选择性离子吸附原理与材料制备

王芷铉, 郑少奎

化学进展 ›› 2023, Vol. 35 ›› Issue (5) : 780-793.

PDF(9259 KB)
PDF(9259 KB)
化学进展 ›› 2023, Vol. 35 ›› Issue (5) : 780-793. DOI: 10.7536/PC221005
综述

选择性离子吸附原理与材料制备

作者信息 +

Selective Ionic Removal Strategy and Adsorbent Preparation

Author information +
文章历史 +

摘要

制备特定无机阴、阳离子的选择性吸附材料有利于保障饮用水安全、控制外排污水生态风险、保障地表水环境质量,具有非常广泛的市场需求和应用前景。选择性离子吸附材料研发始于20世纪60年代,经过60年的高速发展,选择性离子吸附材料领域目前依旧保持了极高的研究热度和研究水平。本文概述了选择性离子吸附材料的研发历史、现状和主要研究方向,重点总结了四种选择性离子吸附原理(即分子印迹技术原理、软硬酸碱理论、非静电作用原理和竞争离子自我抑制原理)和它们的研究历史、选择性离子吸附材料制备与应用情况,展望了未来的研究方向,这些信息的整理归纳将为未来的选择性离子吸附材料研发、水中特定离子浓度控制提供重要的借鉴。

Abstract

The selective ionic removal from water or wastewater by newly-developed adsorbents has been intensely investigated around the world since 1960s. These selective ionic adsorbents were used to control the concentrations of specific ions in drinking water or wastewater in the presence of plentiful coexisting ions to prepare quality drinking water or avoid ecological hazards in natural waterbodies due to wastewater discharge. Due to remarkable market demands and wide application prospects, this topic still generates numerous amazing findings in terms of international publications in recent decade. Besides the history, the present status and the research bias, this paper lays particular emphasis on the four selective ionic removal strategies involved in previous studies (i.e., the molecular imprinting technology, the soft and hard acid base theory, the non-electrostatic interaction theory, and the self-inhibition theory of competitive ions), including their mechanisms, histories, and adsorbent preparations and applications. Finally, this review also prospects the future research directions. This review provides overall information for the further development of selective ionic adsorbents for water or wastewater treatment.

Contents

1 Introduction

2 Selective ion adsorption materials based on molecular imprinting technology

2.1 Principles and development history of molecular imprinting technology

2.2 Preparation of molecularly imprinted materials and selective ion adsorption

3 Selective ion adsorption materials based on hard and soft acid base theory

3.1 The development history of acid-base theory

3.2 Preparation of hard and soft acid base materials and selective ion adsorption

4 Selective anion adsorption materials based on non-electrostatic interaction

4.1 Selective ion adsorption based on hydrophilicity and hydrophobicity

4.2 Selective ion adsorption based on hydrogen bonding

5 Selective ion adsorption of standard resin based on competitive ion self-inhibition mechanism

6 Conclusion and outlook

关键词

选择性离子吸附 / 原理 / 水处理 / 吸附剂 / 研究进展

Key words

selective ionic removal / strategy / water treatment / adsorbent

引用本文

导出引用
王芷铉 , 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展. 2023, 35(5): 780-793 https://doi.org/10.7536/PC221005
, . Selective Ionic Removal Strategy and Adsorbent Preparation[J]. Progress in Chemistry. 2023, 35(5): 780-793 https://doi.org/10.7536/PC221005
中图分类号: O647.3   

参考文献

[1]
Environmental Quality Standard for Surface Water (GB3838-2002). Beijing: Genetal Bureau of China National Environment Protection, 2002.
(地表水环境质量标准(GB 3838-2002). 北京: 中国国家环境保护总局, 2002.).
[2]
Standards for Drinking Water Quality(GB 5749-2022). Beijing: State Administration for Market Regulation, Standardization Administration, 2022.
(生活饮用水卫生标准(GB 5749-2022). 北京: 国家市场监督管理总局, 中国国家标准化管理委员会, 2022.).
[3]
Integrated Wastewater Discharge Standard(GB 8978-1996). Beijing: National Environmnent Protection Bureau, State Technology Supervision Bureau, 1996.
(污水综合排放标准(GB 8978-1996). 北京: 国家环境保护总局, 国家技术监督局, 1996.).
[4]
Wang F. Modern Ion Exchange and Adsorption Technology. Beijing: Tsinghua University Press, 2015.
(王方. 现代离子交换与吸附技术. 北京: 清华大学出版社, 2015.).
[5]
He B L. Ion Exchange and Adsorption Resin. Shanghai: Shanghai Scientific and Technological Education Publishing House, 1995. 1.
(何炳林. 离子交换与吸附树脂. 上海: 上海科技教育出版社, 1995.1.).
[6]
Hiroshi S. Xu J W(Eds.). Ion Exchange Resin. Shanghai: Shanghai Scientific & Technical Publishers, 1960.1.
((日)清水博(著). 许景文(编译). 离子交换树脂. 上海: 上海科学技术出版社, 1960.1).
[7]
Shao L. Ion Exchange Resin for Water Treatment. Beijing: China Water Power Press, 1989.
(邵林. 水处理用离子交换树脂. 北京: 水利电力出版社, 1989. ).
[8]
Duan S P, Tong T Z, Zheng S K, Zhang X Y, Li S D. Water Res., 2020, 173: 115571.
[9]
DeGeiso R C, Donaruma L G, Tomic E A. Anal. Chem., 1962, 34(7): 845.
[10]
Kunin R, Preuss A F. Ind. Eng. Chem. Prod. Res. Dev., 1964, 3(4): 304.
[11]
Yee W C. Journal AWWA, 1966, 58(2): 239.
[12]
Sýkora V, Dubský F. Collect. Czech. Chem. Commun., 1967, 32(9): 3342.
[13]
Mercer B W, Ames L L, Touhill C J, Van Slyke W J, Dean R B. J. Water Pollut. Control Fed., 1970, 42(2): R95.
[14]
Qureshi M, Kumar R, Rathore H S. Anal. Chem., 1972, 44(6): 1081.
[15]
Samanta S K, Ramaswamy M, Misra B M. Sep. Sci. Technol., 1992, 27(2): 255.
[16]
Avery N L, Fries W. Ind. Eng. Chem. Prod. Res. Dev., 1975, 14(2): 102.
[17]
Grinstead R R, Nasutavicus W A, Wheaton R M, Jones K C. JOM, 1975, 27(12): A9.
[18]
Rawat J P, Singh Muktawat K P. Chromatographia, 1978, 11(9): 513.
[19]
Choi W W, Chen K Y. Journal AWWA, 1979, 71(10): 562.
[20]
Maeda H, Egawa H. J. Chem. Soc. Jpn., Chem. Ind. Chem., 1981, (7): 1177.
[21]
Hoek J P, Hoek W F, Klapwijk A. Water Air Soil Pollut., 1988, 37(1-2): 41.
[22]
Ebra M A, Wallace R M, Walker D D, Wille R A. MRS Online Proc. Libr., 1981, 6(1): 633.
[23]
Zemlyanushnova O V, Kirillov A I, Golentovskaya I P, Vlasova N N. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1982, 25(5): 568.
[24]
Rawat J P, Khan M A, Thind P S. Bull. Chem. Soc. Jpn., 1984, 57(6): 1701.
[25]
Brajter K, Slonawska K. Fresenius'Zeitschrift Für Anal. Chemie, 1986, 323(2): 145.
[26]
Strelko V V, Khainakov S A, Kvashenko A P, Belyakov V N, Bortun A I. Russ. J. Appl. Chem., 1988, 61(9): 1922.
[27]
Srivastava S, Rao G N. Anal., 1990, 115(12): 1607.
[28]
Maeda H, Egawa H. J. Appl. Polym. Sci., 1990, 39(7): 1519.
[29]
Raychaudhuri A, Somlai J. J. Radioanal. Nucl. Chem., 1992, 166(2): 153.
[30]
Ramana A, Sengupta A K. J. Environ. Eng., 1992, 118(5): 755.
[31]
Gu B H, Brown G M, Bonnesen P V, Liang L Y, Moyer B A, Ober R, Alexandratos S D. Environ. Sci. Technol., 2000, 34(6):1075.
[32]
Kim J S, Park J C, Yi J. Sep. Sci. Technol., 2000, 35(12): 1901.
[33]
Gu B H, Brown G M, Alexandratos S D, Ober R, Dale J A, Plant S. Perchlorate in the Environment. Boston, MA: Springer US, 2000. 165.
[34]
Boudenne J L, Boussetta S, Brach-Papa C, Branger C, Margaillan A, ThÉraulaz F. Polym. Int., 2002, 51(10): 1050.
[35]
Mištová E, Parschová H, Matějka Z. Sep. Sci. Technol., 2007, 42(6): 1231.
[36]
Hajizadeh S, Kirsebom H, Galaev I Y, Mattiasson B. J. Sep. Science, 2010, 33(12): 1752.
[37]
Alexandratos S D, Li Y, Salinaro R. Polymer, 2010, 51(2): 383.
[38]
Zeng J X, Zhang Z, Zhou H, Liu G Q, Liu Y, Zeng L W, Jian J, Yuan Z Q. Polym. Adv. Technol., 2019, 30(7): 1865.
[39]
Zhang H, Omer A M, Hu Z H, Yang L Y, Ji C, Ouyang X K. Int. J. Biol. Macromol., 2019, 135: 490.
[40]
Zeng H H, Wang L, Zhang D, Yan P, Nie J, Sharma V K, Wang C Y. Chem. Eng. J., 2019, 358: 253.
[41]
Wang K X, Ma H, Pu S Y, Yan C, Wang M T, Yu J, Wang X K, Chu W, Zinchenko A. J. Hazard. Mater., 2019, 362: 160.
[42]
Cui W R, Zhang C R, Jiang W, Li F F, Liang R P, Liu J W, Qiu J D. Nat. Commun., 2020, 11: 436.
[43]
Cui W R, Jiang W, Zhang C R, Liang R P, Liu J W, Qiu J D. ACS Sustainable Chem. Eng., 2020, 8(1): 445.
[44]
Jansone-Popova S, Moinel A, Schott J A, Mahurin S M, Popovs I, Veith G M, Moyer B A. Environ. Sci. Technol., 2019, 53(2): 878.
[45]
Khazaei M, Nasseri S, Ganjali M R, Khoobi M, Nabizadeh R, Gholibegloo E, Nazmara S. J. Mol. Liq., 2018, 265: 189.
[46]
Hou L, Yang C L, Rao X F, Hu L Z, Bao Y M, Gao Y, Zhu X L. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 625: 126949.
[47]
Sitko R, Musielak M, Serda M, Talik E, Zawisza B, Gagor A, Malecka M. Sep. Purif. Technol., 2021, 254: 117606.
[48]
Tang N, Niu C G, Li X T, Liang C, Guo H, Lin L S, Zheng C W, Zeng G M. Sci. Total Environ., 2018, 635: 1331.
[49]
Mubita T M, Dykstra J E, Biesheuvel P M, van der Wal A, Porada S. Water Res., 2019, 164: 114885.
[50]
Iannicelli-Zubiani E M, Gallo Stampino P, Cristiani C, Dotelli G. Chem. Eng. J., 2018, 341: 75.
[51]
Huang C D, Shi X F, Wang C, Guo L, Dong M Y, Hu G S, Lin J, Ding T, Guo Z H. Int. J. Biol. Macromol., 2019, 140: 1167.
[52]
Tang J H, Jin J C, Li W A, Zeng X, Ma W, Li J L, Lv T T, Peng Y C, Feng M L, Huang X Y. Nat. Commun., 2022, 13: 658.
[53]
Bui N T, Kang H, Teat S J, Su G M, Pao C W, Liu Y S, Zaia E W, Guo J H, Chen J L, Meihaus K R, Dun C C, Mattox T M, Long J R, Fiske P, Kostecki R, Urban J J. Nat. Commun., 2020, 11: 3947.
[54]
Lounder S J, Asatekin A. Proc. Natl. Acad. Sci. U. S. A., 2021, 118(37): e2022198118.
[55]
Sun Q, Aguila B, Earl L D, Abney C W, Wojtas L, Thallapally P K, Ma S Q. Adv. Mater., 2018, 30(20): e1705479.
[56]
Yuan M W, Yao H Q, Xie L X, Liu X W, Wang H, Islam S M, Shi K R, Yu Z H, Sun G B, Li H F, Ma S L, Kanatzidis M G. J. Am. Chem. Soc., 2020, 142(3): 1574.
[57]
Wang R Q, Chen H J, Xiao Y, Hadar I, Bu K J, Zhang X, Pan J, Gu Y H, Guo Z N, Huang F Q, Kanatzidis M G. J. Am. Chem. Soc., 2019, 141(42): 16903.
[58]
Fowler W C, Deng C T, Griffen G M, Teodoro T, Guo A Z, Zaiden M, Gottlieb M, de Pablo J J, Tirrell M V. J. Am. Chem. Soc., 2021, 143(11): 4440.
[59]
Feng M L, Sarma D, Gao Y J, Qi X H, Li W A, Huang X Y, Kanatzidis M G. J. Am. Chem. Soc., 2018, 140(35): 11133.
[60]
Chen Z, Chan A K W, Wong V C H, Yam V W W. J. Am. Chem. Soc., 2019, 141(28): 11204.
[61]
Zhang X L, Huang P, Zhu S Y, Hua M, Pan B C. Environ. Sci. Technol., 2019, 53(9): 5319.
[62]
Wang Z Y, Sim A, Urban J J, Mi B X. Environ. Sci. Technol., 2018, 52(17): 9741.
[63]
Nkinahamira F, Alsbaiee A, Zeng Q T, Li Y, Zhang Y Q, Feng M L, Yu C P, Sun Q. Water Res., 2020, 181: 115857.
[64]
Lin B, Zhang Y Y, Shen F F, Zhang L, Wang D, Tang X B, Zhou Y, Nie X Y, Lv L, Zhang W M, Hua M, Pan B C. Water Res., 2020, 186: 116299.
[65]
Chen L X, Wang X Y, Lu W H, Wu X Q, Li J H. Chem. Soc. Rev., 2016, 45(8): 2137.
[66]
Huang Y, Wang R. Curr. Org. Chem., 2018, 22(16): 1600.
[67]
Alexander C, Andersson H S, Andersson L I, Ansell R J, Kirsch N, Nicholls I A, O'Mahony J, Whitcombe M J. J. Mol. Recognit., 2006, 19(2): 106.
[68]
Ramstroem O, Andersson L I, Mosbach K. J. Org. Chem., 1993, 58(26): 7562.
[69]
Venkatesh A, Chopra N, Krupadam R J. Environ. Sci. Pollut. Res., 2014, 21(10): 6603.
[70]
Wang S, Li Y, Ding M J, Wu X L, Xu J H, Wang R Y, Wen T T, Huang W Y, Zhou P, Ma K F, Zhou X M, Du S H. J. Chromatogr. B, 2011, 879(25): 2595.
[71]
Polyakov M. Zhur Fiz Khim, 1931, 2: 799.
[72]
Wulff G. Angrew. Chem. Internat. Edit., 1972, 11(4): 341.
[73]
Birlik E, Ersöz A, Denizli A, Say R. Anal. Chimica Acta, 2006, 565(2): 145.
[74]
Mishra S, Tripathi A. J. Environ. Chem. Eng., 2020, 8(2): 103656.
[75]
Ren Z Q, Zhu X Y, Du J, Kong D L, Wang N, Wang Z, Wang Q, Liu W, Li Q S, Zhou Z Y. Appl. Surf. Sci., 2018, 435: 574.
[76]
Hajri A K, Jamoussi B, Albalawi A E, Alhawiti O H N, Alsharif A A. Carbohydr. Polym., 2022, 286: 119207.
[77]
Velempini T, Pillay K, Mbianda X Y, Arotiba O A. J. Environ. Sci., 2019, 79: 280.
[78]
Wu G H, Wang Z Q, Wang J, He C Y. Anal. Chimica Acta, 2007, 582(2): 304.
[79]
Li Z H, Chen L H, Su Q, Wu L, Wei X H, Zeng L, Li M C. RSC Adv., 2019, 9(9): 5110.
[80]
Liu Y, Liu Z C, Gao J, Dai J D, Han J, Wang Y, Xie J M, Yan Y S. J. Hazard. Mater., 2011, 186(1): 197.
[81]
Zhu L Y, Zhu Z L, Zhang R H, Hong J, Qiu Y L. J. Environ. Sci., 2011, 23(12): 1955.
[82]
Teixeira Tarley C R, Corazza M Z, Somera B F, Segatelli M G. J. Colloid Interface Sci., 2015, 450: 254.
[83]
Xie F Z, Liu G J, Wu F C, Guo G H, Li G L. Chem. Eng. J., 2012, 183: 372.
[84]
Gao B J, Wang X H, Zhang Y Y. Mater. Chem. Phys., 2013, 140(2-3): 478.
[85]
Say R, Ersoz A, Turk H, Denizli A. Sep. Purif. Technol., 2004, 40(1): 9.
[86]
Huang R J, Shao N, Hou L, Zhu X L. Colloids Surf. A Physicochem. Eng. Aspects, 2019, 566: 218.
[87]
Monier M, Bukhari A A H, Elsayed N H. Int. J. Biol. Macromol., 2020, 155: 795.
[88]
Kong D L, Zhang F, Wang K Y, Ren Z Q, Zhang W D. Ind. Eng. Chem. Res., 2014, 53(11): 4434.
[89]
Yu X, Luo Y, Yang Y, Jin H, Ren H. Shandong Chem. Ind. 2017, 46(24): 71.
(于晓洋, 罗亚楠, 杨艳艳, 金华, 任红. 山东化工. 2017, 46(24): 71.).
[90]
Parr R G, Pearson R G. J. Am. Chem. Soc., 1983, 105(26): 7512.
[91]
Sun D T, Peng L, Reeder W S, Moosavi S M, Tiana D, Britt D K, Oveisi E, Queen W L. ACS Cent. Sci., 2018, 4(3): 349.
[92]
Awual M R. J. Environ. Chem. Eng., 2019, 7(3): 103087.
[93]
He T, Zhang Y Z, Kong X J, Yu J M, Lv X L, Wu Y F, Guo Z J, Li J R. ACS Appl. Mater. Interfaces, 2018, 10(19): 16650.
[94]
Awual M R. J. Mol. Liq., 2019, 284: 502.
[95]
Bagheri S, Amini M M, Behbahani M, Rabiee G. Microchem. J., 2019, 145: 460.
[96]
Huang R F, Ma X G, Li X, Guo L H, Xie X W, Zhang M Y, Li J. J. Colloid Interface Sci., 2018, 514: 544.
[97]
Zhu Y F, Lin H Y, Feng Q G, Zhao B H, Lan W L, Li T S, Xue B, Li M G, Zhang Z H. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 617: 126382.
[98]
Pan J Y, Wang S, Zhang R F. J. Appl. Polym. Sci., 2006, 102(3): 2372.
[99]
Sohrabi M R. Microchimica Acta, 2014, 181(3-4): 435.
[100]
Yao X X, Wang H C, Ma Z H, Liu M Q, Zhao X Q, Jia D. Chin. J. Chem. Eng., 2016, 24(10): 1344.
[101]
Fu L K, Wang S X, Lin G, Zhang L B, Liu Q M, Fang J, Wei C, Liu G. J. Hazard. Mater., 2019, 368: 42.
[102]
Abbas K, Znad H, Awual M R. Chem. Eng. J., 2018, 334: 432.
[103]
Song Y H, Lu M C, Huang B, Wang D L, Wang G, Zhou L. J. Alloys Compd., 2018, 737: 113.
[104]
Shao G L, Xiao J F, Tian Z H, Huang J J, Yuan S G. Polym. Adv. Technol., 2018, 29(3): 1030.
[105]
Wang Y, Dang Q F, Liu C S, Yu D J, Pu X Y, Wang Q Q, Gao H, Zhang B N, Cha D S. ACS Appl. Mater. Interfaces, 2018, 10(46): 40302.
[106]
Cardoso S P, Faria T L, Pereira E, Portugal I, Lopes C B, Silva C M. Materials, 2020, 14(1): 11.
[107]
Viswanathan N, Meenakshi S. J. Fluor. Chem., 2008, 129(6): 503.
[108]
Viswanathan N, Meenakshi S. J. Colloid Interface Sci., 2008, 322(2): 375.
[109]
Viswanathan N, Sundaram C S, Meenakshi S. Colloids Surf. B Biointerfaces, 2009, 68(1): 48.
[110]
Viswanathan N, Meenakshi S. J. Appl. Polym. Sci., 2009, 112(3): 1114.
[111]
Praipipat P, El-Moselhy M M, Khuanmar K, Weerayutsil P, Nguyen T T, Padungthon S. Chem. Eng. J., 2017, 314: 192.
[112]
Iqbal M, Suleman M, Ullah S, Bibi H, Wahab H, Iqbal Z, Dawar K M, Wahab S, Ahmad M N. Fluoride, 2020, 53(1): 112.
[113]
Prabhu S M, Meenakshi S. Int. J. Biol. Macromol., 2015, 78: 280.
[114]
Shang Y N, Xu X, Gao B Y, Yue Q Y. J. Clean. Prod., 2018, 199: 36.
[115]
Mani S K, Bhandari R, Nehra A. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 610: 125751.
[116]
Viswanathan N, Meenakshi S. Appl. Clay Sci., 2010, 48(4): 607.
[117]
Wu R S S, Lam K H, Lee J M N, Lau T C. Chemosphere, 2007, 69(2): 289.
[118]
Barsbay M, Kavaklı P A, Güven O. Radiat. Phys. Chem., 2010, 79(3): 227.
[119]
Zhang L, Wan L H, Chang N, Liu J Y, Duan C, Zhou Q, Li X L, Wang X Z. J. Hazard. Mater., 2011, 190(1-3): 848.
[120]
Kumar I A, Viswanathan N. J. Environ. Chem. Eng., 2017, 5(2): 1438.
[121]
Li X H, Hu X Y, Fu Y Z, Ai H Y, Fu M L, Yuan B L. Environ. Technol., 2022, 43(3): 345.
[122]
Yang Q T, Gong L, Huang L L, Xie Q L, Zhong Y J, Chen N C. Int. J. Environ. Res. Public Health, 2020, 17(2): 429.
[123]
Nakakubo K, Hasegawa H, Ito M, Yamazaki K, Miyaguchi M, Biswas F B, Ikai T, Maeda K. J. Hazard. Mater., 2019, 380: 120816.
[124]
Wang Y L, Liu Y H, Guo T Q, Liu H P, Li J L, Wang S F, Li X H, Wang X, Jia Y F. Environ. Sci. Pollut. Res., 2020, 27(34): 42868.
[125]
Morita F, Nakakubo K, Yunoshita K, Endo M, Biswas F B, Nishimura T, Mashio A S, Hasegawa H, Taniguchi T, Maeda K. RSC Adv., 2020, 10(50): 30238.
[126]
Pan B C, Pan B J, Chen X Q, Zhang W M, Zhang X, Zhang Q J, Zhang Q X, Chen J L. Water Res., 2006, 40(15): 2938.
[127]
Sharma R K, Puri A, Monga Y, Adholeya A. J. Mater. Chem. A, 2014, 2(32): 12888.
[128]
Jia K, Pan B C, Lv L, Zhang Q R, Wang X S, Pan B J, Zhang W M. J. Colloid Interface Sci., 2009, 331(2): 453.
[129]
Liu Y P, Zhang W L, Zhao C C, Wang H, Chen J, Yang L, Feng J T, Yan W. Chem. Eng. J., 2019, 361: 528.
[130]
Ye M, Cao Y, Ding R, Lei Z, Jin L, Zhang J. Chem. Ind. Times. 2019, 33(02): 28.
(叶明富, 曹云钟, 丁仁浩, 雷智平, 金玲, 张婧. 化工时刊. 2019, 33(02): 28.).
[131]
Dias Filho N L, do Carmo D R. Talanta, 2006, 68(3): 919.
[132]
Ji C H, Ren Y, Yu H, Hua M, Lv L, Zhang W M. Chem. Eng. J., 2022, 430: 132960.
[133]
Tzvetkova P, Vassileva P, Nickolov R. J. Porous Mater., 2010, 17(4): 459.
[134]
Jiang Y J, Li X T, Gao J, Guo X C, Guan J, Mu X D. J. Nanoparticle Res., 2011, 13(3): 939.
[135]
Vatutsina O M, Soldatov V S, Sokolova V I, Johann J, Bissen M, Weissenbacher A. React. Funct. Polym., 2007, 67(3): 184.
[136]
Nilchi A, Garmarodi S R, Darzi S J. J. Appl. Polym. Sci., 2011, 119(6): 3495.
[137]
Hao M J, Xie Y H, Liu X L, Chen Z S, Yang H, Waterhouse G I N, Ma S Q, Wang X K. JACS Au, 2023, 3(1): 239.
[138]
Abney C W, Liu S B, Lin W B. J. Phys. Chem. A, 2013, 117(45): 11558.
[139]
Kang J K, Kim S B. Microporous Mesoporous Mater., 2020, 295: 109967.
[140]
Song H O, Zhou Y, Li A M, Mueller S. Desalination, 2012, 296: 53.
[141]
Sowmya A, Meenakshi S. Chem. Eng. J., 2014, 257: 45.
[142]
Gu B H, Brown G M, Bonnesen P V, Liang L Y, Moyer B A, Ober R, Alexandratos S D. Environ. Sci. Technol., 2000, 34(6): 1075.
[143]
Gu B H, Brown G M, Chiang C C. Environ. Sci. Technol., 2007, 41(17): 6277.
[144]
Gu B H, Ku Y K, Jardine P M. Environ. Sci. Technol., 2004, 38(11): 3184.
[145]
Behnsen J, Riebe B. Appl. Geochem., 2008, 23(9): 2746.
[146]
Marcus Y. Ions in Solution and their Solvation. Newyork: John Wiley & Sons, 2015. 113.
[147]
Sadakiyo M, Yamada T, Kitagawa H. J. Am. Chem. Soc., 2011, 133(29): 11050.
[148]
Muller P. Pure Appl. Chem., 1994, 66(5): 1077.
[149]
Yu Q Q, Zheng Y Q, Wang Y P, Shen L, Wang H T, Zheng Y M, He N, Li Q B. Chem. Eng. J., 2015, 260: 809.
[150]
Liang H X, Zhang H W, Wang Q, Xu C Y, Geng Z C, She D, Du X G. Sci. Total Environ., 2021, 792: 148452.
[151]
Li S D, Yang X Y, Wang Z X, Duan S P, Zheng S K, Zheng X N. J. Clean. Prod., 2023, 385: 135762.

基金

国家自然科学基金项目(22176015)

PDF(9259 KB)

Accesses

Citation

Detail

段落导航
相关文章

/