD + Sham, and KD + OVX groups. L4 vertebra was scanned by micro-CT to examine the microstructure of cancellous bone, after which simulative compression tests were performed using finite element (FE) analysis. Vertebral compressive test and histological staining of the L4 and L5 vertebrae were performed to observe the biomechanical and histomorphologic changes. The KD + Sham and SD + OVX exhibited a remarkable declination in the parameters of cancellous bone compared with the SD + Sham group, while KD + OVX demonstrated the most serious bone loss in the four groups. The stiffness was significantly higher in the SD + Sham group than the other three groups, but no difference was found between the remaining groups. The trabecular parameters were significantly correlated with the stiffness. Meanwhile, the OVX + Sham and KD + OVX groups showed a significant decrease in the failure load of compressive test, while there was no difference between the KD + Sham and SD + Sham groups. These findings suggest that KD may compromise the vertebral microstructure and compressive stiffness to a similar level as OVX did, indicating adverse effects of KD on the axial bone of the mice.
|
[25] |
|
[26] |
|
[27] |
|
[28] |
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia. Deposition of amyloid-β (Aβ) remains a hallmark feature of the disease, yet the precise mechanism(s) by which this peptide induces neurotoxicity remain unknown. Neuroinflammation has long been implicated in AD pathology, yet its contribution to disease progression is still not understood. Recent evidence suggests that various Aβ complexes interact with microglial and astrocytic expressed pattern recognition receptors that initiate innate immunity. This process involves secretion of pro-inflammatory cytokines, chemokines and generation of reactive oxygen species that, in excess, drive a dysregulated immune response that contributes to neurodegeneration. The mechanisms by which a neuroinflammatory response can influence Aβ production, aggregation and eventual clearance are now becoming key areas where future therapeutic intervention may slow progression of AD. This review will focus on evidence supporting the combined neuroinflammatory-amyloid hypothesis for pathogenesis of AD, describing the key cell types, pathways and mediators involved. Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide. Deposition of intracellular plaques containing amyloid-beta (Aβ) is a hallmark proteinopathy of the disease yet the precise mechanisms by which this peptide induces neurotoxicity remains unknown. A neuroinflammatory response involving polarized microglial activity, enhanced astrocyte reactivity and elevated pro-inflammatory cytokine and chemokine load has long been implicated in AD and proposed to facilitate neurodegeneration. In this issue we discuss key receptor systems of innate immunity that detect Aβ, drive pro-inflammatory cytokine and chemokine production and influence Aβ aggregation and clearance. Evidence summarized in this review supports the combined neuroinflammatory-amyloid hypothesis for pathogenesis of AD and highlights the potential of immunomodulatory agents as potential future therapies for AD patients. © 2015 International Society for Neurochemistry.
|
[29] |
|
[30] |
|
[31] |
There is currently no established therapy to treat or prevent Alzheimer's disease. The ketogenic diet supplies an alternative cerebral metabolic fuel, with potential neuroprotective effects. Our goal was to compare the effects of a modified Mediterranean-ketogenic diet (MMKD) and an American Heart Association Diet (AHAD) on cerebrospinal fluid Alzheimer's biomarkers, neuroimaging measures, peripheral metabolism, and cognition in older adults at risk for Alzheimer's. Twenty participants with subjective memory complaints (n = 11) or mild cognitive impairment (n = 9) completed both diets, with 3 participants discontinuing early. Mean compliance rates were 90% for MMKD and 95% for AHAD. All participants had improved metabolic indices following MMKD. MMKD was associated with increased cerebrospinal fluid Aβ42 and decreased tau. There was increased cerebral perfusion and increased cerebral ketone body uptake (C-acetoacetate PET, in subsample) following MMKD. Memory performance improved after both diets, which may be due to practice effects. Our results suggest that a ketogenic intervention targeted toward adults at risk for Alzheimer's may prove beneficial in the prevention of cognitive decline.Copyright © 2019. Published by Elsevier Inc.
|
[32] |
Alzheimer's disease (AD) involves progressive accumulation of amyloid β-peptide (Aβ) and neurofibrillary pathologies, and glucose hypometabolism in brain regions critical for memory. The 3xTgAD mouse model was used to test the hypothesis that a ketone ester-based diet can ameliorate AD pathogenesis. Beginning at a presymptomatic age, 2 groups of male 3xTgAD mice were fed a diet containing a physiological enantiomeric precursor of ketone bodies (KET) or an isocaloric carbohydrate diet. The results of behavioral tests performed at 4 and 7 months after diet initiation revealed that KET-fed mice exhibited significantly less anxiety in 2 different tests. 3xTgAD mice on the KET diet also exhibited significant, albeit relatively subtle, improvements in performance on learning and memory tests. Immunohistochemical analyses revealed that KET-fed mice exhibited decreased Aβ deposition in the subiculum, CA1 and CA3 regions of the hippocampus, and the amygdala. KET-fed mice exhibited reduced levels of hyperphosphorylated tau deposition in the same regions of the hippocampus, amygdala, and cortex. Thus, a novel ketone ester can ameliorate proteopathic and behavioral deficits in a mouse AD model.Published by Elsevier Inc.
|
[33] |
Gut microbiota has a proven role in regulating multiple neuro-chemical pathways through the highly interconnected gut-brain axis. Oral bacteriotherapy thus has potential in the treatment of central nervous system-related pathologies, such as Alzheimer's disease (AD). Current AD treatments aim to prevent onset, delay progression and ameliorate symptoms. In this work, 3xTg-AD mice in the early stage of AD were treated with SLAB51 probiotic formulation, thereby affecting the composition of gut microbiota and its metabolites. This influenced plasma concentration of inflammatory cytokines and key metabolic hormones considered therapeutic targets in neurodegeneration. Treated mice showed partial restoration of two impaired neuronal proteolytic pathways (the ubiquitin proteasome system and autophagy). Their cognitive decline was decreased compared with controls, due to a reduction in brain damage and reduced accumulation of amyloid beta aggregates. Collectively, our results clearly prove that modulation of the microbiota induces positive effects on neuronal pathways that are able to slow down the progression of Alzheimer's disease.
|
[34] |
|
[35] |
Background: Gastrointestinal dysfunction and gut microbial composition disturbances have been widely reported in autism spectrum disorder (ASD). This study examines whether gut microbiome disturbances are present in the BTBRT + tf/j (BTBR) mouse model of ASD and if the ketogenic diet, a diet previously shown to elicit therapeutic benefit in this mouse model, is capable of altering the profile. Findings: Juvenile male C57BL/6 (B6) and BTBR mice were fed a standard chow (CH, 13 % kcal fat) or ketogenic diet (KD, 75 % kcal fat) for 10-14 days. Following diets, fecal and cecal samples were collected for analysis. Main findings are as follows: (1) gut microbiota compositions of cecal and fecal samples were altered in BTBR compared to control mice, indicating that this model may be of utility in understanding gut-brain interactions in ASD; (2) KD consumption caused an anti-microbial-like effect by significantly decreasing total host bacterial abundance in cecal and fecal matter; (3) specific to BTBR animals, the KD counteracted the common ASD phenotype of a low Firmicutes to Bacteroidetes ratio in both sample types; and (4) the KD reversed elevated Akkermansia muciniphila content in the cecal and fecal matter of BTBR animals. Conclusions: Results indicate that consumption of a KD likely triggers reductions in total gut microbial counts and compositional remodeling in the BTBR mouse. These findings may explain, in part, the ability of a KD to mitigate some of the neurological symptoms associated with ASD in an animal model.
|
[36] |
Alzheimer's disease (AD) prevalence is increasing, but its etiology remains elusive. Gut microbes can contribute to AD pathology and may help identifying novel markers and therapies against AD. Herein, we examine how the gut microbiome differs in older adults with mild cognitive impairment compared to cognitively normal counterparts, and whether and how a modified Mediterranean-ketogenic diet (MMKD) alters the gut microbiome signature in association with cerebrospinal fluid (CSF) AD biomarkers.A randomized, double-blind, cross-over, single-center pilot study of MMKD versus American Heart Association Diet (AHAD) intervention is performed on 17 subjects (age: 64.6 ± 6.4 yr), of which 11 have mild cognitive impairment, while 6 are cognitively normal. Subjects undergo MMKD and AHAD intervention for 6-weeks separated by 6-weeks washout periods. Gut microbiome, fecal short-chain fatty acids (SCFAs), and markers of AD in CSF including amyloid β (Aβ)-40 and Aß-42, total tau, and phosphorylated tau-181 (tau-p181) are measured at before and after diet interventions.At baseline, subjects with normal vs. impaired cognition show no notable difference in microbiome diversity but several unique microbial signatures are detected in subjects with mild cognitive impairment. Proteobacteria correlate positively with Aβ-42: Aβ-40 while fecal propionate and butyrate correlates negatively with Aβ-42 in subjects with mild cognitive impairment. Several bacteria are differently affected by the two diets with distinct patterns between cognitively normal and impaired subjects. Notably, the abundance of Enterobacteriaceae, Akkermansia, Slackia, Christensenellaceae and Erysipelotriaceae increases while that of Bifidobacterium and Lachnobacterium reduces on MMKD, while AHAD increases Mollicutes. MMKD slightly reduces fecal lactate and acetate while increasing propionate and butyrate. Conversely, AHAD increases acetate and propionate while reducing butyrate.The data suggest that specific gut microbial signatures may depict the mild cognitive impairment and that the MMKD can modulate the gut microbiome and metabolites in association with improved AD biomarkers in CSF.Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.
|
[37] |
|
[38] |
An early feature of Alzheimer's disease (AD) is region-specific declines in brain glucose metabolism. Unlike other tissues in the body, the brain does not efficiently metabolize fats; hence the adult human brain relies almost exclusively on glucose as an energy substrate. Therefore, inhibition of glucose metabolism can have profound effects on brain function. The hypometabolism seen in AD has recently attracted attention as a possible target for intervention in the disease process. One promising approach is to supplement the normal glucose supply of the brain with ketone bodies (KB), which include acetoacetate, beta-hydroxybutyrate, and acetone. KB are normally produced from fat stores when glucose supplies are limited, such as during prolonged fasting. KB have been induced both by direct infusion and by the administration of a high-fat, low-carbohydrate, low-protein, ketogenic diets. Both approaches have demonstrated efficacy in animal models of neurodegenerative disorders and in human clinical trials, including AD trials. Much of the benefit of KB can be attributed to their ability to increase mitochondrial efficiency and supplement the brain's normal reliance on glucose. Research into the therapeutic potential of KB and ketosis represents a promising new area of AD research.
|
[39] |
The full anticonvulsant effect of the ketogenic diet (KD) can require weeks to develop in rats, suggesting that altered gene expression is involved. The KD typically is used in pediatric epilepsies, but is effective also in adolescents and adults. Our goal was to use microarray and complementary technologies in adolescent rats to understand its anticonvulsant effect.Microarrays were used to define patterns of gene expression in the hippocampus of rats fed a KD or control diet for 3 weeks. Hippocampi from control- and KD-fed rats were also compared for the number of mitochondrial profiles in electron micrographs, the levels of selected energy metabolites and enzyme activities, and the effect of low glucose on synaptic transmission.Most striking was a coordinated upregulation of all (n = 34) differentially regulated transcripts encoding energy metabolism enzymes and 39 of 42 transcripts encoding mitochondrial proteins, which was accompanied by an increased number of mitochondrial profiles, a higher phosphocreatine/creatine ratio, elevated glutamate levels, and decreased glycogen levels. Consistent with increased energy reserves, synaptic transmission in hippocampal slices from KD-fed animals was resistant to low glucose.These data show that a calorie-restricted KD enhances brain metabolism. We propose an anticonvulsant mechanism of the KD involving mitochondrial biogenesis leading to enhanced alternative energy stores.
|
[40] |
|
[41] |
Astroglia or astrocytes, the most abundant cells in the brain, are interposed between neuronal synapses and microvasculature in the brain gray matter. They play a pivotal role in brain metabolism as well as in the regulation of cerebral blood flow, taking advantage of their unique anatomical location. In particular, the astroglial cellular metabolic compartment exerts supportive roles in dedicating neurons to the generation of action potentials and protects them against oxidative stress associated with their high energy consumption. An impairment of normal astroglial function, therefore, can lead to numerous neurological disorders including stroke, neurodegenerative diseases, and neuroimmunological diseases, in which metabolic derangements accelerate neuronal damage. The neurovascular unit (NVU), the major components of which include neurons, microvessels, and astroglia, is a conceptual framework that was originally used to better understand the pathophysiology of cerebral ischemia. At present, the NVU is a tool for understanding normal brain physiology as well as the pathophysiology of numerous neurological disorders. The metabolic responses of astroglia in the NVU can be either protective or deleterious. This review focuses on three major metabolic compartments: (i) glucose and lactate; (ii) fatty acid and ketone bodies; and (iii) D- and L-serine. Both the beneficial and the detrimental roles of compartmentalization between neurons and astroglia will be discussed. A better understanding of the astroglial metabolic response in the NVU is expected to lead to the development of novel therapeutic strategies for diverse neurological diseases.© 2020 The Author. Neuropathology published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Neuropathology.
|
[42] |
Ketogenic diets, which have been used to treat drug-refractory paediatric epilepsy for over 100 years, are becoming increasingly popular for the treatment of other neurological conditions, including mental illnesses. We aim to explain how ketogenic diets can improve mental illness biopathology and review the recent clinical literature.Psychiatric conditions, such as schizophrenia, depression, bipolar disorder and binge eating disorder, are neurometabolic diseases that share several common mechanistic biopathologies. These include glucose hypometabolism, neurotransmitter imbalances, oxidative stress and inflammation. There is strong evidence that ketogenic diets can address these four fundamental diseases, and now complementary clinical evidence that ketogenic diets can improve the patients' symptoms.It is important that researchers and clinicians are made aware of the trajectory of the evidence for the implementation of ketogenic diets in mental illnesses, as such a metabolic intervention provides not only a novel form of symptomatic treatment, but one that may be able to directly address the underlying disease mechanisms and, in so doing, also treat burdensome comorbidities (see Video, Supplementary Digital Content 1, http://links.lww.com/COE/A16, which summarizes the contents of this review).
|
[43] |
This review presents details about types of ketogenic diet (KD), anticancer mechanisms, and the use of KD in experimental and clinical studies. Studies summarized in this review provide a solid ground for researchers to consider the use of KD to augment conventional treatments.
|
[44] |
|
[45] |
This review discusses the effects and mechanisms of ketogenic diet on neurodegenerative diseases on the basis of available evidence. A ketogenic diet refers to a high-fat, medium-protein, and low-carbohydrate diet that leads to a metabolic shift to ketosis. This review systematically summarizes the scientific literature supporting this effective treatment approach for neurodegenerative diseases, including effects on mitochondrial function, oxidative stress, neuronal apoptosis, neuroinflammation, and the microbiota-gut-brain axis. It also highlights the clinical evidence for the effects of ketogenic diet in the treatment of Alzheimer's disease, Parkinson's disease, and motor neuron disease. Finally, it discusses the common adverse effects of ketogenic therapy. Although the complete mechanism of ketogenic diet in the treatment of neurodegenerative diseases remains to be elucidated, its clinical efficacy has attracted many new followers. The ketogenic diet is a good candidate for adjuvant therapy, but its specific applicability depends on the type and the degree of the disease.Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.
|
/
〈 |
|
〉 |