本征导热聚合物研究:机理、结构与性能及应用

周文英, 王芳, 杨亚亭, 王蕴, 赵莹莹, 张亮青

化学进展 ›› 2023, Vol. 35 ›› Issue (7) : 1106-1122.

PDF(10058 KB)
PDF(10058 KB)
化学进展 ›› 2023, Vol. 35 ›› Issue (7) : 1106-1122. DOI: 10.7536/PC221102
综述

本征导热聚合物研究:机理、结构与性能及应用

作者信息 +

Intrinsically Thermal Conductive Polymers: Heat Conduction Mechanism, Structure & Performances and Applications

Author information +
文章历史 +

摘要

散热已成为制约超高频、大功率微电子器件和高电压电气绝缘设备日益微型化的技术瓶颈和发展面临的重要挑战,急需高性能的导热材料实现快速散热。相比导热高分子复合材料,本征结构的导热高分子材料因同步的高导热及高绝缘强度、优异柔韧性、轻质高强等优异的综合性能及优势受到了国内外学者的广泛研究和关注。本文首先讨论了聚合物的本征导热机理,系统深入地分析和评述了单体及分子链结构、结晶、取向、分子链间作用、交联、缺陷等结构因素,以及温度、压力、环境等因素对声子热传递及聚合物导热的影响机理,进一步归纳了本征导热聚合物的制备策略和途径。最后总结了当前本征导热聚合物研究面临的主要问题和挑战,展望了未来发展方向及其在众多领域的重要潜在应用。

Abstract

Heat dissipation has emerged as a critical challenge and technical bottleneck which is increasingly restricting the continuous miniaturization of large-power and ultrahigh frequency microelectronic devices and high-voltage electrical insulation equipment. High-performance heat conductive materials are highly desirable for effective thermal management. Compared with conventional heat conductive polymeric composites, the intrinsically thermal conductive polymers have gained extensive research and attention from domestic and overseas owing to their integrated excellent overall properties like high thermal conductivity and high dielectric breakdown strength, excellent flexibility, lightweight and high strength, etc. The present paper first discusses the heat conduction mechanisms in intrinsic polymers, and then systematically analyzes and reviews the following factors influencing phonon transport and polymers’ thermal conductivity: the structures from monomers and molecular chains with diverse scales, crystallinity, orientation, inter-chain interactions, crosslinking, structure defects, as well as temperature, pressure, environmental factors, etc. Further, the strategies to prepare high thermal conductivity polymers have been summarized. Finally, this paper sums up the existing questions and challenges ahead in the study of thermal conductive polymers, and points out their future research direction and prospects potential important applications in various industrial occasions.

Contents

1 Introduction

2 Thermal conduction mechanisms in polymers

3 Polymers’structure and thermal conductivity

3.1 Near-range structures

3.2 Long-range structures

3.3 Aggregation structure

4 Other factors affecting TC

4.1 Density and specific heat capacity

4.2 Electrical conductivity

4.3 Speed of sound

4.4 Temperature

4.5 Pressure

4.6 Environmental factors

5 Strategies for the preparation of ITCP

5.1 Top-down methods

5.2 Bottom-up methods

6 Conclusion and Prospects

关键词

导热聚合物 / 声子传递 / 有序结构 / 取向 / 氢键

Key words

thermally conductive polymers / phonon transport / ordered structure / orientation / hydrogen bond

引用本文

导出引用
周文英 , 王芳 , 杨亚亭 , . 本征导热聚合物研究:机理、结构与性能及应用[J]. 化学进展. 2023, 35(7): 1106-1122 https://doi.org/10.7536/PC221102
, , , et al. Intrinsically Thermal Conductive Polymers: Heat Conduction Mechanism, Structure & Performances and Applications[J]. Progress in Chemistry. 2023, 35(7): 1106-1122 https://doi.org/10.7536/PC221102
中图分类号: TQ311 (基础理论)   

参考文献

[1]
Zhou W Y, Dang Z M, Ding X W. Heat conductive polymer composites. Beijing: National Defense Industry Press, 2017. 72.
(周文英, 党智敏, 丁小卫. 聚合物基导热复合材料. 北京: 国防工业出版社, 2017. 72.).
[2]
Liu Y R, Xu Y F. Acta. Physica. Sinic., 2022, 71(2): 023601.
(刘裕芮, 许艳菲. 物理学报, 2022, 71(2): 023601.).
[3]
Pan D K, Zong Z C, Yang N. Acta. Physica. Sinic., 2022, 71(08): 284.
(潘东楷, 宗志成, 杨诺. 物理学报, 2022, 71(08): 284.).
[4]
Xu X F, Zhou J, Chen J. Adv. Funct. Mater., 2020, 30(8): 1904704.
[5]
Chen H Y, Ginzburg V V, Yang J, Yang Y F, Liu W, Huang Y, Du L B, Chen B. Prog. Polym. Sci., 2016, 59: 41.
[6]
Guo Y Q, Ruan K P, Shi X T, Yang X T, Gu J W. Compos. Sci. Technol., 2020, 193: 108134.
[7]
Huang C L, Qian X, Yang R G. Mat. Sci. Eng. R., 2018, 132: 1.
[8]
Lin Y, Huang X Y, Chen J, Jiang P K. High Volt., 2017, 2(3): 139.
[9]
Zhan H F, Nie Y H, Chen Y N, Bell J M, Gu Y T. Adv. Funct. Mater., 2020, 30(8): 1903841.
[10]
Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D. Prog. Polym. Sci., 2016, 61: 1.
[11]
Chaudhry A U, Mabrouk A N, Abdala A. Sci. Technol. Adv. Mater., 2020, 21(1): 737.
[12]
Henry A. Annu. Rev. Heat Transf., 2014, 17: 485.
[13]
Zhou W Y, Wang Y, Cao G Z, Cao D, Li T, Zhang X L. Acta Mater. Compos. Sin., 2021, 38(7)2038.
(周文英, 王蕴, 曹国政, 曹丹, 李婷, 张祥林. 复合材料学报, 2021, 38(7) 2038.).
[14]
Wei X F, Wang Z, Tian Z T, Luo T F. J. Heat Transf., 2021, 143(7): 072101.
[15]
Liao Q W, Zeng L P, Liu Z C, Liu W. Sci. Rep., 2016, 6: 34999.
[16]
Hong Y, Goh M. Polymers, 2021, 13(8): 1302.
[17]
Ohki Y. IEEE Electr. Insul. Mag., 2010, 26(1): 48.
[18]
Ruan K P, Zhong X, Shi X T, Dang J J, Gu J W. Mater. Today Phys., 2021, 20: 100456
[19]
Xie X, Yang K X, Li D Y, Tsai T H, Shin J, Braun P V, Cahill D G. Phys. Rev. B, 2017, 95(3): 035406.
[20]
Park M, Kang D G, Ko H, Rim M, Tran D T, Park S, Kang M J, Kim T W, Kim N, Jeong K U. Mater. Horiz., 2020, 7(10): 2635.
[21]
Tan F L, Han S, Peng D L, Wang H L, Yang J, Zhao P, Ye X J, Dong X, Zheng Y Y, Zheng N, Gong L, Liang C L, Frese N, Gölzhäuser A, Qi H Y, Chen S S, Liu W, Zheng Z K. J. Am. Chem. Soc., 2021, 143(10): 3927.
[22]
Luo D C, Huang C L, Huang Z. J. Heat Transf., 2018, 140(3): 031302.
[23]
Fan L H, Xi F Q, Wang X Y, Xuan J, Jiao K. J. Electrochem. Soc., 2019, 166(8): F511.
[24]
Yu S, Park C, Hong S M, Koo C M. Thermochimica Acta, 2014, 583: 67.
[25]
Li S H, Yu X X, Bao H, Yang N. J. Phys. Chem. C, 2018, 122(24): 13140.
[26]
Kisiel M, Mossety-Leszczak B. Eur. Polym. J., 2020, 124: 109507.
[27]
Ota S, Harada M. J. Appl. Polym. Sci., 2021, 138(19): 50367.
[28]
Islam A M, Lim H, You N H, Ahn S, Goh M, Hahn J R, Yeo H, Jang S G. ACS Macro Lett., 2018, 7(10): 1180.
[29]
Kim Y, Yeo H, You N H, Jang S G, Ahn S, Jeong K U, Lee S H, Goh M. Polym. Chem., 2017, 8(18): 2806.
[30]
Tonpheng B, Yu J C, Andersson O. Phys. Chem. Chem. Phys., 2011, 13(33): 15047.
[31]
Xu W X, Liang X A, Xu X H, Zhu Y. Acta. Physica. Sinic, 2020, 69(19): 261.
(徐文雪, 梁新刚, 徐向华, 祝渊. 物理学报, 2020, 69(19): 261.).
[32]
Lv G X, Jensen E, Evans C M, Cahill D G. ACS Appl. Polym. Mater., 2021, 3(9): 4430.
[33]
Xiong X, Yang M, Liu C L, Li X B, Tang D W. J. Appl. Phys., 2017, 122(3): 035104.
[34]
Rashidi V, Coyle E J, Sebeck K, Kieffer J, Pipe K P. J. Phys. Chem. B, 2017, 121(17): 4600.
[35]
Shen S, Henry A, Tong J, Zheng R T, Chen G. Nat. Nanotechnol., 2010, 5(4): 251.
[36]
Wei X F, Huang Z H, Koch S, Zamengo M, Deng Y C, Minus M L, Morikawa J, Guo R L, Luo T F. ACS Appl. Polym. Mater., 2021, 3(6): 2979.
[37]
Xu Y F, Wang X X, Zhou J W, Song B, Jiang Z, Lee E M Y, Huberman S, Gleason K K, Chen G. Sci. Adv., 2018, 4(3): eaar3031.
[38]
Ma H, O'Donnel E, Tian Z T. Nanoscale, 2018, 10(29): 13924.
[39]
Zhang T, Luo T F. J. Phys. Chem. B, 2016, 120(4): 803.
[40]
Singh V, Bougher T L, Weathers A, Cai Y, Bi K D, Pettes M T, McMenamin S A, Lv W, Resler D P, Gattuso T R, Altman D H, Sandhage K H, Shi L, Henry A, Cola B A. Nat. Nanotechnol., 2014, 9(5): 384.
[41]
Ma H, Tian Z T. J. Mater. Res., 2019, 34(1): 126.
[42]
Zhang T, Wu X F, Luo T F. J. Phys. Chem. C, 2014, 118(36): 21148.
[43]
Liu J, Yang R G. Phys. Rev. B, 2012, 86(10): 104307.
[44]
Kawagoe Y, Surblys D, Kikugawa G, Ohara T. AIP Adv., 2019, 9(2): 025302.
[45]
Naghizadeh J, Ueberreiter K. Kolloid Zeitschrift Und Zeitschrift Für Polym., 1972, 250(10): 932.
[46]
Zhao J H, Jiang J W, Wei N, Zhang Y C, Rabczuk T. J. Appl. Phys., 2013, 113(18): 184304.
[47]
Hansen D, Kantayya R C, Ho C C. Polym. Eng. Sci., 1966, 6(3): 260.
[48]
Lv W, Henry A. Appl. Phys. Lett., 2016, 108(18): 181905.
[49]
Henry A, Chen G. Phys. Rev. Lett., 2008, 101(23): 235502.
[50]
Kiessling A, Simavilla D N, Vogiatzis G G, Venerus D C. Polymer, 2021, 228: 123881.
[51]
Duan X H, Li Z H, Liu J, Chen G, Li X B. J. Appl. Phys., 2019, 125(16): 164303.
[52]
Subramanyan H, Zhang W Y, He J X, Kim K, Li X B, Liu J. J. Appl. Phys., 2019, 125(9): 095104.
[53]
Qian X, Zhou J W, Chen G. Nat. Mater., 2021, 20(9): 1188.
[54]
Li P F, Yang S, Zhang T, Shrestha R, Hippalgaonkar K, Luo T F, Zhang X, Shen S. Sci. Rep., 2016, 6: 21452.
[55]
Dong L, Xi Q, Chen D S, Guo J, Nakayama T, Li Y Y, Liang Z Q, Zhou J, Xu X F, Li B W. Natl Sci Rev, 2018, 5(4): 500.
[56]
Liu J, Ju S H, Ding Y F, Yang R G. Appl. Phys. Lett., 2014, 104(15): 153110.
[57]
Allen P B, Feldman J L, Fabian J, Wooten F. Philos. Mag. Part B., 1999, 79(11): 1715.
[58]
Choy C L, Wong Y W, Yang G W, Kanamoto T. J. Polym. Sci. B Polym. Phys., 1999, 37(23): 3359.
[59]
Lando J B, Olf H G, Peterlin A. J. Polym. Sci. A-1 Polym. Chem., 1966, 4(4): 941.
[60]
Kommandur S, Yee S K. J. Polym. Sci. B Polym. Phys., 2017, 55(15): 1160.
[61]
Cao B Y, Li Y W, Kong J, Chen H, Xu Y, Yung K L, Cai A. Polymer, 2011, 52(8): 1711.
[62]
Zhang Y Z, Lei C X, Wu K, Fu Q. Adv. Sci., 2021, 8(14): 2004821.
[63]
Guo Y T, Leung S N. AIP Adv., 2018, 8(4): 045126.
[64]
Liu J, Yang R G. Phys. Rev. B, 2010, 81(17): 174122.
[65]
He J X, Kim K, Wang Y C, Liu J. Appl. Phys. Lett., 2018, 112(5): 051907.
[66]
Pan X L, Schenning A H P J, Shen L H, Bastiaansen C W M. Macromolecules, 2020, 53(13): 5599.
[67]
Li Z, An L, Khuje S, Tan J Y, Hu Y, Huang Y L, Petit D, Faghihi D, Yu J, Ren S Q. Sci. Adv., 2021, 7(40): eabi7410.
[68]
Shrestha R, Li P F, Chatterjee B, Zheng T, Wu X F, Liu Z Y, Luo T F, Choi S, Hippalgaonkar K, de Boer M P, Shen S. Nat. Commun., 2018, 9: 1664.
[69]
Kunitski M, Eicke N, Huber P, Köhler J, Zeller S, Voigtsberger J, Schlott N, Henrichs K, Sann H, Trinter F, Schmidt L P H, Kalinin A, Schöffler M S, Jahnke T, Lein M, Dörner R. Nat. Commun., 2019, 10: 1.
[70]
Zhang R C, Huang Z H, Sun D, Ji D H, Zhong M L, Zang D M, Xu J Z, Wan Y Z, Lu A. Polymer, 2018, 154: 42.
[71]
Ohara T, Chia Yuan T, Torii D, Kikugawa G, Kosugi N. J. Chem. Phys., 2011, 135(3): 034507.
[72]
Zhang L, Ruesch M, Zhang X L, Bai Z T, Liu L. RSC Adv., 2015, 5(107): 87981.
[73]
Shanker A, Li C, Kim G H, Gidley D, Pipe K P, Kim J. Sci. Adv., 2017, 3(7): e1700342.
[74]
Lee J, Kim Y, Joshi S R, Kwon M S, Kim G H. Polym. Chem., 2021, 12(7): 975.
[75]
Mehra N, Li Y F, Zhu J H. J. Phys. Chem. C, 2018, 122(19): 10327.
[76]
Li Y, Pan P, Liu C, Zhou W Y, Li C G, Gong C D, Li H L, Zhang L, Song H. J. Polym. Eng., 2020, 40(7): 573.
[77]
Li C G, Li Y, Gong C D, Ruan K P, Zhong X, Pan P, Liu C, Gu J W, Shi X T. J. Appl. Polym. Sci., 2021, 138(6): 49791.
[78]
Xie X, Li D Y, Tsai T H, Liu J, Braun P V, Cahill D G. Macromolecules, 2016, 49(3): 972.
[79]
Kim G H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P. Nat. Mater., 2015, 14(3): 295.
[80]
Mathur V, Sharma K. Heat Mass Transf., 2016, 52(12): 2901.
[81]
Hummel P, Lechner A M, Herrmann K, Biehl P, Rössel C, Wiedenhöft L, Schacher F H, Retsch M. Macromolecules, 2020, 53(13): 5528.
[82]
Zheng H T, Xu G J, Wu K, Feng L, Zhang R G, Bao Y L, Wang H, Wang K X, Qu Z C, Shi J. J. Phys. Chem. C, 2021, 125(39): 21580.
[83]
Wei X F, Zhang T, Luo T F. Phys. Chem. Chem. Phys., 2016, 18(47): 32146.
[84]
Eiermann K, Hellwege K X. J. Polym. Sci., 1962, 57(165): 99.
[85]
Xi Q, Zhong J X, He J X, Xu X F, Nakayama T, Wang Y Y, Liu J, Zhou J, Li B W. Chin. Phys. Lett., 2020, 37(10): 104401.
[86]
Zhou J, Xi Q, He J X, Xu X F, Nakayama T, Wang Y Y, Liu J. Phys. Rev. Materials, 2020, 4: 015601.
[87]
Liu J, Xu Z L, Cheng Z, Xu S, Wang X W. ACS Appl. Mater. Interfaces, 2015, 7(49): 27279.
[88]
dos Santos W N, de Sousa J A, Gregorio R. Polym. Test., 2013, 32(5): 987.
[89]
Hsieh W P, Losego M D, Braun P V, Shenogin S, Keblinski P, Cahill D G. Phys. Rev. B, 2011, 83(17): 174205.
[90]
Yamanaka A, Izumi Y, Kitagawa T, Terada T, Sugihara H, Hirahata H, Ema K, Fujishiro H, Nishijima S. J. Appl. Polym. Sci., 2006, 101(4): 2619.
[91]
Tomlinson J N, Kline D E, Sauer J A. Polym. Eng. Sci., 1965, 5(1): 44.
[92]
Chien H C, Peng W T, Chiu T H, Wu P H, Liu Y J, Tu C W, Wang C L, Lu M C. ACS Nano, 2020, 14(3): 2939.
[93]
Dinpajooh M, Nitzan A. J. Chem. Phys., 2020, 153(16): 164903.
[94]
Kang D G, Park M, Kim D Y, Goh M, Kim N, Jeong K U. ACS Appl. Mater. Interfaces, 2016, 8(44): 30492.
[95]
Huang Y F, Wang Z G, Yu W C, Ren Y, Lei J, Xu J Z, Li Z M. Polymer, 2019, 180: 121760.
[96]
Feng X H, Liu G Q, Xu S, Lin H, Wang X W. Polymer, 2013, 54(7): 1887.
[97]
Wang X J, Ho V, Segalman R A, Cahill D G. Macromolecules, 2013, 46(12): 4937.
[98]
Ma J, Zhang Q, Mayo A, Ni Z H, Yi H, Chen Y F, Mu R, Bellan L M, Li D Y. Nanoscale, 2015, 7(40): 16899.
[99]
Lu C H, Chiang S W, Du H D, Li J, Gan L, Zhang X, Chu X D, Yao Y W, Li B H, Kang F Y. Polymer, 2017, 115: 52.
[100]
Yoon D, Lee H, Kim T, Song Y, Lee T, Lee J, Hun Seol J. Eur. Polym. J., 2023, 184: 111775.
[101]
Deng S C, Yuan J L, Lin Y L, Yu X X, Ma D K, Huang Y W, Ji R C, Zhang G Z, Yang N. Nano Energy, 2021, 82: 105749.
[102]
Mu L W, Ji T, Chen L, Mehra N, Shi Y J, Zhu J H. ACS Appl. Mater. Interfaces, 2016, 8(42): 29080.
[103]
Kato T, Nagahara T, Agari Y, Ochi M. J. Polym. Sci. B Polym. Phys., 2005, 43(24): 3591.
[104]
Ku K, Choe S, Yeo H. Mol. Syst. Des. Eng., 2022, 7(5): 520.
[105]
Harada M, Ochi M, Tobita M, Kimura T, Ishigaki T, Shimoyama N, Aoki H. J. Polym. Sci. B Polym. Phys., 2003, 41(14): 1739.

基金

国家自然科学基金(52277028)
国家自然科学基金(51577154)
陕西省自然科学基础项目(2022-JM186)
陕西省自然科学基础项目(2021JQ-566)
陕西省教育厅科研计划项目(21JK0756)

PDF(10058 KB)

Accesses

Citation

Detail

段落导航
相关文章

/