Research progress on the role of astrocytes in vascular dementia

ZHAO Yongli, ZHAO Weina, WANG Jianhang, CHEN Lingyu, CHEN Xiaojie, LI Shiyu, JIAO Yang

Chinese Journal of Alzheimer's Disease and Related Disorders ›› 2025, Vol. 8 ›› Issue (4) : 259-264.

PDF(828 KB)
Home Journals Chinese Journal of Alzheimer's Disease and Related Disorders
Chinese Journal of Alzheimer's Disease and Related Disorders

Abbreviation (ISO4): Chinese Journal of Alzheimer's Disease and Related Disorders      Editor in chief: Jun WANG

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(828 KB)
Chinese Journal of Alzheimer's Disease and Related Disorders ›› 2025, Vol. 8 ›› Issue (4) : 259-264. DOI: 10.3969/j.issn.2096-5516.2025.04.007
Review

Research progress on the role of astrocytes in vascular dementia

Author information +
History +

Abstract

Vascular dementia (VaD) is a severe syndrome of cognitive impairment caused by ischemic stroke, hemorrhagic stroke, and cerebrovascular lesions that cause hypoperfusion of memory, cognitive, and behavioral brain regions. Among the types of dementia, VaD is the second most common cause after Alzheimer's disease, but the pathogenesis of VaD is still unclear. Astrocytes are the most abundant glial cells in the central nervous system.Astrocytes have the ability to produce and release specific neurotransmitters, and express corresponding neurotransmitter receptors,which can respond to a variety of neuroactive substances.In recent years, a large number of studies have been carried out on the role of astrocytes in the central nervous system (CNS), and this article reviews the current role and mechanism of astrocytes in the progression of VaD based on the research background and research significance.We hope to provide a useful reference for understanding the pathogenesis of VaD and exploring new treatment methods and bring new breakthroughs in the treatment of clinical VaD.

Key words

Vascular dementia / Astrocyte / Neuroinflammation

Cite this article

Download Citations
ZHAO Yongli , ZHAO Weina , WANG Jianhang , et al . Research progress on the role of astrocytes in vascular dementia[J]. Chinese Journal of Alzheimer's Disease and Related Disorders. 2025, 8(4): 259-264 https://doi.org/10.3969/j.issn.2096-5516.2025.04.007

References

[1]
Yang Y, Zhao X, Zhu Z, et al. Vascular dementia: a microglia's perspective[J]. Ageing Res Rev, 2022, 81: 101734.
[2]
O'Brien JT, Thomas A. Vascular dementia[J]. Lancet, 2015, 386(10004): 1698-1706.
[3]
Takeda S, Rakugi H, Morishita R, et al. Roles of vascular risk factors in the pathogenesis of dementia[J]. Hypertens Res, 2020, 43(3): 162-167.
[4]
Santello M, Toni N, Volterra A, et al. Astrocyte function from information processing to cognition and cognitive impairment[J]. Nat Neurosci, 2019, 22(2): 154-166.
[5]
Khakh BS, Sofroniew MV. Diversity of astrocyte functions and phenotypes in neural circuits[J]. Nat Neurosci, 2015, 18(7): 942-952.
[6]
Allen NJ, Lyons DA. Glia as architects of central nervous system formation and function[J]. Science, 2018, 362(6411): 181-185.
[7]
Allen NJ, Eroglu C. Cell biology of astrocyte-synapse interactions[J]. Neuron, 2017, 96(3): 697-708.
[8]
Verkhratsky A, Nedergaard M. Physiology of astroglia[J]. Physiol Rev, 2018, 98(1): 239-389.
[9]
Zhao Y, Huang Y, Cao Y, et al. Astrocyte-Mediated neuroinflammation in neurological conditions[J]. Biomolecules, 2024, 14(10): 1204.
[10]
Domingues HS, Portugal CC, Socodato R, et al. Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair[J]. Front Cell Dev Biol, 2016, 4: 71.
[11]
Nutma E, van Gent D, Amor S, et al. Astrocyte and oligodendrocyte cross-talk in the central nervous system[J]. Cells, 2020, 9(3): 600.
[12]
Stadelmann C, Timmler S, Barrantes-Freer A, et al. Myelin in the central nervous system: structure, function, and pathology[J]. Physiol Rev, 2019, 99(3):1381-1431.
[13]
Neal M, Richardson JR. Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(2): 432-443.
[14]
Lee HG, Wheeler MA, Quintana FJ, et al. Function and therapeutic value of astrocytes in neurological diseases[J]. Nat Rev Drug Discov, 2022, 21(5):339-358.
[15]
Chen C, Lin LY, Chen JW, et al. Correction: CXCL5 suppression recovers neovascularization andaccelerates wound healing indiabetes mellitus[J]. Cardiovasc Diabetol, 2023, 22(1):196.
[16]
Somjen GG. Nervenkitt: notes on the history of the concept of neuroglia[J]. Glia, 1988, 1(1):2-9.
[17]
Matyash V, Kettenmann H. Heterogeneity in astrocyte morphology and physiology[J]. Brain Res Rev, 2010, 63(1-2):2-10.
[18]
Oberheim NA, Wang X, Goldman S, et al. Astrocytic complexity distinguishes the human brain[J]. Trends Neurosci, 2006, 29(10):547-553.
[19]
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology[J]. Acta Neuropathol, 2010, 119(1):7-35.
[20]
Khler S, Winkler U, Hirrlinger J, et al. Heterogeneity of astrocytes in grey and white matter[J]. Neurochem Res, 2021, 46(1):3-14.
[21]
Du SQ, Wang XR, Xiao LY, et al. Molecular mechanisms of vascular dementia: what can be learned from animal models of chronic cerebral hypoperfusion?[J]. Mol Neurobiol, 2017, 54(5):3670-3682.
[22]
Rajeev V, Chai YL, Poh L, et al. Chronic cerebral hypoperfusion: a critical feature in unravelling the etiology of vascular cognitive impairment[J]. Acta Neuropathol Commun, 2023, 11(1): 93.
[23]
Lei LY, Wang RC, Pan YL, et al. Mangiferin inhibited neuroinflammation through regulating microglial polarization and suppressing NF-κB, NLRP3 pathway[J]. Chin J Nat Med, 2021, 19(2):112-119.
[24]
Jurcau A, Simion A. Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: from pathophysiology to therapeutic strategies[J]. Int J Mol Sci, 2021, 23(1): 14.
[25]
Saggu R, Schumacher T, Gerich F, et al. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia[J]. Acta Neuropathol Commun, 2016, 4(1):76.
[26]
Liu J, Jin DZ, Xiao L, et al. Paeoniflorin attenuates chronic cerebral hypoperfusion-induced learning dysfunction and brain damage in rats[J]. Brain Res, 2006, 1089(1): 162-170.
[27]
Cao W, Lin J, Xiang W, et al. Physical exercise-induced astrocytic neuroprotection and cognitive improvement through primary cilia and mitogen-activated protein kinases pathway in rats with chronic cerebral hypoperfusion[J]. Front Aging Neurosci, 2022, 14: 866336.
[28]
Linnerbauer M, Wheeler MA, Quintana FJ, et al. Astrocyte crosstalk in CNS inflammation[J]. Neuron, 2020, 108(4): 608-622.
[29]
Quionez-Silvero C, Kathleen Hübner, Herzog W, et al. Development of the brain vasculature and the blood-brain barrier in zebrafish[J]. Dev Biol, 2020, 457(2):181-190.
[30]
Borowsky IW, Collins RC. Metabolic anatomy of brain: a comparison of regional capillary density, glucose metabolism, and enzyme activities[J]. J Comp Neurol, 2010, 288(3):401-413.
[31]
Belousov AB, Fontes JD, Freitas-Andrade M, et al. Gap junctions and hemichannels: communicating cell death in neurodevelopment and disease[J]. BMC Cell Biol, 2017, 18: 1-11.
[32]
Lorin C, Guiet R, Chiaruttini N, et al. Structural and molecular characterization of astrocyte and vasculature connectivity in the mouse hippocampus and cortex[J]. Glia, 2024, 72(11): 2001-2021.
[33]
Hösli L, Binini N, Ferrari KD, et al. Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning[J]. Cell Rep, 2022, 38(10):110484.
[34]
Tang L, Xie D, Wang S, et al. Piezo1 knockout improves post-stroke cognitive dysfunction by inhibiting the interleukin-6 (IL-6)/glutathione peroxidase 4 (GPX4) pathway[J]. J Inflamm Res, 2024: 2257-2270.
[35]
Xiao P, Wen Y, Du G, et al. Clusterin attenuates blood-brain barrier damage and cognitive impairment by inhibiting astrocyte aging in mice with sepsis-associated encephalopathy[J]. NeuroReport, 2024, 35(13): 857-867.
[36]
Ueno M, Chiba Y, Matsumoto K, et al. Blood-brain barrier damage in vascular dementia[J]. Neuropathology, 2016, 36(2): 115-124.
[37]
Tayler H, Miners JS, Güzel Ö, et al. Mediators of cerebral hypoperfusion and blood-brain barrier leakiness in Alzheimer's disease, vascular dementia and mixed dementia[J]. Brain Pathol, 2021, 31(4): e12935.
[38]
王振凤, 田克姚, 刘南海, 等. 醒脑静注射液对MCAO大鼠神经功能、神经细胞炎症及氧化应激损伤的影响[J]. 中国现代医生, 2020, 58(36):36-39.
[39]
Liyanagamage DSNK, Martinus RD. Role of mitochondrial stress protein HSP60 in diabetes-induced neuroinflammation[J]. Mediators Inflamm, 2020, 2020(1): 8073516.
[40]
Daverey A, Agrawal SK. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes[J]. Neuroscience, 2016, 333: 92-103.
[41]
Tang Z, Chen Z, Guo M, et al. NRF2 deficiency promotes ferroptosis of astrocytes mediated by oxidative stress in Alzheimer's disease[J]. Mol Neurobiol, 2024: 1-17.
[42]
Akiyama S, Ayabe T, Takahashi C, et al. β-lactolin, a monoamine oxidase B inhibitory lactopeptide, suppresses reactive oxygen species production in lipopolysaccharide-stimulated astrocytes[J]. Appl Sci, 2021, 11(7): 3034.
[43]
Moshrefi M, SpotinA, Kafil HS, et al. Tumor suppressor p53 induces apoptosis of host lymphocytes experimentally infected by leishmania major, by activation of bax and caspase-3: a possible survival mechanism for the parasite[J]. Parasitol Res, 2017, 116(8):2159-2166.
[44]
Zhang Y, Yang X, Ge X, et al. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice[J]. Biomed Pharmacother, 2019, 109: 726-733.
[45]
Takuma K, Baba A, Matsuda T, et al. Astrocyte apoptosis: implications for neuroprotection[J]. Prog Neurobiol, 2004, 72(2): 111-127.
[46]
Guo Z, Wu HT, Li XX, et al. Edaravone protects rat astrocytes from oxidative or neurotoxic inflammatory insults by restoring Akt/Bcl-2/Caspase-3 signaling axis[J]. IBRO Rep, 2020, 8:122-128.
[47]
Tian WJ, Huang LN, Wang RH, et al. Effects of scalp-acupuncture on astrocyte apoptosis in hippocampal CA 1 region in rats with vascular dementia[J]. Zhen Ni Yan Jiu, 2015, 40(1): 6-12.
[48]
Guan T, Xiao Y, Xie X, et al. Dulaglutide improves gliosis and suppresses apoptosis/autophagy through the PI3K/Akt/mTOR signaling pathway in vascular dementia rats[J]. Neurochem Res, 2023, 48(5): 1561-1579.
[49]
Wang X, Zhu Z, Sun J, et al. Changes in iron load in specific brain areas lead to neurodegenerative diseases of the central nervous system[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2024, 129: 110903.
[50]
Huo T, Jia Y, Yin C, et al. Iron dysregulation in vascular dementia: focused on the AMPK/autophagy pathway[J]. Brain Res Bull, 2019, 153:305-313.
[51]
Xu Y, Zhang Y, Zhang JH, et al. Astrocyte hepcidin ameliorates neuronal loss through attenuating brain iron deposition and oxidative stress in APP/PS1 mice[J]. Free Radic Biol Med, 2020, 158: 84-95.
[52]
Cheli VT, Sekhar M, Santiago González DA, et al. The expression of ceruloplasmin in astrocytes is essential for postnatal myelination and myelin maintenance in the adult brain[J]. Glia, 2023, 71(10): 2323-2342.
PDF(828 KB)

Accesses

Citation

Detail

Sections
Recommended

/