Integrating blood and neuroimaging biomarkers across the Alzheimer's disease continuum: A temporal dynamics perspective

Jieyi YANG, Qun XU

Chinese Journal of Alzheimer's Disease and Related Disorders ›› 2025, Vol. 8 ›› Issue (5) : 291-296.

PDF(1072 KB)
Home Journals Chinese Journal of Alzheimer's Disease and Related Disorders
Chinese Journal of Alzheimer's Disease and Related Disorders

Abbreviation (ISO4): Chinese Journal of Alzheimer's Disease and Related Disorders      Editor in chief: Jun WANG

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1072 KB)
Chinese Journal of Alzheimer's Disease and Related Disorders ›› 2025, Vol. 8 ›› Issue (5) : 291-296. DOI: 10.3969/j.issn.2096-5516.2025.05.001
Commentary

Integrating blood and neuroimaging biomarkers across the Alzheimer's disease continuum: A temporal dynamics perspective

Author information +
History +

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a long preclinical phase and a cascade of pathological events. With recent advances in blood and imaging biomarkers, the dynamic tracking of AD progression has become increasingly feasible. However, most studies have focused on single-modality markers, with limited integration across biological systems and time scales. This review adopts a time-dynamic perspective to summarize the longitudinal evolution of key blood biomarkers (e.g., Aβ42/40 ratio, p-tau217, NfL, GFAP) and imaging markers (e.g., Aβ-PET, Tau-PET, MRI) across the AD continuum. We compare the timing of initial abnormalities, progression patterns, and correlations with cognitive decline. Furthermore, we highlight integrative modeling approaches, including event-based models, and deep learning frameworks, which enable multi-modal risk prediction and individualized disease staging. The clinical potential of such integration in early screening, disease trajectory forecasting, and therapeutic decision-making is discussed, along with current limitations and future directions. This review provides a framework for developing dynamic, biology-driven precision diagnostic strategies in AD.

Key words

Alzheimer’s disease / Blood biomarkers / PET / MRI / Multimodal integration

Cite this article

Download Citations
Jieyi YANG , Qun XU. Integrating blood and neuroimaging biomarkers across the Alzheimer's disease continuum: A temporal dynamics perspective[J]. Chinese Journal of Alzheimer's Disease and Related Disorders. 2025, 8(5): 291-296 https://doi.org/10.3969/j.issn.2096-5516.2025.05.001

References

[1]
Jack CR, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers[J]. Lancet Neuro, 2013, 12(2): 207-216.
[2]
Jia J, Ning Y, Chen M, et al. Biomarker changes during 20 years preceding Alzheimer’s disease[J]. N Engl J Me, 2024, 390(8): 712-722.
[3]
Ossenkoppele R, Pichet Binette A, Groot C, et al. Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline[J]. Nat Me, 2022, 28(11): 2381-2387.
[4]
Jack CR, Bennett DA, Blennow K, et al. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease[J]. Alzheimers Demen, 2018, 14(4): 535-562.
[5]
Jack CR, Andrews JS, Beach TG, et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s association workgroup[J]. Alzheimers Demen, 2024, 20(8): 5143-5169.
[6]
Nakamura A, Kaneko N, Villemagne VL, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease[J]. Natur, 2018, 554(7691): 249-254.
[7]
Janelidze S, Barthélemy NR, Salvadó G, et al. Plasma phosphorylated tau 217 and Aβ42/40 to predict early brain Aβ accumulation in people without cognitive impairment[J]. JAMA Neuro, 2024, 81(9): 947-957.
[8]
Karikari TK, Pascoal TA, Ashton NJ, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: A diagnostic performance and prediction modelling study using data from four prospective cohorts[J]. Lancet Neuro, 2020, 19(5): 422-433.
[9]
Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders[J]. JAM, 2020, 324(8): 772-781.
[10]
Milà-Alomà M, Ashton NJ, Shekari M, et al. Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer’s disease[J]. Nat Me, 2022, 28(9): 1797-1801.
[11]
Ashton NJ, Pascoal TA, Karikari TK, et al. Plasma p-tau231: A new biomarker for incipient Alzheimer’s disease pathology[J]. Acta Neuropatho, 2021, 141(5): 709-724.
[12]
Zhang L, Xiang X, Li Y, et al. TREM2 and sTREM2 in Alzheimer’s disease: From mechanisms to therapies[J]. Mol Neurodegene, 2025, 20(1): 43.
[13]
Mattsson N, Cullen N C, Andreasson U, et al. Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease[J]. JAMA Neuro, 2019, 76(7): 791-799.
[14]
Benedet AL, Milà-Alomà M, Vrillon A, et al. Differences between plasma and cerebrospinal fluid glial fibrillary acidic protein levels across the Alzheimer disease continuum[J]. JAMA Neuro, 2021, 78(12): 1471-1483.
[15]
Teunissen CE, Verberk IMW, Thijssen EH, et al. Blood-based biomarkers for Alzheimer’s disease: Towards clinical implementation[J]. Lancet Neuro, 2022, 21(1): 66-77.
[16]
Jack CR, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade[J]. Lancet Neuro, 2010, 9(1): 119-128.
[17]
Jack CR, Holtzman DM. Biomarker Modeling of Alzheimer’s Disease[J]. Neuro, 2013, 80(6): 1347-1358.
[18]
Ashton NJ, Janelidze S, Mattsson-Carlgren N, et al. Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer’s trial selection and disease monitoring[J]. Nat Me, 2022, 28(12): 2555-2562.
[19]
Mattsson-Carlgren N, Salvadó G, Ashton NJ, et al. Prediction of longitudinal cognitive decline in preclinical Alzheimer disease using plasma biomarkers[J]. JAMA Neuro, 2023, 80(4): 360-369.
[20]
Janelidze S, Collij LE, Mattsson-Carlgren N, et al. Prediction of amyloid and tau brain deposition and cognitive decline in people with Down syndrome using plasma biomarkers: A longitudinal cohort study[J]. Lancet Neuro, 2025, 24(7): 591-600.
[21]
Leuzy A, Smith R, Cullen NC, et al. Biomarker-based prediction of longitudinal tau positron emission tomography in alzheimer disease[J]. JAMA Neuro, 2022, 79(2): 149-158.
[22]
Young AL, Marinescu RV, Oxtoby NP, et al. Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with subtype and stage inference[J]. Nat Commu, 2018, 9(1): 4273.
[23]
Salvadó G, Ossenkoppele R, Ashton NJ, et al. Specific associations between plasma biomarkers and postmortem amyloid plaque and tau tangle loads[J]. EMBO Mol Me, 2023, 15(5): e17123.
[24]
Palmqvist S, Stomrud E, Cullen N, et al. An accurate fully automated panel of plasma biomarkers for Alzheimer’s disease[J]. Alzheimers Demen, 2023, 19(4): 1204-1215.
[25]
Pérez-Grijalba V, Arbizu J, Romero J, et al. Plasma Aβ42/40 ratio alone or combined with FDG-PET can accurately predict amyloid-PET positivity: A cross-sectional analysis from the AB255 study[J]. Alzheimers Res The, 2019, 11(1): 96.
[26]
Verberk IMW, Slot RE, Verfaillie SCJ, et al. Plasma amyloid as prescreener for the earliest Alzheimer pathological changes[J]. Ann Neuro, 2018, 84(5): 648-658.
[27]
Kubota M, Bun S, Takahata K, et al. Plasma biomarkers for early detection of alzheimer’s disease: A cross-sectional study in a Japanese cohort[J]. Alz Res Therap, 2025, 17(1): 131.
[28]
Ashton NJ, Brum WS, Di Molfetta G, et al. Diagnostic accuracy of a plasma phosphorylated tau 217 immunoassay for Alzheimer’s disease pathology[J]. JAMA Neuro, 2024, 81(3): 255-263.
[29]
Palmqvist S, Tideman P, Cullen N, et al. Prediction of future Alzheimer’s disease dementia using plasma phospho-tau combined with other accessible measures[J]. Nat Me, 2021, 27(6): 1034-1042.
[30]
Montoliu-Gaya L, Benedet AL, Tissot C, et al. Mass spectrometric simultaneous quantification of tau species in plasma shows differential associations with amyloid and tau pathologies[J]. Nat Agin, 2023, 3(6): 661-669.
[31]
Horie K, Salvadó G, Koppisetti RK, et al. Plasma MTBR-tau243 biomarker identifies tau tangle pathology in Alzheimer’s disease[J]. Nat Me, 2025, 31(6):2044-2053.
[32]
Pereira JB, Janelidze S, Smith R, et al. Plasma GFAP is an early marker of amyloid-β but not tau pathology in Alzheimer’s disease[J]. Brai, 2021, 144(11): 3505-3516.
[33]
Biel D, Suárez-Calvet M, Hager P, et al. sTREM2 is associated with amyloid-related p-tau increases and glucose hypermetabolism in Alzheimer’s disease[J]. EMBO Mol Me, 2023, 15(2): e16987.
[34]
Gonzalez-Ortiz F, Kirsebom BE, Contador J, et al. Plasma brain-derived tau is an amyloid-associated neurodegeneration biomarker in Alzheimer’s disease[J]. Nat Commu, 2024, 15(1): 2908.
[35]
Salvadó G, Larsson V, Cody KA, et al. Optimal combinations of CSF biomarkers for predicting cognitive decline and clinical conversion in cognitively unimpaired participants and mild cognitive impairment patients: A multi-cohort study[J]. Alzheimers Dementi, 2023, 19(7): 2943-2955.
[36]
Laforce R, Soucy JP, Sellami L, et al. Molecular imaging in dementia: Past, present, and future[J]. Alzheimers Demen, 2018, 14(11): 1522-1552.
[37]
Iaccarino L, Sala A, Perani D, et al. Predicting long-term clinical stability in amyloid-positive subjects by FDG-PET[J]. Ann Clin Transl Neuro, 2019, 6(6): 1113-1120.
[38]
Caminiti SP, Ballarini T, Sala A, et al. FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort[J]. Neuroimage Cli, 2018, 18: 167-177.
[39]
Mosconi L, Tsui WH, Herholz K, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias[J]. J Nucl Me, 2008, 49(3): 390-398.
[40]
Jansen WJ, Ossenkoppele R, Knol DL, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis[J]. JAM, 2015, 313(19): 1924-1938.
[41]
Zhang S, Han D, Tan X, et al. Diagnostic accuracy of 18 F-FDG and 11 C-PIB-PET for prediction of short-term conversion to Alzheimer’s disease in subjects with mild cognitive impairment[J]. Int J Clin Prac, 2012, 66(2): 185-198.
[42]
Villain N, Chételat G, Grassiot B, et al. Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: A voxelwise PiB-PET longitudinal study[J]. Brai, 2012, 135(7): 2126-2139.
[43]
Mattsson N, Schöll M, Strandberg O, et al. 18F-AV-1451 and CSF T-tau and P-tau as biomarkers in Alzheimer’s disease[J]. EMBO Mol Me, 2017, 9(9): 1212-1223.
[44]
Tosun D, Landau S, Aisen PS, et al. Association between tau deposition and antecedent amyloid-b accumulation rates in normal and early symptomatic individuals[J]. Brai, 2017, 140(5): 1499-1512.
[45]
Moscoso A, Heeman F, Raghavan S, et al. Frequency and clinical outcomes associated with tau positron emission tomography positivity[J]. JAM, 2025, 334(3):229-242.
[46]
Pini L, Pievani M, Bocchetta M, et al. Brain atrophy in Alzheimer’s disease and aging[J]. Ageing Res Re, 2016, 30: 25-48.
[47]
Antoniades M, Srinivasan D, Wen J, et al. Relationship between MRI brain-age heterogeneity, cognition, genetics and Alzheimer’s disease neuropathology[J]. EBioMedicin, 2024, 109: 105399.
[48]
Peter C, Sathe A, Shashikumar N, et al. White matter abnormalities and cognition in aging and Alzheimer’s disease[J]. JAMA Neuro, 2025: e251601.
[49]
Belder CRS, Boche D, Nicoll JAR, et al. Brain volume change following Anti-amyloid β immunotherapy for Alzheimer’s disease: Amyloid-removal-related pseudo-atrophy[J]. Lancet Neuro, 2024, 23(10): 1025-1034.
[50]
Mmadumbu AC, Saeed F, Ghaleb F, et al. Early detection of Alzheimer’s disease using deep learning methods[J]. Alzheimers Demen, 2025, 21(5): e70175.
PDF(1072 KB)

Accesses

Citation

Detail

Sections
Recommended

/