Consensus of Chinese experts on diversified rehabilitation interventions for Alzheimer's disease (2025)

Nanbu WANG, Xiaowei MA, Guohui WANG, Hongzheng WANG, Yan XING, Ning ZHU, Liyan QIAO, Jin QIAO, Taojie LIU, Zhi LIU, Xiandong SUN, Xiaoxia DU, Jianping LI, Chenzhong LI, Yu YANG, Zhiquan YANG, Xia HE, Youqiang SONG, Liying ZHANG, Zhiguo ZHANG, Ruiping HU, Shan XU, Qi TANG, Chuanhai CAO, Yao CUI, Shaoyang CUI, Xiaole HAN, Jikang FAN, Chi CAO, Luping SONG, Jun WANG, Profssional Branch of the China Association for Alzheimer’s Disease Cognitive Rehabilitation

Chinese Journal of Alzheimer's Disease and Related Disorders ›› 2025, Vol. 8 ›› Issue (3) : 147-163.

PDF(1200 KB)
Home Journals Chinese Journal of Alzheimer's Disease and Related Disorders
Chinese Journal of Alzheimer's Disease and Related Disorders

Abbreviation (ISO4): Chinese Journal of Alzheimer's Disease and Related Disorders      Editor in chief: Jun WANG

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1200 KB)
Chinese Journal of Alzheimer's Disease and Related Disorders ›› 2025, Vol. 8 ›› Issue (3) : 147-163. DOI: 10.3969/j.issn.2096-5516.2025.03.001
Guide and Consensus

Consensus of Chinese experts on diversified rehabilitation interventions for Alzheimer's disease (2025)

Author information +
History +

Abstract

To better address the severe challenges of Alzheimer's disease (AD) prevention and control in China, the national government has published the National Action Plan for Addressing the elderly people with dementia. In order to accelerate the achievement of its core objectives, the Chinese Expert Consensus on Multidisciplinary Rehabilitation Interventions for Alzheimer's Disease has been formulated by integrating multidisciplinary expert opinions and evidence-based findings, using the Delphi method combined with GRADE evidence grading. This consensus advocates a “hospital-community-family” tripartite collaborative management model to standardize systematic and multidimensional approaches for the prevention, treatment, rehabilitation, and care of AD.This consensus deliver evidence-based guidance for tripartite stakeholders (healthcare providers, community networks, and family care systems) to operationalize healthy aging strategies through standardized AD management protocols.. For preventive strategies, AD risk factors are categorized into low-, medium-, and high-risk tiers to guide the formulation of personalized prevention and intervention strategies. For therapeutic management, treatment regimens are stratified by AD clinical stages (mild/moderate/severe), incorporating Western pharmacotherapy, traditional Chinese medicine and neuromodulation techniques. Rehabilitation requires individualized protocols based on multidimensional assessments encompassing functional disability evaluations, personal preferences, and familial support systems, with active rehabilitation prioritized during early/mid-stages and passive interventions dominating advanced AD care. Rehabilitation measures include cognitive therapies (including cognitive training, cognitive stimulation, and cognitive rehabilitation), lifestyle modifications (featuring nutritional guidance and exercise regimens that combine aerobic, strength, and mind-body training), humanistic approaches (such as reminiscence and immersive technologies), art-based therapies (applying music, dance, and visual arts), nature-assisted therapies (through horticultural and animal-assisted interaction), as well as sensory modulation techniques (utilizing light therapy and aromatherapy). For moderate-to-advanced stage AD patients presenting with behavioral and psychological symptoms of dementia or profound cognitive-functional decline, care strategies should implement person-centered care frameworks to preserve self-identity, deliver integrated palliative support, and manage comorbidities through multidisciplinary coordination.

Key words

Alzheimer's disease / Diversified Interventions / Prevention / Treatment / Rehabilitation / Care

Cite this article

Download Citations
Nanbu WANG , Xiaowei MA , Guohui WANG , et al . Consensus of Chinese experts on diversified rehabilitation interventions for Alzheimer's disease (2025)[J]. Chinese Journal of Alzheimer's Disease and Related Disorders. 2025, 8(3): 147-163 https://doi.org/10.3969/j.issn.2096-5516.2025.03.001

References

[1]
Weidner WS, Barbarino P. The state of the art of dementia research: new frontiers[J]. Alzheimers Dement, 2019, 15(7): P1473.
[2]
王刚, 齐金蕾, 刘馨雅, 等. 中国阿尔茨海默病报告2024[J]. 诊断学理论与实践, 2024, 23(3): 219-256.
[3]
Corrada MM, Brookmeyer R, Paganini-Hill A, et al. Dementia incidence continues to increase with age in the oldest old: the 90+ study[J]. Ann Neurol, 2010, 67(1): 114-121.
[4]
Zhang YR, Wu BS, Chen SD, et al. Whole exome sequencing analyses identified novel genes for Alzheimer's disease and related dementia[J]. Alzheimers Dement, 2024, 20(10): 7062-7078.
[5]
Fortea J, Pegueroles J, Alcolea D, et al. APOE4 homozygozity represents a distinct genetic form of Alzheimer's disease[J]. Nature medicine, 2024, 30(5): 1284-1291.
[6]
Livingston G, Huntley J, Liu KY, et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission[J]. Lancet, 2024, 404(10452): 572-628.
[7]
Yu JT, Xu W, Tan CC, et al. Evidence-based prevention of Alzheimer's disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials[J]. J Neurol Neurosurg Psychiatry, 2020, 91(11): 1201-1209.
[8]
Peters R, Anstey KJ, Booth A, et al. Orthostatic hypotension and symptomatic subclinical orthostatic hypotension increase risk of cognitive impairment: an integrated evidence review and analysis of a large older adult hypertensive cohort[J]. Eur Heart J, 2018, 39(33): 3135-3143.
[9]
Griffiths TD, Lad M, Kumar S, et al. How can hearing loss cause dementia?[J]. Neuron, 2020, 108(3): 401-412.
[10]
Yu RC, Proctor D, Soni J, et al. Adult-onset hearing loss and incident cognitive impairment and dementia - a systematic review and meta-analysis of cohort studies[J]. Ageing Res Rev, 2024, 98: 102346.
[11]
Ford AH, Hankey GJ, Yeap BB, et al. Hearing loss and the risk of dementia in later life[J]. Maturitas, 2018, 112: 1-11.
[12]
Bucholc M, McClean PL, Bauermeister S, et al. Association of the use of hearing aids with the conversion from mild cognitive impairment to dementia and progression of dementia: a longitudinal retrospective study[J]. Alzheimers Dement (N Y), 2021, 7(1): e12122.
[13]
Mukadam N, Marston L, Lewis G, et al. South asian, black and white ethnicity and the effect of potentially modifiable risk factors for dementia: a study in english electronic health records[J]. PLoS One, 2023, 18(10): e0289893.
[14]
Wee J, Sukudom S, Bhat S, et al. The relationship between midlife dyslipidemia and lifetime incidence of dementia: a systematic review and meta-analysis of cohort studies[J]. Alzheimers Dement (Amst), 2023, 15(1): e12395.
[15]
Yang W, Li X, Pan KY, et al. Association of life-course depression with the risk of dementia in late life: A nationwide twin study[J]. Alzheimers Dement, 2021, 17(8): 1383-1390.
[16]
da Silva J, Gonçalves-Pereira M, Xavier M, et al. Affective disorders and risk of developing dementia: systematic review[J]. Br J Psychiatry, 2013, 202(3): 177-186.
[17]
Graham A, Livingston G, Purnell L, et al. Mild traumatic brain injuries and future risk of developing Alzheimer's disease: systematic review and meta-analysis[J]. J Alzheimers Dis, 2022, 87(3): 969-979.
[18]
Tolppanen AM, Taipale H, Hartikainen S, et al. Head or brain injuries and Alzheimer's disease: a nested case-control register study[J]. Alzheimers Dement, 2017, 13(12): 1371-1379.
[19]
Ohara T, Doi Y, Ninomiya T, et al. Glucose tolerance status and risk of dementia in the community: the hisayama study[J]. Neurology, 2011, 77(12): 1126-1134.
[20]
Barbiellini Amidei C, Fayosse A, Dumurgier J, et al. Association between age at diabetes onset and subsequent risk of dementia[J]. Jama, 2021, 325(16): 1640-1649.
[21]
Lennon MJ, Lam BCP, Lipnicki DM, et al. Use of antihypertensives, blood pressure, and estimated risk of dementia in late life: an individual participant data meta-analysis[J]. JAMA Netw Open, 2023, 6(9): e2333353.
[22]
Nagarajan N, Assi L, Varadaraj V, et al. Vision impairment and cognitive decline among older adults: a systematic review[J]. BMJ Open, 2022, 12(1): e047929.
[23]
Lee CS, Gibbons LE, Lee AY, et al. Association between cataract extraction and development of dementia[J]. JAMA Intern Med, 2022, 182(2): 134-141.
[24]
Zhou F, Chen S. Hyperhomocysteinemia and risk of incident cognitive outcomes: an updated dose-response meta-analysis of prospective cohort studies[J]. Ageing Res Rev, 2019, 51: 55-66.
[25]
Sommerlad A, Kivimäki M, Larson EB, et al. Social participation and risk of developing dementia[J]. Nat Aging, 2023, 3(5): 532-545.
[26]
Kuiper JS, Zuidersma M, Oude Voshaar RC, et al. Social relationships and risk of dementia: a systematic review and meta-analysis of longitudinal cohort studies[J]. Ageing Res Rev, 2015, 22: 39-57.
[27]
Cheng ST. Cognitive reserve and the prevention of dementia: the role of physical and cognitive activities[J]. Curr Psychiatry Rep, 2016, 18(9): 85.
[28]
Cacciottolo M, Wang X, Driscoll I, et al. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models[J]. Transl Psychiatry, 2017, 7(1): e1022.
[29]
Chen H, Kwong JC, Copes R, et al. Living near major roads and the incidence of dementia, parkinson's disease, and multiple sclerosis: a population-based cohort study[J]. Lancet, 2017, 389(10070): 718-26.
[30]
Tari AR, Selbæk G, Franklin BA, et al. Temporal changes in personal activity intelligence and the risk of incident dementia and dementia related mortality: a prospective cohort study (HUNT)[J]. EClinicalMedicine, 2022, 52: 101607.
[31]
Zhong G, Wang Y, Zhang Y, et al. Smoking is associated with an increased risk of dementia: a meta-analysis of prospective cohort studies with investigation of potential effect modifiers[J]. PLoS One, 2015, 10(3): e0118333.
[32]
Qu Y, Hu HY, Ou YN, et al. Association of body mass index with risk of cognitive impairment and dementia: a systematic review and meta-analysis of prospective studies[J]. Neurosci Biobehav Rev, 2020, 115: 189-198.
[33]
蔡福果, 洪伟, 折宁宁, 等. 阻塞性睡眠呼吸暂停、肥胖与认知功能障碍研究进展[J]. 国际耳鼻咽喉头颈外科杂志, 2024, (4): 213-216.
[34]
Veronese N, Facchini S, Stubbs B, et al. Weight loss is associated with improvements in cognitive function among overweight and obese people: a systematic review and meta-analysis[J]. Neurosci Biobehav Rev, 2017, 72: 87-94.
[35]
Casagrande M, Forte G, Favieri F, et al. Sleep quality and aging: a systematic review on healthy older people, mild cognitive impairment and Alzheimer's disease[J]. Int J Environ Res Public Health, 2022, 19(14):8457.
[36]
Lucey BP, Wisch J, Boerwinkle AH, et al. Sleep and longitudinal cognitive performance in preclinical and early symptomatic Alzheimer's disease[J]. Brain, 2021, 144(9): 2852-2862.
[37]
Jeon KH, Han K, Jeong SM, et al. Changes in alcohol consumption and risk of dementia in a nationwide cohort in south korea[J]. JAMA Netw Open, 2023, 6(2): e2254771.
[38]
周媛媛, 周香莲, 王杰, 等. 轻度认知功能障碍向痴呆进展的危险因素及保护因素研究[J]. 中国全科医学, 2018, 21(33): 4149-4156.
[39]
刘雨辉, 卜先乐, 马辛, 等. 阿尔茨海默病药物治疗指南[J]. 阿尔茨海默病及相关病杂志, 2025, 8(1): 8-16.
[40]
Sharma K. Cholinesterase inhibitors as Alzheimer's therapeutics (Review)[J]. Mol Med Rep, 2019, 20(2): 1479-1487.
[41]
Xiao S, Chan P, Wang T, et al. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer's dementia[J]. Alzheimers Res Therapy, 2021, 13(1): 62.
[42]
Wang X, Sun G, Feng T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression[J]. Cell Res, 2019, 29(10): 787-803.
[43]
McShane R, Westby MJ, Roberts E, et al. Memantine for dementia[J]. Cochrane Database Syst Rev, 2019, 3(3): Cd003154.
[44]
中华医学会神经病学分会痴呆与认知障碍学组. 阿尔茨海默病源性轻度认知障碍诊疗中国专家共识2024[J]. 中华神经科杂志, 2024, (7): 715-737.
[45]
van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early Alzheimer's disease[J]. N Engl J Med, 2023, 388(1): 9-21.
[46]
Mintun MA, Lo AC, Duggan Evans C, et al. Donanemab in early Alzheimer's disease[J]. N Engl J Med, 2021, 384(18): 1691-1704.
[47]
李孟媛, 孙锦平, 孙伟, 等. 复方苁蓉益智胶囊治疗轻中度阿尔茨海默病患者的临床疗效研究[J]. 北京中医药大学学报, 2024, 47(8): 1145-1151.
[48]
刘长宁, 张立娟, 侯翰如, 等. 中成药治疗阿尔茨海默病的网状Meta分析[J]. 中草药, 2022, 53(19): 6123-6138.
[49]
赵克武, 张宁, 董晓红, 等. 补阳还五汤防治阿尔茨海默病的研究进展[J]. 中草药, 2024, 55(8): 2843-2852.
[50]
Yang S, Xie Z, Pei T, et al. Salidroside attenuates neuronal ferroptosis by activating the Nrf2/HO1 signaling pathway in Aβ(1-42)-induced Alzheimer's disease mice and glutamate-injured HT22 cells[J]. Chin Med, 2022, 17(1): 82.
[51]
Zhong M, Xu QQ, Huang MQ, et al. Rhynchophylline alleviates cognitive deficits in multiple transgenic mouse models of Alzheimer's disease via modulating neuropathology and gut microbiota[J]. Acta Pharmacol Sin, 2025.
[52]
梁玉晓, 齐婧. 天智颗粒联合盐酸多奈哌齐对阿尔茨海默病患者认知功能及生活质量的影响[J]. 河南医学研究, 2021, 30(5): 923-925.
[53]
赖福生, 焦冬生, 卢少军, 等. 多奈哌齐联合天智颗粒治疗轻中度阿尔茨海默病的临床研究[J]. 中国实用神经疾病杂志, 2014, 17(10): 23-25.
[54]
何瑛琨, 李士杰, 常玉娟, 等. 黄连解毒汤对阿尔茨海默症患者认知功能及血清Aβ1-42、BK表达的影响观察[J]. 中华中医药学刊: 1-8.
[55]
Wang YY, Yu SF, Xue HY, et al. Effectiveness and safety of acupuncture for the treatment of alzheimer's disease: a systematic review and meta-analysis[J]. Front Aging Neurosci, 2020, 12: 98.
[56]
姜文, 田华, 胡洁玲, 等. 靳三针法联合健脑散对阿尔茨海默病患者脑血流的影响[J]. 江西中医药, 2018, 49(8): 51-53.
[57]
Teselink J, Bawa KK, Koo GK, et al. Efficacy of non-invasive brain stimulation on global cognition and neuropsychiatric symptoms in Alzheimer's disease and mild cognitive impairment: a meta-analysis and systematic review[J]. Ageing Research Reviews, 2021, 72: 101499.
[58]
方伯言, 王丽, 闫天翼, 等. 无创神经调控技术辅助阿尔茨海默病治疗的中国专家共识[J]. 中国神经免疫学和神经病学杂志, 2023, 30(6): 387-394.
[59]
Tao Y, Lei B, Zhu Y, et al. Repetitive transcranial magnetic stimulation decreases serum amyloid-β and increases ectodomain of p75 neurotrophin receptor in patients with Alzheimer's disease[J]. J Integr Neurosci, 2022, 21(5): 140.
[60]
Xiu H, Liu F, Hou Y, et al. High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) on global cognitive function of elderly in mild to moderate Alzheimer's disease: a systematic review and meta-analysis[J]. Neurol Sci, 2024, 45(1): 13-25.
[61]
Fernandes SM, Mendes AJ, Rodrigues PFS, et al. Efficacy and safety of repetitive transcranial magnetic stimulation and transcranial direct current stimulation in memory deficits in patients with Alzheimer's disease: meta-analysis and systematic review[J]. Int J Clin Health Psychol, 2024, 24(2): 100452.
[62]
Andrade SM, de Oliveria Marques CC, de lucena LC, et al. Effect of transcranial direct current stimulation and transcranial magnetic stimulation on the cognitive function of individuals with Alzheimer's disease: a systematic review with meta-analysis and meta-regression[J]. Neurol Res, 2024, 46(5):453-465.
[63]
Chu CS, Li CT, Brunoni AR, et al. Cognitive effects and acceptability of non-invasive brain stimulation on Alzheimer's disease and mild cognitive impairment: a component network meta-analysis[J]. J Neurol Neurosurg Psychiatry, 2021, 92(2): 195-203.
[64]
Tang Y, Xing Y, Sun L, et al. TRanscranial alternating current stimulation FOR patients with mild Alzheimer's disease (TRANSFORM-AD): a randomized controlled clinical trial[J]. Alzheimers Res Ther, 2024, 16(1): 203.
[65]
LoBue C, Chiang HS, Salter A, et al. High definition transcranial direct current stimulation as an intervention for cognitive deficits in Alzheimer's dementia: a randomized controlled trial[J]. J Prev Alzheimers Dis, 2025, 12(2): 100023.
[66]
Xiang C, Zhang Y. Comparison of cognitive intervention strategies for individuals with Alzheimer's disease: a systematic review and network meta-analysis[J]. Neuropsychol Rev, 2024, 34(2): 402-416.
[67]
中国微循环学会神经变性病专委会, 中华医学会神经病学分会神经心理与行为神经病学学组, 中华医学会神经病学分会神经康复学组. 阿尔茨海默病康复管理中国专家共识(2019)[J]. 中华老年医学杂志, 2020, 39(1): 9-19.
[68]
Georgopoulou EN, Nousia A, Siokas V, et al. Computer-based cognitive training vs. paper-and-pencil training for language and cognitive deficits in greek patients with mild Alzheimer's disease: a preliminary study[J]. Healthcare (Basel), 2023, 11(3).
[69]
Yang T, Liu W, He J, et al. The cognitive effect of non-invasive brain stimulation combined with cognitive training in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis[J]. Alzheimers Res Ther, 2024, 16(1): 140.
[70]
Shyu YL, Lin CC, Kwok YT, et al. A community-based computerised cognitive training program for older persons with mild dementia: a pilot study[J]. Australas J Ageing, 2022, 41(1): e82-e93.
[71]
Rabey JM, Dobronevsky E, Aichenbaum S, et al. Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer's disease: a randomized, double-blind study[J]. J Neural Transm, 2013, 120(5): 813-819.
[72]
de Sousa AVC, Grittner U, Rujescu D, et al. Impact of 3-day combined anodal transcranial direct current stimulation-visuospatial training on object-location memory in healthy older adults and patients with mild cognitive impairment[J]. J Alzheimers Dis, 75(1): 223-244.
[73]
Orrell M, Aguirre E, Spector A, et al. Maintenance cognitive stimulation therapy for dementia: single-blind, multicentre, pragmatic randomised controlled trial[J]. Br J Psychiatry, 2014, 204(6): 454-461.
[74]
Justo-Henriques SI, Pérez-Sáez E, Marques-Castro AE, et al. Effectiveness of a year-long individual cognitive stimulation program in portuguese older adults with cognitive impairment[J]. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn, 2023, 30(3): 321-335.
[75]
López C, Sánchez JL, Martín J, et al. The effect of cognitive stimulation on the progression of cognitive impairment in subjects with Alzheimer's disease[J]. Appl Neuropsychol Adult, 2022, 29(1): 90-99.
[76]
Bottino CM, Carvalho IA, Alvarez AM, et al. Cognitive rehabilitation combined with drug treatment in Alzheimer's disease patients: a pilot study[J]. Clin Rehabil, 2005, 19(8): 861-869.
[77]
Kurth S, Wojtasik V, Lekeu F, et al. Efficacy of cognitive rehabilitation versus usual treatment at home in patients with early stages of Alzheimer disease[J]. J Geriatr Psychiatry Neurol, 2021, 34(3): 209-215.
[78]
Phillips MCL, Deprez LM, Mortimer GMN, et al. Randomized crossover trial of a modified ketogenic diet in Alzheimer's disease[J]. Alzheimers Res Ther, 2021, 13(1): 51.
[79]
Barnes LL, Dhana K, Liu X, et al. Trial of the MIND diet for prevention of cognitive decline in older persons[J]. N Engl J Med, 2023, 389(7): 602-611.
[80]
Wei BZ, Li L, Dong CW, et al. The relationship of omega-3 fatty acids with dementia and cognitive decline: evidence from prospective cohort studies of supplementation, dietary intake, and blood markers[J]. Am J Clin Nutr, 2023, 117(6): 1096-1099.
[81]
Zhao R, Han X, Zhang H, et al. Association of vitamin E intake in diet and supplements with risk of dementia: a meta-analysis[J]. Front Aging Neurosci, 2022, 14: 955878.
[82]
Azuma N, Mawatari T, Saito Y, et al. Effect of continuous ingestion of bifidobacteria and dietary fiber on improvement in cognitive function: a randomized, double-blind, placebo-controlled trial[J]. Nutrients, 2023, 15(19):4175.
[83]
Sakurai K, Toshimitsu T, Okada E, et al. Effects of lactiplantibacillus plantarum OLL2712 on memory function in older adults with declining memory: a randomized placebo-controlled trial[J]. Nutrients, 2022, 14(20):4300.
[84]
Chatzikostopoulos T, Gialaouzidis M, Koutoupa A, et al. The effects of pomegranate seed oil on mild cognitive impairment[J]. J Alzheimers Dis, 2024, 97(4): 1961-1970.
[85]
van den Brink AC, Brouwer-Brolsma EM, Berendsen AAM, et al. The mediterranean, dietary approaches to stop hypertension (DASH), and mediterranean-DASH intervention for neurodegenerative delay (MIND) diets are associated with less cognitive decline and a lower risk of Alzheimer's disease-a review[J]. Adv Nutr, 2019, 10(6): 1040-1065.
[86]
Yuan Y, Yang Y, Hu X, et al. Effective dosage and mode of exercise for enhancing cognitive function in Alzheimer's disease and dementia: a systematic review and bayesian model-based network meta-analysis of RCTs[J]. BMC Geriatr, 2024, 24(1): 480.
[87]
Yu F, Vock DM, Zhang L, et al. Cognitive effects of aerobic exercise in Alzheimer's disease: a pilot randomized controlled trial[J]. J Alzheimers Dis, 2021, 80(1): 233-244.
[88]
Luo Q, Tian Z, Hu Y, et al. Effects of aerobic exercise on executive and memory functions in patients with Alzheimer's disease: a systematic review[J]. J Aging Phys Act, 2024, 32(4): 541-553.
[89]
Lv S, Wang Q, Liu W, et al. Comparison of various exercise interventions on cognitive function in Alzheimer's patients: a network meta-analysis[J]. Arch Gerontol Geriatr, 2023, 115: 105113.
[90]
Lim KH, Pysklywec A, Plante M, et al. The effectiveness of tai chi for short-term cognitive function improvement in the early stages of dementia in the elderly: a systematic literature review[J]. Clin Interv Aging, 2019, 14: 827-839.
[91]
Huang X, Zhao X, Li B, et al. Comparative efficacy of various exercise interventions on cognitive function in patients with mild cognitive impairment or dementia: a systematic review and network meta-analysis[J]. J Sport Health Sci, 2022, 11(2): 212-223.
[92]
Liu Z, Yang F, Lou Y, et al. The effectiveness of reminiscence therapy on alleviating depressive symptoms in older adults: a systematic review[J]. Front Psychol, 2021, 12: 709853.
[93]
Pérez-Sáez E, Justo-Henriques SI, Alves Apóstolo JL, et al. Multicenter randomized controlled trial of the effects of individual reminiscence therapy on cognition, depression and quality of life: Analysis of a sample of older adults with Alzheimer's disease and vascular dementia[J]. Clin Neuropsychol, 2022, 36(7): 1975-1996.
[94]
Saragih ID, Tonapa SI, Yao CT, et al. Effects of reminiscence therapy in people with dementia: a systematic review and meta-analysis[J]. J Psychiatr Ment Health Nurs, 2022, 29(6): 883-903.
[95]
Hui EK, Tischler V, Wong GHY, et al. Systematic review of the current psychosocial interventions for people with moderate to severe dementia[J]. Int J Geriatr Psychiatry, 2021, 36(9): 1313-1329.
[96]
Yi Y, Hu Y, Cui M, et al. Effect of virtual reality exercise on interventions for patients with Alzheimer's disease: a systematic review[J]. Front Psychiatry, 2022, 13: 1062162.
[97]
Santos VD, Costa AC, Junior NC, et al. Virtual reality interventions and their effects on the cognition of individuals with Alzheimer's disease: a systematic review and meta-analysis[J]. J Alzheimers Dis, 2025, 103(1): 68-80.
[98]
Son C, Park JH. Ecological effects of VR-based cognitive training on ADL and IADL in MCI and AD patients: a systematic review and meta-analysis[J]. Int J Environ Res Public Health, 2022, 19(23):15875.
[99]
Tortora C, Di Crosta A, La Malva P, et al. Virtual reality and cognitive rehabilitation for older adults with mild cognitive impairment: a systematic review[J]. Ageing Res Rev, 2024, 93: 102146.
[100]
Gómez-Gallego M, Gómez-Gallego JC, Gallego-Mellado M, et al. Comparative efficacy of active group music intervention versus group music listening in Alzheimer's disease[J]. Int J Environ Res Public Health, 2021, 18(15):8067.
[101]
Hofbauer LM, Ross SD, Rodriguez FS, et al. Music-based interventions for community-dwelling people with dementia: a systematic review[J]. Health Soc Care Community, 2022, 30(6): 2186-2201.
[102]
Lin TH, Liao YC, Tam KW, et al. Effects of music therapy on cognition, quality of life, and neuropsychiatric symptoms of patients with dementia: a systematic review and meta-analysis of randomized controlled trials[J]. Psychiatry Res, 2023, 329: 115498.
[103]
Bracco L, Pinto-Carral A, Hillaert L, et al. Tango-therapy vs physical exercise in older people with dementia; a randomized controlled trial[J]. BMC Geriatr, 2023, 23(1): 693.
[104]
Manji I, Wells S, Dal Bello-Haas V, et al. Impact of dance interventions on the symptoms of dementia: a mixed-methods systematic review[J]. Arts Health, 2024, 16(1): 64-88.
[105]
Rektorova I, Klobusiakova P, Balazova Z, et al. Brain structure changes in nondemented seniors after six-month dance-exercise intervention[J]. Acta Neurol Scand, 2020, 141(1): 90-97.
[106]
Pongan E, Tillmann B, Leveque Y, et al. Can musical or painting interventions improve chronic pain, mood, quality of life, and cognition in patients with mild Alzheimer's disease? evidence from a randomized controlled trial[J]. J Alzheimers Dis, 2017, 60(2): 663-677.
[107]
Popa LC, Manea MC, Velcea D, et al. Impact of Alzheimer's dementia on caregivers and quality improvement through art and music therapy[J]. Healthcare (Basel), 2021, 9(6):698.
[108]
Hendriks I, Meiland FJM, Slotwinska K, et al. How do people with dementia respond to different types of art? an explorative study into interactive museum programs[J]. Int Psychogeriatr, 2019, 31(6): 857-868.
[109]
Murroni V, Cavalli R, Basso A, et al. Effectiveness of therapeutic gardens for people with dementia: a systematic review[J]. Int J Environ Res Public Health, 2021, 18(18):9595.
[110]
Scott TL, Jao YL, Tulloch K, et al. Well-being benefits of horticulture-based activities for community dwelling people with dementia: a systematic review[J]. Int J Environ Res Public Health, 2022, 19(17):10523.
[111]
Bourdon E, Belmin J. Enriched gardens improve cognition and independence of nursing home residents with dementia: a pilot controlled trial[J]. Alzheimers Res Therapy, 2021, 13(1): 116.
[112]
Pedrinolla A, Tamburin S, Brasioli A, et al. An Indoor therapeutic garden for behavioral symptoms in Alzheimer's disease: a randomized controlled trial[J]. J Alzheimers Dis, 2019, 71(3): 813-823.
[113]
Yang Y, Kwan RYC, Zhai HM, et al. Effect of horticultural therapy on apathy in nursing home residents with dementia: a pilot randomized controlled trial[J]. Aging Ment Health, 2022, 26(4): 745-753.
[114]
Klimova B, Toman J, Kuca K, et al. Effectiveness of the dog therapy for patients with dementia - a systematic review[J]. BMC Psychiatry, 2019, 19(1): 276.
[115]
Olsen C, Pedersen I, Bergland A, et al. Effect of animal-assisted activity on balance and quality of life in home-dwelling persons with dementia[J]. Geriatr Nurs, 2016, 37(4): 284-291.
[116]
Menna LF, Santaniello A, Gerardi F, et al. Efficacy of animal-assisted therapy adapted to reality orientation therapy: measurement of salivary cortisol[J]. Psychogeriatrics, 2019, 19(5): 510-512.
[117]
Zafra-Tanaka JH, Pacheco-Barrios K, Tellez WA, et al. Effects of dog-assisted therapy in adults with dementia: a systematic review and meta-analysis[J]. BMC Psychiatry, 2019, 19(1): 41.
[118]
Marks G, McVilly K. Trained assistance dogs for people with dementia: a systematic review[J]. Psychogeriatrics, 2020, 20(4): 510-521.
[119]
Blanco-Duque C, Chan D, Kahn MC, et al. Audiovisual gamma stimulation for the treatment of neurodegeneration[J]. J Intern Med, 2024, 295(2): 146-170.
[120]
Yang H, Luo Y, Hu Q, et al. Benefits in Alzheimer's disease of sensory and multisensory stimulation[J]. J Alzheimers Dis, 2021, 82(2): 463-484.
[121]
Zang L, Liu X, Li Y, et al. The effect of light therapy on sleep disorders and psychobehavioral symptoms in patients with Alzheimer's disease: a meta-analysis[J]. PLoS One, 2023, 18(12): e0293977.
[122]
Figueiro MG, Plitnick B, Roohan C, et al. Effects of a tailored lighting intervention on sleep quality, rest-activity, mood, and behavior in older adults with alzheimer disease and related dementias: a randomized clinical trial[J]. J Clin Sleep Med, 2019, 15(12): 1757-1767.
[123]
Cimenser A, Hempel E, Travers T, et al. Sensory-evoked 40-Hz gamma oscillation improves sleep and daily living activities in Alzheimer's disease patients[J]. Front Syst Neurosci, 2021, 15: 746859.
[124]
Pinto JO, Dores AR, Geraldo A, et al. Sensory stimulation programs in dementia: a systematic review of methods and effectiveness[J]. Expert Rev Neurother, 2020, 20(12): 1229-1247.
[125]
Bavarsad NH, Bagheri S, Kourosh-Arami M, et al. Aromatherapy for the brain: lavender's healing effect on epilepsy, depression, anxiety, migraine, and Alzheimer's disease: a review article[J]. Heliyon, 2023, 9(8): e18492.
[126]
Xiao S, Wang Y, Duan S, et al. Effects of aromatherapy on agitation and aggression in cognitive impairment: a meta-analysis[J]. J Clin Nurs, 2021.
[127]
Glachet O, El Haj M. Effects of olfactory stimulation on past and future thinking in Alzheimer's disease[J]. Chem Senses, 2020, 45(4): 313-320.
[128]
Glachet O, El Haj M. Emotional and phenomenological properties of odor-evoked autobiographical memories in Alzheimer's disease[J]. Brain Sci, 2019, 9(6):135.
[129]
Voutilainen A, Ruokostenpohja N, Välimäki T, et al. Associations across caregiver and care recipient symptoms: self-organizing map and meta-analysis[J]. Gerontologist, 2018, 58(2): e138-e149.
[130]
Pless A, Ware D, Saggu S, et al. Understanding neuropsychiatric symptoms in Alzheimer's disease: challenges and advances in diagnosis and treatment[J]. Front Neurosci, 2023, 17: 1263771.
[131]
Carrarini C, Russo M, Dono F, et al. Agitation and dementia: prevention and treatment strategies in acute and chronic conditions[J]. Front Neurol, 2021, 12: 644317.
[132]
Kim SK, Park M. Effectiveness of person-centered care on people with dementia: a systematic review and meta-analysis[J]. Clin Interv Aging, 2017, 12: 381-397.
[133]
Lee KH, Lee JY, Kim B, et al. Person-centered care in persons living with dementia: a systematic review and meta-analysis[J]. Gerontologist, 2022, 62(4): e253-e264.
[134]
Hatch S, Seitz DP, Bruneau MA, et al. The canadian coalition for seniors' mental health canadian clinical practice guidelines for assessing and managing behavioural and psychological symptoms of dementia (BPSD)[J]. Can Geriatr J, 2025, 28(1): 91-102.
[135]
Jones C, Liu F, Murfield J, et al. Effects of non-facilitated meaningful activities for people with dementia in long-term care facilities: a systematic review[J]. Geriatr Nurs, 2020, 41(6): 863-871.
[136]
Walsh SC, Murphy E, Devane D, et al. Palliative care interventions in advanced dementia[J]. Cochrane Database Syst Rev, 2021, 9(9): Cd011513.
[137]
Dobbs D, Yauk J, Vogel CE, et al. Feasibility of the palliative care education in assisted living intervention for dementia care providers: a cluster randomized trial[J]. Gerontologist, 2024, 64(1):gnad018.

志谢:感谢以下人员对本共识所做出的贡献(按姓氏笔画排列)

专家组成员:于恩彦(浙江省肿瘤医院)、王永军(深圳市康宁医院)、王任直(香港中文大学深圳医学院)、王宝兰(新疆医科大学第一附属医院)、王慧芳(同济大学附属养志康复医院)、白玉龙(复旦大学附属华山医院)、吕泽平(国家康复辅具研究中心附属康复医院)、刘晓蕾(昆明医科大学第一附属医院)、刘浩(美国路易斯安娜州立大学)、刘敏(山东省立第三医院)、江柏轩(香港大学)、李浩(中国中医科学院西苑医院)、肖卫忠(北京大学第三医院)、沈璐(中南大学湘雅医院)、张通(中国康复研究中心)、张璐(郑州大学第一附属医院)、张巍(北京天坛医院)、顾平(河北医科大学第一医院)、徐群(上海交通大学医学院附属仁济医院)、黄微(云南省第三人民医院)

患者家属:杨秀珍(广东省广州市)、于占平(山东省烟台市)

执笔人:董军涛(深圳大学附属南山医院)、厉含之(中国康复研究中心)

秘书组:贾云晓(深圳大学附属南山医院)、高凡斯(深圳大学附属南山医院)

利益冲突声明:所有作者在本研究中均不存在利益冲突。

PDF(1200 KB)

Accesses

Citation

Detail

Sections
Recommended

/