PDF(934 KB)
Research progress on the effects of APOE and thyroid hormones on the pathogenesis of Alzheimer's disease
Chengjie LI, Xiaohua XIAO, Chunhua LIANG, Kaisuo WANG, Yanxing ZHOU
Chinese Journal of Alzheimer's Disease and Related Disorders ›› 2025, Vol. 8 ›› Issue (2) : 127-131.
PDF(934 KB)
Abbreviation (ISO4): Chinese Journal of Alzheimer's Disease and Related Disorders
Editor in chief: Jun WANG
PDF(934 KB)
Research progress on the effects of APOE and thyroid hormones on the pathogenesis of Alzheimer's disease
With the continuous exacerbation of the global aging trend, the prevalence of Alzheimer's disease (AD) is increasing year by year, significantly affecting people's quality of daily life. Among the known genetic factors causing AD, APOE is one of the more significant factors that play a crucial role in the development of AD. Additionally, abnormal levels of thyroid hormones, whether too high or too low, may have a negative impact on people's cognitive function. This impact, through a series of complex developmental mechanisms, ultimately leads to the progression of AD. Exploring the relationship between the two may find new ways to prevent or delay the progression of AD, providing better protection for the elderly population's health.
Alzheimer's disease / Hyroid disease / APOE / Cognitive function
| [1] |
Early reviews identified over 20 risk factors associated with Alzheimer's disease (AD) including age, familial inheritance, exposure to aluminium, traumatic brain injury (TBI), and associated co-morbidities such as vascular disease and infection. In the light of recent evidence, this review reconsiders these risk factors, identifies those currently regarded as important, and discusses various hypotheses to explain how they may cause AD. Rare forms of early-onset familial AD (EO-FAD) are strongly linked to causal gene mutations, viz. mutations in amyloid precursor protein (APP) and presenilin (PSEN1/2) genes. By contrast, late-onset sporadic AD (LO-SAD) is a multifactorial disorder in which age-related changes, genetic risk factors, such as allelic variation in apolipoprotein E (Apo E) and many other genes, vascular disease, TBI and risk factors associated with diet, the immune system, mitochondrial function, metal exposure, and infection are all implicated. These risk factors may act collectively to cause AD pathology: 1) by promoting the liberation of oxygen free radicals with age, 2) via environmental stress acting on regulatory genes early and later in life ('dual hit' hypothesis), or 3) by increasing the cumulative 'allostatic load' on the body over a lifetime. As a consequence, life-style changes which reduce the impact of these factors may be necessary to lower the risk of AD.
|
| [2] |
The ε4 allele of the apolipoprotein E gene (APOE4) is a strong genetic risk factor for Alzheimer's disease (AD) and several other neurodegenerative conditions, including Lewy body dementia (LBD). The three APOE alleles encode protein isoforms that differ from one another only at amino acid positions 112 and 158: apoE2 (C112, C158), apoE3 (C112, R158), and apoE4 (R112, R158). Despite progress, it remains unclear how these small amino acid differences in apoE sequence among the three isoforms lead to profound effects on aging and disease-related pathways. Here, we propose a novel "ApoE Cascade Hypothesis" in AD and age-related cognitive decline, which states that the biochemical and biophysical properties of apoE impact a cascade of events at the cellular and systems levels, ultimately impacting aging-related pathogenic conditions including AD. As such, apoE-targeted therapeutic interventions are predicted to be more effective by addressing the biochemical phase of the cascade.Copyright © 2022 Elsevier Inc. All rights reserved.
|
| [3] |
|
| [4] |
At the Alzheimer's Association's APOE and Immunity virtual conference, held in October 2021, leading neuroscience experts shared recent research advances on and inspiring insights into the various roles that both the apolipoprotein E gene (APOE) and facets of immunity play in neurodegenerative diseases, including Alzheimer's disease and other dementias.The meeting brought together more than 1200 registered attendees from 62 different countries, representing the realms of academia and industry.During the 4-day meeting, presenters illuminated aspects of the cross-talk between APOE and immunity, with a focus on the roles of microglia, triggering receptor expressed on myeloid cells 2 (TREM2), and components of inflammation (e.g., tumor necrosis factor α [TNFα]).This manuscript emphasizes the importance of diversity in current and future research and presents an integrated view of innate immune functions in Alzheimer's disease as well as related promising directions in drug development.© 2023 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
|
| [5] |
APOE4 is the greatest genetic risk factor for late-onset Alzheimer's disease (AD), increasing the risk of developing the disease by 3-fold in the 14% of the population that are carriers. Despite 25 years of research, the exact mechanisms underlying how APOE4 contributes to AD pathogenesis remain incompletely defined. APOE in the brain is primarily expressed by astrocytes and microglia, cell types that are now widely appreciated to play key roles in the pathogenesis of AD; thus, a picture is emerging wherein APOE4 disrupts normal glial cell biology, intersecting with changes that occur during normal aging to ultimately cause neurodegeneration and cognitive dysfunction. This review article will summarize how APOE4 alters specific pathways in astrocytes and microglia in the context of AD and the aging brain. APOE itself, as a secreted lipoprotein without enzymatic activity, may prove challenging to directly target therapeutically in the classical sense. Therefore, a deeper understanding of the underlying pathways responsible for APOE4 toxicity is needed so that more tractable pathways and drug targets can be identified to reduce APOE4-mediated disease risk.
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
Reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia in AD pathogenesis is still unclear. Here, using metabolic profiling, we found that exposure to amyloid-β triggers acute microglial inflammation accompanied by metabolic reprogramming from oxidative phosphorylation to glycolysis. It was dependent on the mTOR-HIF-1α pathway. However, once activated, microglia reached a chronic tolerant phase as a result of broad defects in energy metabolisms and subsequently diminished immune responses, including cytokine secretion and phagocytosis. Using genome-wide RNA sequencing and multiphoton microscopy techniques, we further identified metabolically defective microglia in 5XFAD mice, an AD mouse model. Finally, we showed that metabolic boosting with recombinant interferon-γ treatment reversed the defective glycolytic metabolism and inflammatory functions of microglia, thereby mitigating the AD pathology of 5XFAD mice. Collectively, metabolic reprogramming is crucial for microglial functions in AD, and modulating metabolism might be a new therapeutic strategy for AD.Copyright © 2019 Elsevier Inc. All rights reserved.
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
The strongest genetic risk factor for sporadic Alzheimer's disease (AD) is carriage of the E4 allele of APOE. Metabolic dysfunction also increases risk of dementia and AD. Facing a need for effective therapies and an aging global population, studies aimed at uncovering new therapeutic targets for AD have become critical. Insight into the biology underlying the effects of E4 and metabolic impairment on the brain may lead to novel therapies to reduce AD risk. An understudied hallmark of both AD patients and E4 individuals is a common metabolic impairment-cerebral glucose hypometabolism. This is a robust and replicated finding in humans, and begins decades prior to cognitive decline. Possession of E4 also appears to alter several other aspects of cerebral glucose metabolism, fatty acid metabolism, and management of oxidative stress through the pentose phosphate pathway. A critical knowledge gap in AD is the mechanism by which APOE alters cerebral metabolism and clarification as to its relevance to AD risk. Facing a need for effective therapies, studies aimed at uncovering new therapeutic targets have become critical. One such approach is to gain a better understanding of the metabolic mechanisms that may underlie E4-associated cognitive dysfunction and AD risk.© 2020 Elsevier Inc. All rights reserved.
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
The APOE4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The contribution of microglial APOE4 to AD pathogenesis is unknown, although APOE has the most enriched gene expression in neurodegenerative microglia (MGnD). Here, we show in mice and humans a negative role of microglial APOE4 in the induction of the MGnD response to neurodegeneration. Deletion of microglial APOE4 restores the MGnD phenotype associated with neuroprotection in P301S tau transgenic mice and decreases pathology in APP/PS1 mice. MGnD-astrocyte cross-talk associated with β-amyloid (Aβ) plaque encapsulation and clearance are mediated via LGALS3 signaling following microglial APOE4 deletion. In the brains of AD donors carrying the APOE4 allele, we found a sex-dependent reciprocal induction of AD risk factors associated with suppression of MGnD genes in females, including LGALS3, compared to individuals homozygous for the APOE3 allele. Mechanistically, APOE4-mediated induction of ITGB8-transforming growth factor-β (TGFβ) signaling impairs the MGnD response via upregulation of microglial homeostatic checkpoints, including Inpp5d, in mice. Deletion of Inpp5d in microglia restores MGnD-astrocyte cross-talk and facilitates plaque clearance in APP/PS1 mice. We identify the microglial APOE4-ITGB8-TGFβ pathway as a negative regulator of microglial response to AD pathology, and restoring the MGnD phenotype via blocking ITGB8-TGFβ signaling provides a promising therapeutic intervention for AD.© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.
|
| [20] |
|
| [21] |
The dominant risk factors for late-onset Alzheimer's disease (AD) are advanced age and the APOE4 genetic variant. To examine how these factors alter neuroimmune function, we generated an integrative, longitudinal single-cell atlas of brain immune cells in AD model mice bearing the three common human APOE alleles. Transcriptomic and chromatin accessibility analyses identified a reactive microglial population defined by the concomitant expression of inflammatory signals and cell-intrinsic stress markers whose frequency increased with age and APOE4 burden. An analogous population was detectable in the brains of human AD patients, including in the cortical tissue, using multiplexed spatial transcriptomics. This population, which we designate as terminally inflammatory microglia (TIM), exhibited defects in amyloid-β clearance and altered cell-cell communication during aducanumab treatment. TIM may represent an exhausted-like state for inflammatory microglia in the AD milieu that contributes to AD risk and pathology in APOE4 carriers and the elderly, thus presenting a potential therapeutic target for AD.Copyright © 2023 Elsevier Inc. All rights reserved.
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
Thyroid hormone (TH) is essential for brain development, and hypothyroidism induces cognitive deficits in children and young adults. However, the participating mechanisms remain less explored. Here, we examined the molecular mechanism, hypothesizing the involvement of a deregulated autophagy and apoptosis pathway in hippocampal neurons that regulate cognitive functions. Therefore, we used a rat model of developmental hypothyroidism, generated through methimazole treatment from gestation until young adulthood. We detected that methimazole stimulated the autophagy mechanism, characterized by increased LC3B-II, Beclin-1, ATG7, and ATG5-12 conjugate and decreased p-mTOR/mTOR and p-ULK1/ULK1 autophagy regulators in the hippocampus of developing and young adult rats. This methimazole-induced hippocampal autophagy could be inhibited by thyroxine treatment. Subsequently, probing the upstream mediators of autophagy revealed an increased hippocampal neuroinflammation, marked by upregulated interleukin (IL)-1alpha and beta and activated microglial marker, Iba1, promoting neuronal IL-1 receptor-1 expression. Hence, IL-1R-antagonist (IL-1Ra), which reduced hippocampal neuronal IL-1R1, also inhibited the enhanced autophagy in hypothyroid rats. We then linked these events with hypothyroidism-induced apoptosis and loss of hippocampal neurons, where we observed that like thyroxine, IL-1Ra and autophagy inhibitor, 3-methyladenine, reduced the cleaved caspase-3 and TUNEL-stained apoptotic neurons and enhanced Nissl-stained neuronal count in methimazole-treated rats. We further related these molecular results with cognition through Y-maze and passive avoidance tests, demonstrating an IL-1Ra and 3-methyladenine-mediated improvement in learning-memory performances of the hypothyroid rats. Taken together, our study enlightens the critical role of neuroinflammation-dependent autophagy mechanism in TH-regulated hippocampal functions, disrupted in developmental hypothyroidism.
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
The stimuli for neuronal cell death in neurodegenerative disorders are multi-factorial and may include genetic predisposition, environmental factors, cellular stressors such as oxidative stress and free radical production, bioenergy failure, glutamate-induced excitotoxicity, neuroinflammation, disruption of Ca(2+) -regulating systems, mitochondrial dysfunction and misfolded protein accumulation. Cellular stress disrupts functioning of the endoplasmic reticulum (ER), a critical organelle for protein quality control, leading to induction of the unfolded protein response (UPR). ER stress may contribute to neurodegeneration in a range of neurodegenerative disorders. This review summarizes the molecular events occurring during ER stress and the unfolded protein response and it specifically evaluates the evidence suggesting the ER stress response plays a role in neurodegenerative disorders.© 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
|
| [36] |
|
| [37] |
|
| [38] |
Thyroid hormones (THs) have a wide and important range of effects within the central nervous system beginning from fetal life and continuing throughout the adult life. Thyroid disorders are one of the major causes of cognitive impairment including Alzheimer's disease (AD). Several studies in recent years have indicated an association between hypothyroidism or hyperthyroidism and AD. Despite available evidence for this association, it remains unclear whether thyroid dysfunction results from or contributes to the progression of AD. This review discusses the role of THs in learning and memory and summarizes the studies that have linked thyroid function and AD. Eventually, we elaborate how THs may be effective in treating AD by putting forward potential mechanisms.
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
The correlation among the thyroid-related hormones, Apolipoprotein E ε4 (APOE ε4) and cognitive function has been reported despite controversial results. This study was designed to investigate this correlation among cognitively-normal elderly dwellers.This study assessed 507 cognitively normal individuals aged over 60 who underwent comprehensive hematological and neuropsychological assessments including the quantification of serum free thyroxine and thyroid stimulating hormone (TSH) as well as the Korean version of the Consortium Establish a Registry for Alzheimer's disease. The Korean version of Geriatric Depression Scale was also employed to evaluate the severity of depression. Age, gender, education, and the presence of APOE ε4 were taken into account as covariates.There was a significant positive association between verbal fluency test (VFT), Word List Memory Test (WLMT), and Word List Recall Test (WLRT) score and serum TSH levels (p=0.007, 0.031, and 0.023 respectively). The further analysis adding the interaction between APOE ε4 and TSH level, however, revealed only VFT score was significantly influenced by this interaction (p=0.026).Lower serum TSH levels had impacts on both semantic memory (VFT) and episodic memory (WLMT, WLRT) among cognitively-normal elderly, whereas the interaction of TSH and APOE ε4 influenced only the task of semantic memory (VFT) in this group.
|
| [46] |
|
| [47] |
Subclinical hypothyroidism, defined as an elevated serum thyrotropin (often referred to as thyroid-stimulating hormone, or TSH) level with normal levels of free thyroxine (FT4) affects up to 10% of the adult population.Subclinical hypothyroidism is most often caused by autoimmune (Hashimoto) thyroiditis. However, serum thyrotropin levels rise as people without thyroid disease age; serum thyrotropin concentrations may surpass the upper limit of the traditional reference range of 4 to 5 mU/L among elderly patients. This phenomenon has likely led to an overestimation of the true prevalence of subclinical hypothyroidism in persons older than 70 years. In patients who have circulating thyroid peroxidase antibodies, there is a greater risk of progression from subclinical to overt hypothyroidism. Subclinical hypothyroidism may be associated with an increased risk of heart failure, coronary artery disease events, and mortality from coronary heart disease. In addition, middle-aged patients with subclinical hypothyroidism may have cognitive impairment, nonspecific symptoms such as fatigue, and altered mood. In the absence of large randomized trials showing benefit from levothyroxine therapy, the rationale for treatment is based on the potential for decreasing the risk of adverse cardiovascular events and the possibility of preventing progression to overt hypothyroidism. However, levothyroxine therapy may be associated with iatrogenic thyrotoxicosis, especially in elderly patients, and there is no evidence that it is beneficial in persons aged 65 years or older.Subclinical hypothyroidism is common and most individuals can be observed without treatment. Treatment might be indicated for patients with subclinical hypothyroidism and serum thyrotropin levels of 10 mU/L or higher or for young and middle-aged individuals with subclinical hypothyroidism and symptoms consistent with mild hypothyroidism.
|
| [48] |
|
| [49] |
|
| [50] |
|
/
| 〈 |
|
〉 |