
Clinical translation of blood biomarkers for Alzheimer's disease: Challenges and Perspectives
Jun WANG, Shan HUANG, Yanjiang WANG
Chinese Journal of Alzheimer's Disease and Related Disorders ›› 2024, Vol. 7 ›› Issue (4) : 287-292.
Abbreviation (ISO4): Chinese Journal of Alzheimer's Disease and Related Disorders
Editor in chief: Jun WANG
Clinical translation of blood biomarkers for Alzheimer's disease: Challenges and Perspectives
The early treatment of Alzheimer's disease (AD) has made a breakthrough, making it urgent for early and accurate diagnosis of AD. Blood biomarkers are ideal tools for early diagnosis and have promising application prospects. Great research progresses have been made in recent years, but a series of challenges still exist in the translational application of blood biomarkers. Here, we dissected these challenges and proposed strategies to facilitate AD blood biomarkers to clinical practice.
Alzheimer's disease / Blood biomarker / Diagnosis / Translational research / Clinical practice
[1] |
China has a large population of older people, but has not yet undertaken a comprehensive study on the prevalence, risk factors, and management of both dementia and mild cognitive impairment (MCI).For this national cross-sectional study, 46 011 adults aged 60 years or older were recruited between March 10, 2015, and Dec 26, 2018, using a multistage, stratified, cluster-sampling method, which considered geographical region, degree of urbanisation, economic development status, and sex and age distribution. 96 sites were randomly selected in 12 provinces and municipalities representative of all socioeconomic and geographical regions in China. Participants were interviewed to obtain data on sociodemographic characteristics, lifestyle, medical history, current medications, and family history, and then completed a neuropsychological testing battery administered by a psychological evaluator. The prevalence of dementia (Alzheimer's disease, vascular dementia, and other dementias) and MCI were calculated and the risk factors for different groups were examined using multivariable-adjusted analyses.Overall age-adjusted and sex-adjusted prevalence was estimated to be 6·0% (95% CI 5·8-6·3) for dementia, 3·9% (3·8-4·1) for Alzheimer's disease, 1·6% (1·5-1·7) for vascular dementia, and 0·5% (0·5-0·6) for other dementias. We estimated that 15·07 million (95% CI 14·53-15·62) people aged 60 years or older in China have dementia: 9·83 million (9·39-10·29) with Alzheimer's disease, 3·92 million (3·64-4·22) with vascular dementia, and 1·32 million (1·16-1·50) with other dementias. Overall MCI prevalence was estimated to be 15·5% (15·2-15·9), representing 38·77 million (37·95-39·62) people in China. Dementia and MCI shared similar risk factors including old age (dementia: odds ratios ranging from 2·69 [95% CI 2·43-2·98] to 6·60 [5·24-8·32]; MCI: from 1·89 [1·77-2·00] to 4·70 [3·77-5·87]); female sex (dementia: 1·43 [1·31-1·56]; MCI: 1·51 [1·43-1·59]); parental history of dementia (dementia: 7·20 [5·68-9·12]; MCI: 1·91 [1·48-2·46]); rural residence (dementia: 1·16 [1·06-1·27]; MCI: 1·45 [1·38-1·54]); fewer years of education (dementia: from 1·17 [1·06-1·29] to 1·55 [1·38-1·73]; MCI: from 1·48 [1·39-1·58] to 3·48 [3·25-3·73]); being widowed, divorced, or living alone (dementia: from 2·59 [2·30-2·90] to 2·66 [2·29-3·10]; MCI: from 1·58 [1·44-1·73] to 1·74 [1·56-1·95]); smoking (dementia: 1·85 [1·67-2·04]; MCI: 1·27 [1·19-1·36]), hypertension (dementia: 1·86 [1·70-2·03]; MCI: 1·62 [1·54-1·71] for MCI), hyperlipidaemia (dementia: 1·87 [1·71-2·05]; MCI: 1·29 [1·21-1·37]), diabetes (dementia: 2·14 [1·96-2·34]; MCI: 1·44 [1·35-1·53]), heart disease (dementia: 1·98 [1·73-2·26]; MCI: 1·17 [1·06-1·30]), and cerebrovascular disease (dementia: 5·44 [4·95-5·97]; MCI: 1·49 [1·36-1·62]). Nine of these risk factors are modifiable.Dementia and MCI are highly prevalent in China and share similar risk factors. A prevention strategy should be developed to target the identified risk factors in the MCI population to thwart or slow down disease progression. It is also crucial to optimise the management of dementia and MCI as an important part of China's public health system.Key Project of the National Natural Science Foundation of China, National Key Scientific Instrument and Equipment Development Project, Mission Program of Beijing Municipal Administration of Hospitals, Beijing Scholars Program, Beijing Brain Initiative from Beijing Municipal Science & Technology Commission, Project for Outstanding Doctor with Combined Ability of Western and Chinese Medicine, and Beijing Municipal Commission of Health and Family Planning.Copyright © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.
|
[2] |
|
[3] |
There are limited efficacious treatments for Alzheimer disease.To assess efficacy and adverse events of donanemab, an antibody designed to clear brain amyloid plaque.Multicenter (277 medical research centers/hospitals in 8 countries), randomized, double-blind, placebo-controlled, 18-month phase 3 trial that enrolled 1736 participants with early symptomatic Alzheimer disease (mild cognitive impairment/mild dementia) with amyloid and low/medium or high tau pathology based on positron emission tomography imaging from June 2020 to November 2021 (last patient visit for primary outcome in April 2023).Participants were randomized in a 1:1 ratio to receive donanemab (n = 860) or placebo (n = 876) intravenously every 4 weeks for 72 weeks. Participants in the donanemab group were switched to receive placebo in a blinded manner if dose completion criteria were met.The primary outcome was change in integrated Alzheimer Disease Rating Scale (iADRS) score from baseline to 76 weeks (range, 0-144; lower scores indicate greater impairment). There were 24 gated outcomes (primary, secondary, and exploratory), including the secondary outcome of change in the sum of boxes of the Clinical Dementia Rating Scale (CDR-SB) score (range, 0-18; higher scores indicate greater impairment). Statistical testing allocated α of.04 to testing low/medium tau population outcomes, with the remainder (.01) for combined population outcomes.Among 1736 randomized participants (mean age, 73.0 years; 996 [57.4%] women; 1182 [68.1%] with low/medium tau pathology and 552 [31.8%] with high tau pathology), 1320 (76%) completed the trial. Of the 24 gated outcomes, 23 were statistically significant. The least-squares mean (LSM) change in iADRS score at 76 weeks was -6.02 (95% CI, -7.01 to -5.03) in the donanemab group and -9.27 (95% CI, -10.23 to -8.31) in the placebo group (difference, 3.25 [95% CI, 1.88-4.62]; P < .001) in the low/medium tau population and -10.2 (95% CI, -11.22 to -9.16) with donanemab and -13.1 (95% CI, -14.10 to -12.13) with placebo (difference, 2.92 [95% CI, 1.51-4.33]; P < .001) in the combined population. LSM change in CDR-SB score at 76 weeks was 1.20 (95% CI, 1.00-1.41) with donanemab and 1.88 (95% CI, 1.68-2.08) with placebo (difference, -0.67 [95% CI, -0.95 to -0.40]; P < .001) in the low/medium tau population and 1.72 (95% CI, 1.53-1.91) with donanemab and 2.42 (95% CI, 2.24-2.60) with placebo (difference, -0.7 [95% CI, -0.95 to -0.45]; P < .001) in the combined population. Amyloid-related imaging abnormalities of edema or effusion occurred in 205 participants (24.0%; 52 symptomatic) in the donanemab group and 18 (2.1%; 0 symptomatic during study) in the placebo group and infusion-related reactions occurred in 74 participants (8.7%) with donanemab and 4 (0.5%) with placebo. Three deaths in the donanemab group and 1 in the placebo group were considered treatment related.Among participants with early symptomatic Alzheimer disease and amyloid and tau pathology, donanemab significantly slowed clinical progression at 76 weeks in those with low/medium tau and in the combined low/medium and high tau pathology population.ClinicalTrials.gov Identifier: NCT04437511.
|
[4] |
|
[5] |
Blood-based tests for brain amyloid-β (Aβ) pathology are needed for widespread implementation of Alzheimer disease (AD) biomarkers in clinical care and to facilitate patient screening and monitoring of treatment responses in clinical trials.To compare the performance of plasma Aβ42/40 measured using 8 different Aβ assays when detecting abnormal brain Aβ status in patients with early AD.This study included 182 cognitively unimpaired participants and 104 patients with mild cognitive impairment from the BioFINDER cohort who were enrolled at 3 different hospitals in Sweden and underwent Aβ positron emission tomography (PET) imaging and cerebrospinal fluid (CSF) and plasma collection from 2010 to 2014. Plasma Aβ42/40 was measured using an immunoprecipitation-coupled mass spectrometry developed at Washington University (IP-MS-WashU), antibody-free liquid chromatography MS developed by Araclon (LC-MS-Arc), and immunoassays from Roche Diagnostics (IA-Elc); Euroimmun (IA-EI); and Amsterdam University Medical Center, ADx Neurosciences, and Quanterix (IA-N4PE). Plasma Aβ42/40 was also measured using an IP-MS-based method from Shimadzu in 200 participants (IP-MS-Shim) and an IP-MS-based method from the University of Gothenburg (IP-MS-UGOT) and another immunoassay from Quanterix (IA-Quan) among 227 participants. For validation, 122 participants (51 cognitively normal, 51 with mild cognitive impairment, and 20 with AD dementia) were included from the Alzheimer Disease Neuroimaging Initiative who underwent Aβ-PET and plasma Aβ assessments using IP-MS-WashU, IP-MS-Shim, IP-MS-UGOT, IA-Elc, IA-N4PE, and IA-Quan assays.Discriminative accuracy of plasma Aβ42/40 quantified using 8 different assays for abnormal CSF Aβ42/40 and Aβ-PET status.A total of 408 participants were included in this study. In the BioFINDER cohort, the mean (SD) age was 71.6 (5.6) years and 49.3% of the cohort were women. When identifying participants with abnormal CSF Aβ42/40 in the whole cohort, plasma IP-MS-WashU Aβ42/40 showed significantly higher accuracy (area under the receiver operating characteristic curve [AUC], 0.86; 95% CI, 0.81-0.90) than LC-MS-Arc Aβ42/40, IA-Elc Aβ42/40, IA-EI Aβ42/40, and IA-N4PE Aβ42/40 (AUC range, 0.69-0.78; P < .05). Plasma IP-MS-WashU Aβ42/40 performed significantly better than IP-MS-UGOT Aβ42/40 and IA-Quan Aβ42/40 (AUC, 0.84 vs 0.68 and 0.64, respectively; P < .001), while there was no difference in the AUCs between IP-MS-WashU Aβ42/40 and IP-MS-Shim Aβ42/40 (0.87 vs 0.83; P = .16) in the 2 subcohorts where these biomarkers were available. The results were similar when using Aβ-PET as outcome. Plasma IPMS-WashU Aβ42/40 and IPMS-Shim Aβ42/40 showed highest coefficients for correlations with CSF Aβ42/40 (r range, 0.56-0.65). The BioFINDER results were replicated in the Alzheimer Disease Neuroimaging Initiative cohort (mean [SD] age, 72.4 [5.4] years; 43.4% women), where the IP-MS-WashU assay performed significantly better than the IP-MS-UGOT, IA-Elc, IA-N4PE, and IA-Quan assays but not the IP-MS-Shim assay.The results from 2 independent cohorts indicate that certain MS-based methods performed better than most of the immunoassays for plasma Aβ42/40 when detecting brain Aβ pathology.
|
[6] |
|
[7] |
|
[8] |
|
[9] |
CSF and PET biomarkers of amyloid β and tau accurately detect Alzheimer's disease pathology, but the invasiveness, high cost, and poor availability of these detection methods restrict their widespread use as clinical diagnostic tools. CSF tau phosphorylated at threonine 181 (p-tau181) is a highly specific biomarker for Alzheimer's disease pathology. We aimed to assess whether blood p-tau181 could be used as a biomarker for Alzheimer's disease and for prediction of cognitive decline and hippocampal atrophy.We developed and validated an ultrasensitive blood immunoassay for p-tau181. Assay performance was evaluated in four clinic-based prospective cohorts. The discovery cohort comprised patients with Alzheimer's disease and age-matched controls. Two validation cohorts (TRIAD and BioFINDER-2) included cognitively unimpaired older adults (mean age 63-69 years), participants with mild cognitive impairment (MCI), Alzheimer's disease, and frontotemporal dementia. In addition, TRIAD included healthy young adults (mean age 23 years) and BioFINDER-2 included patients with other neurodegenerative disorders. The primary care cohort, which recruited participants in Montreal, Canada, comprised control participants from the community without a diagnosis of a neurological condition and patients referred from primary care physicians of the Canadian National Health Service for specialist care. Concentrations of plasma p-tau181 were compared with established CSF and PET biomarkers and longitudinal measurements using Spearman correlation, area under the curve (AUC), and linear regression analyses.We studied 37 individuals in the discovery cohort, 226 in the first validation cohort (TRIAD), 763 in the second validation cohort (BioFINDER-2), and 105 in the primary care cohort (n=1131 individuals). In all cohorts, plasma p-tau181 showed gradual increases along the Alzheimer's disease continuum, from the lowest concentrations in amyloid β-negative young adults and cognitively unimpaired older adults, through higher concentrations in the amyloid β-positive cognitively unimpaired older adults and MCI groups, to the highest concentrations in the amyloid β-positive MCI and Alzheimer's disease groups (p<0·001, Alzheimer's disease vs all other groups). Plasma p-tau181 distinguished Alzheimer's disease dementia from amyloid β-negative young adults (AUC=99·40%) and cognitively unimpaired older adults (AUC=90·21-98·24% across cohorts), as well as other neurodegenerative disorders, including frontotemporal dementia (AUC=82·76-100% across cohorts), vascular dementia (AUC=92·13%), progressive supranuclear palsy or corticobasal syndrome (AUC=88·47%), and Parkinson's disease or multiple systems atrophy (AUC=81·90%). Plasma p-tau181 was associated with PET-measured cerebral tau (AUC=83·08-93·11% across cohorts) and amyloid β (AUC=76·14-88·09% across cohorts) pathologies, and 1-year cognitive decline (p=0·0015) and hippocampal atrophy (p=0·015). In the primary care cohort, plasma p-tau181 discriminated Alzheimer's disease from young adults (AUC=100%) and cognitively unimpaired older adults (AUC=84·44%), but not from MCI (AUC=55·00%).Blood p-tau181 can predict tau and amyloid β pathologies, differentiate Alzheimer's disease from other neurodegenerative disorders, and identify Alzheimer's disease across the clinical continuum. Blood p-tau181 could be used as a simple, accessible, and scalable test for screening and diagnosis of Alzheimer's disease.Alzheimer Drug Discovery Foundation, European Research Council, Swedish Research Council, Swedish Alzheimer Foundation, Swedish Dementia Foundation, Alzheimer Society Research Program.Copyright © 2020 Elsevier Ltd. All rights reserved.
|
[10] |
There are limitations in current diagnostic testing approaches for Alzheimer disease (AD).To examine plasma tau phosphorylated at threonine 217 (P-tau217) as a diagnostic biomarker for AD.Three cross-sectional cohorts: an Arizona-based neuropathology cohort (cohort 1), including 34 participants with AD and 47 without AD (dates of enrollment, May 2007-January 2019); the Swedish BioFINDER-2 cohort (cohort 2), including cognitively unimpaired participants (n = 301) and clinically diagnosed patients with mild cognitive impairment (MCI) (n = 178), AD dementia (n = 121), and other neurodegenerative diseases (n = 99) (April 2017-September 2019); and a Colombian autosomal-dominant AD kindred (cohort 3), including 365 PSEN1 E280A mutation carriers and 257 mutation noncarriers (December 2013-February 2017).Plasma P-tau217.Primary outcome was the discriminative accuracy of plasma P-tau217 for AD (clinical or neuropathological diagnosis). Secondary outcome was the association with tau pathology (determined using neuropathology or positron emission tomography [PET]).Mean age was 83.5 (SD, 8.5) years in cohort 1, 69.1 (SD, 10.3) years in cohort 2, and 35.8 (SD, 10.7) years in cohort 3; 38% were women in cohort 1, 51% in cohort 2, and 57% in cohort 3. In cohort 1, antemortem plasma P-tau217 differentiated neuropathologically defined AD from non-AD (area under the curve [AUC], 0.89 [95% CI, 0.81-0.97]) with significantly higher accuracy than plasma P-tau181 and neurofilament light chain (NfL) (AUC range, 0.50-0.72; P < .05). The discriminative accuracy of plasma P-tau217 in cohort 2 for clinical AD dementia vs other neurodegenerative diseases (AUC, 0.96 [95% CI, 0.93-0.98]) was significantly higher than plasma P-tau181, plasma NfL, and MRI measures (AUC range, 0.50-0.81; P < .001) but not significantly different compared with cerebrospinal fluid (CSF) P-tau217, CSF P-tau181, and tau-PET (AUC range, 0.90-0.99; P > .15). In cohort 3, plasma P-tau217 levels were significantly greater among PSEN1 mutation carriers, compared with noncarriers, from approximately 25 years and older, which is 20 years prior to estimated onset of MCI among mutation carriers. Plasma P-tau217 levels correlated with tau tangles in participants with (Spearman ρ = 0.64; P < .001), but not without (Spearman ρ = 0.15; P = .33), β-amyloid plaques in cohort 1. In cohort 2, plasma P-tau217 discriminated abnormal vs normal tau-PET scans (AUC, 0.93 [95% CI, 0.91-0.96]) with significantly higher accuracy than plasma P-tau181, plasma NfL, CSF P-tau181, CSF Aβ42:Aβ40 ratio, and MRI measures (AUC range, 0.67-0.90; P < .05), but its performance was not significantly different compared with CSF P-tau217 (AUC, 0.96; P = .22).Among 1402 participants from 3 selected cohorts, plasma P-tau217 discriminated AD from other neurodegenerative diseases, with significantly higher accuracy than established plasma- and MRI-based biomarkers, and its performance was not significantly different from key CSF- or PET-based measures. Further research is needed to optimize the assay, validate the findings in unselected and diverse populations, and determine its potential role in clinical care.
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
Aggregated insoluble tau is one of two defining features of Alzheimer's disease. Because clinical symptoms are strongly correlated with tau aggregates, drug development and clinical diagnosis need cost-effective and accessible specific fluid biomarkers of tau aggregates; however, recent studies suggest that the fluid biomarkers currently available cannot specifically track tau aggregates. We show that the microtubule-binding region (MTBR) of tau containing the residue 243 (MTBR-tau243) is a new cerebrospinal fluid (CSF) biomarker specific for insoluble tau aggregates and compared it to multiple other phosphorylated tau measures (p-tau181, p-tau205, p-tau217 and p-tau231) in two independent cohorts (BioFINDER-2, n = 448; and Knight Alzheimer Disease Research Center, n = 219). MTBR-tau243 was most strongly associated with tau-positron emission tomography (PET) and cognition, whereas showing the lowest association with amyloid-PET. In combination with p-tau205, MTBR-tau243 explained most of the total variance in tau-PET burden (0.58 ≤ R ≤ 0.75) and the performance in predicting cognitive measures (0.34 ≤ R ≤ 0.48) approached that of tau-PET (0.44 ≤ R ≤ 0.52). MTBR-tau243 levels longitudinally increased with insoluble tau aggregates, unlike CSF p-tau species. CSF MTBR-tau243 is a specific biomarker of tau aggregate pathology, which may be utilized in interventional trials and in the diagnosis of patients. Based on these findings, we propose to revise the A/T/(N) criteria to include MTBR-tau243 as representing insoluble tau aggregates ('T').© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
|
[16] |
Cerebrospinal fluid (CSF) amyloid-β peptide (Aβ)42/Aβ40 and the concentration of tau phosphorylated at site 181 (p-tau181) are well-established biomarkers of Alzheimer's disease (AD). The present study used mass spectrometry to measure concentrations of nine phosphorylated and five nonphosphorylated tau species and phosphorylation occupancies (percentage phosphorylated/nonphosphorylated) at ten sites. In the present study we show that, in 750 individuals with a median age of 71.2 years, CSF pT217/T217 predicted the presence of brain amyloid by positron emission tomography (PET) slightly better than Aβ42/Aβ40 (P = 0.02). Furthermore, for individuals with positive brain amyloid by PET (n = 263), CSF pT217/T217 was more strongly correlated with the amount of amyloid (Spearman's ρ = 0.69) than Aβ42/Aβ40 (ρ = -0.42, P < 0.0001). In two independent cohorts of participants with symptoms of AD dementia (n = 55 and n = 90), CSF pT217/T217 and pT205/T205 were better correlated with tau PET measures than CSF p-tau181 concentration. These findings suggest that CSF pT217/T217 and pT205/T205 represent improved CSF biomarkers of amyloid and tau pathology in AD.© 2023. The Author(s).
|
[17] |
Plasma neurofilament light (NfL) has been suggested as a noninvasive biomarker to monitor neurodegeneration in Alzheimer disease (AD), but studies are lacking.To examine whether longitudinal plasma NfL levels are associated with other hallmarks of AD.This North American cohort study used data from 1583 individuals in the multicenter Alzheimer's Disease Neuroimaging Initiative study from September 7, 2005, through June 16, 2016. Patients were eligible for inclusion if they had NfL measurements. Annual plasma NfL samples were collected for up to 11 years and were analyzed in 2018.Clinical diagnosis, Aβ and tau cerebrospinal fluid (CSF) biomarkers, imaging measures (magnetic resonance imaging and fluorodeoxyglucose-positron emission tomography), and tests on cognitive scores.The primary outcome was the association between baseline exposures (diagnosis, CSF biomarkers, imaging measures, and cognition) and longitudinal plasma NfL levels, analyzed by an ultrasensitive assay. The secondary outcomes were the associations between a multimodal classification scheme with Aβ, tau, and neurodegeneration (ie, the ATN system) and plasma NfL levels and between longitudinal changes in plasma NfL levels and changes in the other measures.Of the included 1583 participants, 716 (45.2%) were women, and the mean (SD) age was 72.9 (7.1) years; 401 had no cognitive impairment, 855 had mild cognitive impairment, and 327 had AD dementia. The NfL level was increased at baseline in patients with mild cognitive impairment and AD dementia (mean levels: cognitive unimpairment, 32.1 ng/L; mild cognitive impairment, 37.9 ng/L; and AD dementia, 45.9 ng/L; P < .001) and increased in all diagnostic groups, with the greatest increase in patients with AD dementia. A longitudinal increase in NfL level correlated with baseline CSF biomarkers (low Aβ42 [P = .001], high total tau [P = .02], and high phosphorylated tau levels [P = .02]), magnetic resonance imaging measures (small hippocampal volumes [P < .001], thin regional cortices [P = .009], and large ventricular volumes [P = .002]), low fluorodeoxyglucose-positron emission tomography uptake (P = .01), and poor cognitive performance (P < .001) for a global cognitive score. With use of the ATN system, increased baseline NfL levels were seen in A-T+N+ (P < .001), A+T-N+ (P < .001), and A+T+N+ (P < .001), and increased rates of NfL levels were seen in A-T+N- (P = .009), A-T+N+ (P = .02), A+T-N+ (P = .04), and A+T+N+ (P = .002). Faster increase in NfL levels correlated with faster increase in CSF biomarkers of neuronal injury, faster rates of atrophy and hypometabolism, and faster worsening in global cognition (all P < .05 in patients with mild cognitive impairment; associations differed slightly in cognitively unimpaired controls and patients with AD dementia).The findings suggest that plasma NfL can be used as a noninvasive biomarker associated with neurodegeneration in patients with AD and may be useful to monitor effects in trials of disease-modifying drugs.
|
[18] |
Neurofilament light chain (NfL) is a promising fluid biomarker of disease progression for various cerebral proteopathies. Here we leverage the unique characteristics of the Dominantly Inherited Alzheimer Network and ultrasensitive immunoassay technology to demonstrate that NfL levels in the cerebrospinal fluid (n = 187) and serum (n = 405) are correlated with one another and are elevated at the presymptomatic stages of familial Alzheimer's disease. Longitudinal, within-person analysis of serum NfL dynamics (n = 196) confirmed this elevation and further revealed that the rate of change of serum NfL could discriminate mutation carriers from non-mutation carriers almost a decade earlier than cross-sectional absolute NfL levels (that is, 16.2 versus 6.8 years before the estimated symptom onset). Serum NfL rate of change peaked in participants converting from the presymptomatic to the symptomatic stage and was associated with cortical thinning assessed by magnetic resonance imaging, but less so with amyloid-β deposition or glucose metabolism (assessed by positron emission tomography). Serum NfL was predictive for both the rate of cortical thinning and cognitive changes assessed by the Mini-Mental State Examination and Logical Memory test. Thus, NfL dynamics in serum predict disease progression and brain neurodegeneration at the early presymptomatic stages of familial Alzheimer's disease, which supports its potential utility as a clinically useful biomarker.
|
[19] |
Existing cerebrospinal fluid (CSF) or imaging (tau positron emission tomography) biomarkers for Alzheimer disease (AD) are invasive or expensive. Biomarkers based on standard blood test results would be useful in research, drug development, and clinical practice. Plasma neurofilament light (NFL) has recently been proposed as a blood-based biomarker for neurodegeneration in dementias.To test whether plasma NFL concentrations are increased in AD and associated with cognitive decline, other AD biomarkers, and imaging evidence of neurodegeneration.In this prospective case-control study, an ultrasensitive assay was used to measure plasma NFL concentration in 193 cognitively healthy controls, 197 patients with mild cognitive impairment (MCI), and 180 patients with AD dementia from the Alzheimer's Disease Neuroimaging Initiative. The study dates were September 7, 2005, to February 13, 2012. The plasma NFL analysis was performed in September 2016.Associations were tested between plasma NFL and diagnosis, Aβ pathologic features, CSF biomarkers of neuronal injury, cognition, brain structure, and metabolism.Among 193 cognitively healthy controls, 197 patients with mild cognitive impairment, and 180 patients with AD with dementia, plasma NFL correlated with CSF NFL (Spearman ρ = 0.59, P < .001). Plasma NFL was increased in patients with MCI (mean, 42.8 ng/L) and patients with AD dementia (mean, 51.0 ng/L) compared with controls (mean, 34.7 ng/L) (P < .001) and had high diagnostic accuracy for patients with AD with dementia vs controls (area under the receiver operating characteristic curve, 0.87, which is comparable to established CSF biomarkers). Plasma NFL was particularly high in patients with MCI and patients with AD dementia with Aβ pathologic features. High plasma NFL correlated with poor cognition and AD-related atrophy (at baseline and longitudinally) and with brain hypometabolism (longitudinally).Plasma NFL is associated with AD diagnosis and with cognitive, biochemical, and imaging hallmarks of the disease. This finding implies a potential usefulness for plasma NFL as a noninvasive biomarker in AD.
|
[20] |
|
[21] |
We investigated plasma proteomic markers of astrocytopathy, brain degeneration, plasticity, and inflammation in sporadic early-onset versus late-onset Alzheimer's disease (EOAD and LOAD).Plasma was analyzed using ultra-sensitive immuno-based assays from 33 EOAD, 30 LOAD, and 36 functionally normal older adults.Principle component analyses identified 3 factors: trophic (BDNF, VEGF, TGFβ), degenerative (GFAP, NfL), and inflammatory (TNFα, IL-6, IP-10, IL-10). Trophic factor was elevated in both AD groups and associated with cognition and gray matter volumes. Degenerative factor was elevated in EOAD, with higher levels associated with worse functioning in this group. Biomarkers of inflammation were not significantly different between groups and were only associated with age.Plasma proteomic biomarkers provide novel means of investigating molecular processes in vivo and their contributions to clinical outcomes. We present initial investigations of several of these fluid biomarkers, capturing aspects of astrocytopathy, neuronal injury, cellular plasticity, and inflammation in EOAD versus LOAD.© 2020 the Alzheimer's Association.
|
[22] |
Blood-based biomarkers for Alzheimer's disease (AD) might facilitate identification of participants for clinical trials targeting amyloid beta (Abeta) accumulation, and aid in AD diagnostics. We examined the potential of plasma markers Abeta, glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) to identify cerebral amyloidosis and/or disease severity.We included individuals with a positive (n = 176: 63 ± 7 years, 87 (49%) females) or negative (n = 76: 61 ± 9 years, 27 (36%) females) amyloid PET status, with syndrome diagnosis subjective cognitive decline (18 PET+, 25 PET-), mild cognitive impairment (26 PET+, 24 PET-), or AD-dementia (132 PET+). Plasma Abeta, GFAP, and NfL were measured by Simoa. We applied two-way ANOVA adjusted for age and sex to investigate the associations of the plasma markers with amyloid PET status and syndrome diagnosis; logistic regression analysis with Wald's backward selection to identify an optimal panel that identifies amyloid PET positivity; age, sex, and education-adjusted linear regression analysis to investigate associations between the plasma markers and neuropsychological test performance; and Spearman's correlation analysis to investigate associations between the plasma markers and medial temporal lobe atrophy (MTA).Abeta and GFAP independently associated with amyloid PET status (p = 0.009 and p < 0.001 respectively), and GFAP and NfL independently associated with syndrome diagnosis (p = 0.001 and p = 0.048 respectively). The optimal panel identifying a positive amyloid status included Abeta and GFAP, alongside age and APOE (AUC = 88% (95% CI 83-93%), 82% sensitivity, 86% specificity), while excluding NfL and sex. GFAP and NfL robustly associated with cognitive performance on global cognition and all major cognitive domains (GFAP: range standardized β (sβ) = - 0.40 to - 0.26; NfL: range sβ = - 0.35 to - 0.18; all: p < 0.002), whereas Abeta associated with global cognition, memory, attention, and executive functioning (range sβ = 0.22 - 0.11; all: p < 0.05) but not language. GFAP and NfL showed moderate positive correlations with MTA (both: Spearman's rho> 0.33, p < 0.001). Abeta showed a moderate negative correlation with MTA (Spearman's rho = - 0.24, p = 0.001).Combination of plasma Abeta and GFAP provides a valuable tool for the identification of amyloid PET status. Furthermore, plasma GFAP and NfL associate with various disease severity measures suggesting potential for disease monitoring.
|
[23] |
Plasma glial fibrillary acidic protein (GFAP) is a marker of astroglial activation and astrocytosis. We assessed the ability of plasma GFAP to detect Alzheimer's disease (AD) pathology in the form of AD-related amyloid-β (Aβ) pathology and conversion to AD dementia in a mild cognitive impairment (MCI) cohort.One hundred sixty MCI patients were followed for 4.7 years (average). AD pathology was defined using cerebrospinal fluid (CSF) Aβ42/40 and Aβ42/total tau (T-tau). Plasma GFAP was measured at baseline and follow-up using Simoa technology.Baseline plasma GFAP could detect abnormal CSF Aβ42/40 and CSF Aβ42/T-tau with an AUC of 0.79 (95% CI 0.72-0.86) and 0.80 (95% CI 0.72-0.86), respectively. When also including APOE ε4 status as a predictor, the accuracy of the model to detect abnormal CSF Aβ42/40 status improved (AUC = 0.86, p = 0.02). Plasma GFAP predicted subsequent conversion to AD dementia with an AUC of 0.84 (95% CI 0.77-0.91), which was not significantly improved when adding APOE ε4 or age as predictors to the model. Longitudinal GFAP slopes for Aβ-positive and MCI who progressed to dementia (AD or other) were significantly steeper than those for Aβ-negative (p = 0.007) and stable MCI (p < 0.0001), respectively.Plasma GFAP can detect AD pathology in patients with MCI and predict conversion to AD dementia.
|
[24] |
Serum glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) are putative non-amyloid blood-based biomarkers indicative of ongoing inflammatory and neurodegenerative disease processes. We aimed to assess their prognostic and monitoring value for progression to dementia in individuals presenting at a memory clinic who are cognitively normal.For this prospective cohort study, we included individuals who were cognitively normal from the Amsterdam Dementia Cohort and received screening for dementia at first visit and annual follow-up visits. Participants without a serum sample stored in the Amsterdam Dementia Biobank within 6 months of baseline visit and without a follow-up diagnosis after a minimum of 6 months were excluded. We measured serum GFAP and NfL levels at baseline for all participants and at follow-up for a subset of participants. Using Cox proportional hazard models, we investigated associations of biomarker levels (Z-transformed) with incident dementia (adjusted for age and sex), by entering the markers first separately and then simultaneously, to test independent associations. We also assessed longitudinal performance of the markers on a standardised neuropsychological test battery covering global cognition, memory, language, executive functioning, and attention (adjusted for age, sex, and education). Finally, we evaluated the association of slopes of biomarker levels with incident dementia (adjusted for age and sex).Between July 13, 2001, and Aug 17, 2016, 300 individuals were included in the study. Mean baseline age was 61 years (SD 9), 125 (42%) of participants were women, and mini-mental state examination was 29 (IQR 27-29). Median follow-up time was 3·0 years (IQR 1·9-4·2), with a median of three visits per participant (range 2-12; 1010 total neuropsychological evaluations). During follow-up, 27 (9%) of 300 individuals developed dementia. Both high baseline GFAP (hazard ratio 3·6, 95% CI 2·2-5·7; p<0·0001) and high baseline NfL (1·8, 1·2-2·8; p=0·0037) were associated with increased risk of dementia. When entering both markers simultaneously in the model, only GFAP remained associated with an increased risk of dementia (3·3, 1·9-5·5; p<0·0001). When additionally entering (inverted) plasma amyloid β, both GFAP (2·6, 1·4-5·0; p=0·0026) and amyloid β (2·1, 1·2-3·6; p=0·0091) were independently associated with incident dementia whereas NfL was not (1·4, 0·8-2·5; p=0·28). Linear mixed models showed that higher baseline GFAP levels were associated with a steeper rate of decline in the domains of memory, attention, and executive functioning (p<0·05), whereas higher NfL levels were not. Repeated serum GFAP and NfL analyses revealed that NfL levels rose more steeply over time in individuals with incident dementia compared with those without (p=0·0006), whereas GFAP levels did not (p=0·074).Our results suggest that, while serum NfL seems to have potential as monitoring biomarker, GFAP might be a valuable prognostic biomarker, predicting incident dementia.Alzheimer Nederland, Gieskes Strijbis Fonds.Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.
|
[25] |
Reliable blood biomarkers for Alzheimer's disease (AD) are missing. We measured astroglial GFAP in patients with AD (n = 28), frontotemporal dementia (bvFTD, n = 35), Parkinson's disease (n = 11), Lewy body dementias (n = 19), and controls (n = 34). Serum GFAP was increased in AD (p < 0.001) and DLB/PDD (p < 0.01), and cerebrospinal fluid GFAP was increased in all neurodegenerative diseases (p < 0.001). Serum GFAP correlated with the Mini-Mental State Examination score (r= -0.42, p < 0.001) and might be a follow-up marker in clinical trials. Sensitivity and specificity of serum GFAP for AD versus bvFTD was 89% and 79% and might be the first blood biomarker in the differential diagnosis of AD and bvFTD.
|
[26] |
Breakthroughs in the development of highly accurate fluid and neuroimaging biomarkers have catalysed the conceptual transformation of Alzheimer disease (AD) from the traditional clinical symptom-based definition to a clinical-biological construct along a temporal continuum. The AT(N) system is a symptom-agnostic classification scheme that categorizes individuals using biomarkers that chart core AD pathophysiological features, namely the amyloid-β (Aβ) pathway (A), tau-mediated pathophysiology (T) and neurodegeneration (N). This biomarker matrix is now expanding towards an ATX(N) system, where X represents novel candidate biomarkers for additional pathophysiological mechanisms such as neuroimmune dysregulation, synaptic dysfunction and blood-brain barrier alterations. In this Perspective, we describe the conceptual framework and clinical importance of the existing AT(N) system and the evolving ATX(N) system. We provide a state-of-the-art summary of the potential contexts of use of these systems in AD clinical trials and future clinical practice. We also discuss current challenges related to the validation, standardization and qualification process and provide an outlook on the real-world application of the AT(N) system.
|
[27] |
Plasma phosphorylated tau 181 (P-tau181) and 217 (P-tau217) are indicators of both amyloid and tau pathology in clinical settings, but their performance in heterogeneous community-based populations is unclear. We examined P-tau181 and P-tau217 (n = 1,329, aged 30-98 years), in the population-based Mayo Clinic Study of Aging. Continuous, unadjusted plasma P-tau181 and P-tau217 predicted abnormal amyloid positron-emission tomography (PET) (area under the receiver operating characteristic curve (AUROC) = 0.81-0.86) and tau PET entorhinal cortex (AUROC > 0.80), but was less predictive of a tau PET temporal region of interest (AUROC < 0.70). Multiple comorbidities were associated with higher plasma P-tau181 and P-tau217 levels; the difference between participants with and without chronic kidney disease (CKD) was similar to the difference between participants with and without elevated brain amyloid. The exclusion of participants with CKD and other comorbidities affected the establishment of a normal reference range and cutpoints. Understanding the effect of comorbidities on P-tau181 and P-tau217 levels is important for their future interpretation in the context of clinical screening, diagnosis or prognosis at the population level.© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
|
[28] |
|
[29] |
|
[30] |
Alzheimer disease (AD) is the most common type of dementia, and is currently incurable; existing treatments for AD produce only a modest amelioration of symptoms. Research into this disease has conventionally focused on the CNS. However, several peripheral and systemic abnormalities are now understood to be linked to AD, and our understanding of how these alterations contribute to AD is becoming more clearly defined. This Review focuses on amyloid-β (Aβ), a major hallmark of AD. We review emerging findings of associations between systemic abnormalities and Aβ metabolism, and describe how these associations might interact with or reflect on the central pathways of Aβ production and clearance. On the basis of these findings, we propose that these abnormal systemic changes might not only develop secondary to brain dysfunction but might also affect AD progression, suggesting that the interactions between the brain and the periphery have a crucial role in the development and progression of AD. Such a systemic view of the molecular pathogenesis of AD could provide a novel perspective for understanding this disease and present new opportunities for its early diagnosis and treatment.
|
[31] |
Timely and accurate diagnosis of Alzheimer's disease (AD) in clinical practice remains challenging. PET and CSF biomarkers are the most widely used biomarkers to aid diagnosis in clinical research but present limitations for clinical practice (i.e., cost, accessibility). Emerging blood-based markers have the potential to be accurate, cost-effective, and easily accessible for widespread clinical use, and could facilitate timely diagnosis. The EU/US CTAD Task Force met in May 2022 in a virtual meeting to discuss pathways to implementation of blood-based markers in clinical practice. Specifically, the CTAD Task Force assessed: the state-of-art for blood-based markers, the current use of blood-based markers in clinical trials, the potential use of blood-based markers in clinical practice, the current challenges with blood-based markers, and the next steps needed for broader adoption in clinical practice.
|
[32] |
Blood-based Alzheimer's disease (AD) biomarkers provide opportunities for community studies and across ethnic groups. We investigated blood biomarker concentrations in the Washington Heights-Inwood Columbia Aging Project (WHICAP), a multi-ethnic community study of aging and dementia.We measured plasma amyloid beta (Aβ)40, Aβ42, total tau (t-tau), phosphorylated tau (p-tau)181, and p-tau217, and neurofilament light chain (NfL) in 113 autopsied participants (29% with high AD neuropathological changes) and in 300 clinically evaluated individuals (42% with clinical AD). Receiver operating characteristics were used to evaluate each biomarker. We also investigated biomarkers as predictors of incident clinical AD.P-tau181, p-tau217, and NfL concentrations were elevated in pathologically and clinically diagnosed AD. Decreased Aβ42/Aβ40 ratio and increased p-tau217 and p-tau181 were associated with subsequent AD diagnosis.Blood-based AD biomarker concentrations are associated with pathological and clinical diagnoses and can predict future development of clinical AD, providing evidence that they can be incorporated into multi-ethnic, community-based studies.© 2021 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
|
[33] |
|
[34] |
|
[35] |
Staging amyloid-beta (Aβ) pathophysiology according to the intensity of neurodegeneration could identify individuals at risk for cognitive decline in Alzheimer's disease (AD). In blood, phosphorylated tau (p-tau) associates with Aβ pathophysiology but an AD-type neurodegeneration biomarker has been lacking. In this multicenter study (n = 1076), we show that brain-derived tau (BD-tau) in blood increases according to concomitant Aβ ("A") and neurodegeneration ("N") abnormalities (determined using cerebrospinal fluid biomarkers); We used blood-based A/N biomarkers to profile the participants in this study; individuals with blood-based p-tau+/BD-tau+ profiles had the fastest cognitive decline and atrophy rates, irrespective of the baseline cognitive status. Furthermore, BD-tau showed no or much weaker correlations with age, renal function, other comorbidities/risk factors and self-identified race/ethnicity, compared with other blood biomarkers. Here we show that blood-based BD-tau is a biomarker for identifying Aβ-positive individuals at risk of short-term cognitive decline and atrophy, with implications for clinical trials and implementation of anti-Aβ therapies.© 2024. The Author(s).
|
[36] |
To develop effective disease-modifying therapies for neurodegenerative diseases, reliable markers of diagnosis, disease activity and progression are a research priority. The fact that neurodegenerative pathology is primarily associated with distinct subsets of cells in discrete areas of the CNS makes the identification of relevant biomarker molecules a challenge. The trafficking of macromolecules from the CNS to the cerebrospinal fluid and blood, mediated by extracellular vesicles (EVs), presents a promising source of CNS-specific biomarkers. EVs are released by almost all cell types and carry a cargo of protein and nucleic acid that varies according to the cell of origin. EV output changes with cell status and reflects intracellular events, so surface marker expression can be used to identify the cell type from which EVs originate. EVs could, therefore, provide an enriched pool of information about core neuropathogenic, cell-specific processes. This Review examines the current knowledge of the biology and function of EVs, discusses the evidence for their involvement in the pathogenesis of neurodegenerative diseases, and considers their potential as biomarkers of disease.
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
Abnormal α-synuclein aggregation is a key pathological feature of a group of neurodegenerative diseases known as synucleinopathies, which include Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy (MSA). The pathogenic β-sheet seed conformation of α-synuclein is found in various tissues, suggesting potential as a biomarker, but few studies have been able to reliably detect these seeds in serum samples. In this study, we developed a modified assay system, called immunoprecipitation-based real-time quaking-induced conversion (IP/RT-QuIC), which enables the detection of pathogenic α-synuclein seeds in the serum of individuals with synucleinopathies. In our internal first and second cohorts, IP/RT-QuIC showed high diagnostic performance for differentiating PD versus controls (area under the curve (AUC): 0.96 (95% confidence interval (CI) 0.95-0.99)/AUC: 0.93 (95% CI 0.84-1.00)) and MSA versus controls (AUC: 0.64 (95% CI 0.49-0.79)/AUC: 0.73 (95% CI 0.49-0.98)). IP/RT-QuIC also showed high diagnostic performance in differentiating individuals with PD (AUC: 0.86 (95% CI 0.74-0.99)) and MSA (AUC: 0.80 (95% CI 0.65-0.97)) from controls in a blinded external cohort. Notably, amplified seeds maintained disease-specific properties, allowing the differentiation of samples from individuals with PD versus MSA. In summary, here we present a novel platform that may allow the detection of individuals with synucleinopathies using serum samples.© 2023. The Author(s).
|
[42] |
The lack of readily available biomarkers is a significant hindrance toward progressing to effective therapeutic and preventative strategies for Alzheimer's disease (AD). Blood-based biomarkers have potential to overcome access and cost barriers and greatly facilitate advanced neuroimaging and cerebrospinal fluid biomarker approaches. Despite the fact that preanalytical processing is the largest source of variability in laboratory testing, there are no currently available standardized preanalytical guidelines. The current international working group provides the initial starting point for such guidelines for standardized operating procedures (SOPs). It is anticipated that these guidelines will be updated as additional research findings become available. The statement provides (1) a synopsis of selected preanalytical methods utilized in many international AD cohort studies, (2) initial draft guidelines/SOPs for preanalytical methods, and (3) a list of required methodological information and protocols to be made available for publications in the field to foster cross-validation across cohorts and laboratories. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
|
[43] |
|
[44] |
We examined the influence of common preanalytical factors on the measurement of Alzheimer's disease-specific biomarkers in human plasma.Amyloid β peptides (Aβ[1-40], Aβ[1-42]) and total Tau plasma concentrations were quantified using fully automated Roche Elecsys assays.Aβ(1-40), Aβ(1-42), and total Tau plasma concentrations were not affected by up to three freeze/thaw cycles, up to five tube transfers, the collection tube material, or the size; circadian rhythm had a minor effect. All three biomarkers were influenced by the anticoagulant used, particularly total Tau. Aβ concentrations began decreasing 1 hour after blood draw/before centrifugation and decreased by up to 5% and 10% at 2 and 6 hours, respectively. For separated plasma, time to measurement influenced Aβ levels by up to 7% after 6 hours and 10% after 24 hours.Our findings provide guidance for standardizing blood sample collection, handling, and storage to ensure reliable analysis of Alzheimer's disease plasma biomarkers in routine practice and clinical trials.
|
[45] |
蔡齐勇, 康熙雄, 李朝辉, 等. 阿尔茨海默病血液标志物免疫检测方法的应用研究进展[J]. 阿尔茨海默病及相关病杂志, 2024, 7(2):122-128.
随着阿尔茨海默病(Alzheimer's Disease, AD)研究的深入,血液标志物作为一种非侵入性检测手段在AD诊断和病程监测中的应用受到广泛关注。本文综述了AD血液标志物免疫检测方法的应用研究进展,就单分子阵列、电化学发光、免疫磁减量、化学发光、免疫沉淀-质谱联用等技术在AD血液标志物检测中的原理、优势、局限性进行综合分析,并讨论这些技术在提高检测灵敏度、特异性以及临床应用标准化方面的应用进展。
|
[46] |
中华医学会神经病学分会痴呆与认知障碍学组. 阿尔茨海默病源性轻度认知障碍诊疗中国专家共识2021[J]. 中华神经科杂志, 2022, 55(5):421-440.
|
[47] |
田金洲, 解恒革, 王鲁宁, 等. 中国阿尔茨海默病痴呆诊疗指南(2020年版)[J]. 中华老年医学杂志, 2021, 40(3):269-283.
|
[48] |
|
/
〈 |
|
〉 |