先进嵌段共聚物光刻胶设计

陈蕾蕾, 陶永鑫, 胡欣, 冯宏博, 朱宁, 郭凯

化学进展 ›› 2023, Vol. 35 ›› Issue (11) : 1613-1624.

PDF(17535 KB)
PDF(17535 KB)
化学进展 ›› 2023, Vol. 35 ›› Issue (11) : 1613-1624. DOI: 10.7536/PC230304
综述

先进嵌段共聚物光刻胶设计

作者信息 +

Advanced Design of Block Copolymers for Nanolithography

Author information +
文章历史 +

摘要

嵌段共聚物光刻胶引导自组装是先进制程半导体制造的候选方案之一。第一代嵌段共聚物光刻胶的典型代表是聚苯乙烯-聚甲基丙烯酸甲酯二嵌段共聚物,受限于自身较低的相互作用参数(χ),最小半周期(0.5L0)为11 nm。第二代嵌段共聚物光刻胶的特征是具有高相互作用参数(实现10 nm以下图案化),但是由于两个嵌段的表面能(γ)差异较大,需要引入额外的溶剂退火或者涂层工艺。为了解决上述问题,国内外学者发展了第三代嵌段共聚物光刻胶,不仅具有较高的相互作用参数,还具有接近的表面能(高χγ),适用于工业友好的热退火工艺引导自组装。最近,基于材料基因组计划概念,将多种共变特性赋予单一材料的第四代嵌段共聚物光刻胶问世,可以实现高通量合成建立嵌段共聚物库,通过调控χχN满足不同的应用场景(0.5L0=4~10 nm),还可以免除热退火工艺中涂覆中性层步骤,简化了工艺流程。本文总结了第三代和第四代先进嵌段共聚物光刻胶的设计,并且对相关领域存在的挑战与机遇进行了探讨和展望。

Abstract

Directed self-assembly (DSA) of block copolymer (BCP) has been identified as the potential strategy for the next-generation semiconductor manufacturing. The typical representative of the first generation (G1) of block copolymer for nanolithography is polystyrene-block-polymethylmethacrylate (PS-b-PMMA). DSA of PS-b-PMMA enables limited half pitch (0.5L0) of 11 nm due to the low Flory-Huggins interaction parameter (χ). The second generation (G2) of BCP is developed with the feature of high χ. Solvent anneal or top-coat is employed for the G2 BCP to form the perpendicular lamellae orientation. Towards industry friendly thermal anneal, high χ BCP with equal surface energy (γ) is reported as the third generation (G3) BCP. Recently, based on Materials Genome Initiative (MGI) concept, optimized design of block copolymers with covarying properties (G4) for nanolithography is presented to meet specific application criteria. G4 BCP achieves not only high χ and equal γ, but also high throughput synthesis, 4~10 nm half pitch patterns, and controlled segregation strength. This review focuses on the advanced design of G3 and G4 BCP for nanolithography. Moreover, the challenges and opportunities are discussed for the further development of DSA of BCP.

Contents

1 Introduction

2 Highχblock copolymers with equalγ(G3)

2.1 A-b-B block copolymer

2.2 A-b-(B-r-C)block copolymer

2.3(A-r-B)-b-C block copolymer

2.4 A-b-B-b-C block copolymer

3 Block copolymers with covarying properties(G4)

4 Conclusion and outlook

关键词

嵌段共聚物 / 引导自组装 / 光刻 / 相互作用参数 / 表面能

Key words

block copolymer / directed self-assembly / nanolithography / Flory-Huggins interaction parameter / surface energy

引用本文

导出引用
陈蕾蕾 , 陶永鑫 , 胡欣 , . 先进嵌段共聚物光刻胶设计[J]. 化学进展. 2023, 35(11): 1613-1624 https://doi.org/10.7536/PC230304
, , , et al. Advanced Design of Block Copolymers for Nanolithography[J]. Progress in Chemistry. 2023, 35(11): 1613-1624 https://doi.org/10.7536/PC230304
中图分类号: O632   

参考文献

[1]
Jiang J, Hu W N, Xie D D, Yang J L, He J, Gao Y L, Wan Q. Nanoscale, 2019, 11(3): 1360.
[2]
Cong L Q, Srivastava Y K, Zhang H F, Zhang X Q, Han J G, Singh R. Light Sci. Appl., 2018, 7: 28.
[3]
Zhang S C, Kang L X, Wang X, Tong L M, Yang L W, Wang Z Q, Qi K, Deng S B, Li Q W, Bai X D, Ding F, Zhang J. Nature, 2017, 543(7644): 234.
[4]
van Erp R, Soleimanzadeh R, Nela L, Kampitsis G, Matioli E. Nature, 2020, 585(7824): 211.
[5]
Li T T, Guo W, Ma L, Li W S, Yu Z H, Han Z, Gao S, Liu L, Fan D X, Wang Z X, Yang Y, Lin W Y, Luo Z Z, Chen X Q, Dai N X, Tu X C, Pan D F, Yao Y G, Wang P, Nie Y F, Wang J L, Shi Y, Wang X R. Nat. Nanotechnol., 2021, 16(11): 1201.
[6]
Quhe R G, Liu J C, Wu J X, Yang J, Wang Y Y, Li Q H, Li T R, Guo Y, Yang J B, Peng H L, Lei M, Lu J. Nanoscale, 2019, 11(2): 532.
[7]
Fischer A C, Forsberg F, Lapisa M, Bleiker S J, Stemme G, Roxhed N, Niklaus F. Microsyst. Nanoeng., 2015, 1: 15005.
[8]
Wang Z R, Li C, Song W H, Rao M Y, Belkin D, Li Y N, Yan P, Jiang H, Lin P, Hu M, Strachan J P, Ge N, Barnell M, Wu Q, Barto A G, Qiu Q R, Stanley Williams R, Xia Q F, Yang J J. Nat. Electron., 2019, 2(3): 115.
[9]
Kang W, Huang Y Q, Zhang X C, Zhou Y, Zhao W S. Proc. IEEE, 2016, 104(10): 2040.
[10]
Myny K. Nat. Electron., 2018, 1(1): 30.
[11]
Theis T N, Wong H S P. Comput. Sci. Eng., 2017, 19(2): 41.
[12]
Kasani S, Curtin K, Wu N Q. Nanophotonics, 2019, 8(12): 2065.
[13]
Chen Y F. Microelectron. Eng., 2015, 135: 57.
[14]
Biswas A, Bayer I S, Biris A S, Wang T, Dervishi E, Faupel F. Adv. Colloid Interface Sci., 2012, 170(1/2): 2.
[15]
Panzarasa G, Soliveri G. Appl. Sci., 2019, 9(7): 1266.
[16]
Fischer J, Wegener M, Laser Photon. Rev., 2013, 7: 22.
[17]
Jung Y S, Ross C A. Nano Lett., 2007, 7(7): 2046.
[18]
Chen Y Q, Shu Z W, Zhang S, Zeng P, Liang H K, Zheng M J, Duan H G. Int. J. Extrem. Manuf., 2021, 3(3): 032002.
[19]
Hawker C J, Russell T P. MRS Bull., 2005, 30(12): 952.
[20]
Li X O, Gu X S, Liu Y D, Ji S X. Chin. J. Appl. Chem, 2021, 38(9): 1105.
( 李小欧, 顾雪松, 刘亚栋, 季生象. 应用化学, 2021, 38(9): 1105.)
[21]
Lu X Y, Ma B Z, Luo H, Qi H, Li Q, Wu G P. Chin. J. Appl. Chem., 2021, 38(9): 1189.
( 陆新宇, 马彬泽, 罗皓, 齐欢, 李强, 伍广朋. 应用化学, 2021, 38(9): 1189.)
[22]
Tian X, Lai H W, Liu Y D, Ji S X. Chin. J. Appl. Chem., 2021, 38(9): 1199.
( 田昕, 赖翰文, 刘亚栋, 季生象. 应用化学, 2021, 38(9): 1199.)
[23]
Ji S X. Chin. J. Appl. Chem., 2021, 38(9): 1027. (季生象. 应用化学, 2021, 38( 9): 1027.)
[24]
Gu X S, Li X O, Liu Y D, Ji S X. Chin. J. Appl. Chem., 2021, 38(9): 1091.
( 顾雪松, 李小欧, 刘亚栋, 季生象. 应用化学, 2021, 38(9): 1091.)
[25]
Hu X H, Xiong S S. Chinese Journal of Applied Chemistry, 2021, 38(9): 1029.
( 胡晓华, 熊诗圣. 应用化学, 2021, 38(9): 1029.)
[26]
Wang Q Q, Wu L P, Wang J, Wang L Y. Progress in Chemistry, 2017, 29(4): 435.
( 王倩倩, 吴立萍, 王菁, 王力元, 化学进展, 2017, 29(4): 435. )
[27]
Stoykovich M P, Nealey P F. Mater. Today, 2006, 9(9): 20.
[28]
Kwon J, Takeda Y, Shiwaku R, Tokito S, Cho K, Jung S. Nat. Commun., 2019, 10: 54.
[29]
Feng C, Huang X Y. Acc. Chem. Res., 2018, 51(9): 2314.
[30]
Shen P C, Su C, Lin Y X, Chou A S, Cheng C C, Park J H, Chiu M H, Lu A Y, Tang H L, Tavakoli M M, Pitner G, Ji X, Cai Z Y, Mao N N, Wang J T, Tung V, Li J, Bokor J, Zettl A, Wu C I, Palacios T, Li L J, Kong J. Nature, 2021, 593(7858): 211.
[31]
Chen T A, Chuu C P, Tseng C C, Wen C K, Wong H S P, Pan S Y, Li R T, Chao T A, Chueh W C, Zhang Y F, Fu Q, Yakobson B I, Chang W H, Li L J. Nature, 2020, 579(7798): 219.
[32]
Hailes R L N, Oliver A M, Gwyther J, Whittell G R, Manners I. Chem. Soc. Rev., 2016, 45(19): 5358.
[33]
Stefik M, Guldin S, Vignolini S, Wiesner U, Steiner U. Chem. Soc. Rev., 2015, 44(15): 5076.
[34]
Sinturel C, Bates F S, Hillmyer M A. ACS Macro Lett., 2015, 4(9): 1044.
[35]
Nowak D, Morrison W, Wickramasinghe H K, Jahng J, Potma E, Wan L, Ruiz R, Albrecht T R, Schmidt K, Frommer J, Sanders D P, Park S. Sci. Adv., 2016, 2(3): e1501571.
[36]
Jeong S J, Xia G D, Kim B H, Shin D O, Kwon S H, Kang S W, Kim S O. Adv. Mater., 2008, 20(10): 1898.
[37]
Bates F S, Hillmyer M A, Lodge T P, Bates C M, Delaney K T, Fredrickson G H. Science, 2012, 336(6080): 434.
[38]
Ramanathan M, Shrestha L K, Mori T, Ji Q M, Hill J P, Ariga K. Phys. Chem. Chem. Phys., 2013, 15(26): 10580.
[39]
Zhang W A, Mueller A H E. Prog. Polym. Sci., 2013, 38: 1121.
[40]
He W N, Xu J T. Prog. Polym. Sci., 2012, 37: 1350.
[41]
Yi C L, Yang Y Q, Liu B, He J, Nie Z H. Chem. Soc. Rev., 2020, 49(2): 465.
[42]
Sun J T, Hong C Y, Pan C Y. Polym. Chem., 2013, 4(4): 873.
[43]
Mai Y Y, Eisenberg A. Chem. Soc. Rev., 2012, 41(18): 5969.
[44]
Willis J D, Beardsley T M, Matsen M W. Macromolecules, 2020, 53(22): 9973.
[45]
Wong C K, Qiang X L, Mueller A H E, Groeschel A H. Prog. Polym. Sci., 2020, 102.
[46]
Verduzco R, Li X Y, Pesek S L, Stein G E. Chem. Soc. Rev., 2015, 44(21): 2405.
[47]
Matsen M W, Bates F S. Macromolecules, 1996, 29(4): 1091.
[48]
Matsen M W, Schick M. Phys. Rev. Lett., 1994, 72(16): 2660.
[49]
Bates C M, Maher M J, Janes D W, Ellison C J, Willson C G. Macromolecules, 2014, 47(1): 2.
[50]
Jiang K, Wang C, Huang Y Q, Zhang P W. Commun. Comput. Phys., 2013, 14(2): 443.
[51]
Li J F, Zhang H D, Qiu F. Eur. Phys. J. E, 2014, 37(3): 18.
[52]
Cao H, Dai L, Liu Y, Li X, Yang Z, Deng H. Macromolecules, 2020, 53(20), 8757.
[53]
Gröschel A H, Müller A H E. Nanoscale, 2015, 7(28): 11841.
[54]
Bates C M, Bates F S. Macromolecules, 2017, 50(1): 3.
[55]
Sinturel C, Vayer M, Morris M, Hillmyer M A. Macromolecules, 2013, 46(14): 5399.
[56]
Matsen M W. Macromolecules, 2012, 45(4): 2161.
[57]
Steube M, Johann T, Barent R D, Müller A H E, Frey H. Prog. Polym. Sci., 2022, 124: 101488.
[58]
Matsen M W. J. Chem. Phys., 2020, 152(11): 110901.
[59]
Bocharova V, Sokolov A P. Macromolecules, 2020, 53(11): 4141.
[60]
Liu C C, Ramírez-Hernández A, Han E, Craig G S W, Tada Y, Yoshida H, Kang H M, Ji S X, Gopalan P, de Pablo J J, Nealey P F. Macromolecules, 2013, 46(4): 1415.
[61]
Bang J, Kim S H, Drockenmuller E, Misner M J, Russell T P, Hawker C J. J. Am. Chem. Soc., 2006, 128(23): 7622.
[62]
Hu H Q, Gopinadhan M, Osuji C O. Soft Matter, 2014, 10(22): 3867.
[63]
Albert J N L, Epps T H III. Mater. Today, 2010, 13(6): 24.
[64]
Manai G, Houimel H, Rigoulet M, Gillet A, Fazzini P F, Ibarra A, Balor S, Roblin P, Esvan J, Coppel Y, Chaudret B, Bonduelle C, Tricard S. Nat. Commun., 2020, 11: 2051.
[65]
Lai H W, Zhang X H, Huang G C, Liu Y D, Li W H, Ji S X. Polymer, 2022, 257: 125277.
[66]
Cushen J D, Otsuka I, Bates C M, Halila S, Fort S, Rochas C, Easley J A, Rausch E L, Thio A, Borsali R, Willson C G, Ellison C J. ACS Nano, 2012, 6(4): 3424.
[67]
Yu B H, Danielsen S P O, Patterson A L, Davidson E C, Segalman R A. Macromolecules, 2019, 52(6): 2560.
[68]
Cummins C, Pino G, Mantione D, Fleury G. Mol. Syst. Des. Eng., 2020, 5(10): 1642.
[69]
Hao H B, Chen S J, Ren J X, Chen X X, Nealey P. Nanotechnology, 2023, 34(20): 205303.
[70]
Li D X, Zhou C, Xiong S S, Qu X P, Craig G S W, Nealey P F. Soft Matter, 2019, 15(48): 9991.
[71]
Li X M, Li J, Wang C X, Liu Y Y, Deng H. J. Mater. Chem. C, 2019, 7(9): 2535.
[72]
Jung H, Shin W H, Park T W, Choi Y J, Yoon Y J, Park S H, Lim J H, Kwon J D, Lee J W, Kwon S H, Seong G H, Kim K H, Park W I. Nanoscale, 2019, 11(17): 8433.
[73]
Tran H, Bergman H M, de la Rosa V R, Maji S, Parenti K R, Hoogenboom R, Campos L M. J. Polym. Sci. A Polym. Chem., 2019, 57(12): 1349.
[74]
Wylie K, Dong L, Chandra A, Nabae Y, Hayakawa T. Macromolecules, 2020, 53(4): 1293.
[75]
Ketkar P M, Epps T H III. Acc. Chem. Res., 2021, 54(23): 4342.
[76]
Ahmed E, Womble C T, Cho J, Dancel-Manning K, Rice W J, Jang S S, Weck M. Polym. Chem., 2021, 12(13): 1967.
[77]
Li J J, Zhou C, Chen X X, Rincon Delgadillo P A, Nealey P F. J. Micro/Nanolith. MEMS MOEMS, 2019, 18(3): 035501.
[78]
Jung D S, Bang J, Park T W, Lee S H, Jung Y K, Byun M, Cho Y R, Kim K H, Seong G H, Park W I. Nanoscale, 2019, 11(40): 18559.
[79]
Li X M, Deng H. ACS Appl. Polym. Mater., 2020, 2(8): 3601.
[80]
Zhu G D, Yang C Y, Yin Y R, Yi Z, Chen X H, Liu L F, Gao C J. J. Membr. Sci., 2019, 589: 117255.
[81]
Arora A, Lin T S, Rebello N J, Av-Ron S H M, Mochigase H, Olsen B D. ACS Macro Lett., 2021, 10(11): 1339.
[82]
Choi Y J, Byun M H, Park T W, Choi S, Bang J, Jung H, Cho J H, Kwon S H, Kim K H, Park W I. ACS Appl. Nano Mater., 2019, 2(3): 1294.
[83]
Ginige G, Song Y, Olsen B C, Luber E J, Yavuz C T, Buriak J M. ACS Appl. Mater. Interfaces, 2021, 13(24): 28639.
[84]
Park J, Staiger A, Mecking S, Winey K I. ACS Nano, 2021, 15(10): 16738.
[85]
Mumtaz M, Takagi Y, Mamiya H, Tajima K, Bouilhac C, Isono T, Satoh T, Borsali R. Eur. Polym. J., 2020, 134: 109831.
[86]
Tao Y X, Chen L L, Liu Y H, Hu X, Zhu N, Guo K. Acta Polym. Sin., 2022, 53: 1445.
( 陶永鑫, 陈蕾蕾, 刘一寰, 胡欣, 朱宁, 郭凯. 高分子学报, 2022, 53: 1445 )
[87]
Yang Z Y, Deng H. J. Photopol. Sci. Technol., 2021, 34(4): 339.
[88]
Li B Y, Li Y C, Lu Z Y. Polymer, 2019, 171: 1.
[89]
Zalusky A S, Olayo-Valles R, Wolf J H, Hillmyer M A. J. Am. Chem. Soc., 2002, 124(43): 12761.
[90]
Olayo-Valles R, Guo S W, Lund M S, Leighton C, Hillmyer M A. Macromolecules, 2005, 38(24): 10101.
[91]
Keen I, Yu A G, Cheng H H, Jack K S, Nicholson T M, Whittaker A K, Blakey I. Langmuir, 2012, 28(45): 15876.
[92]
Li X, Liu Y D, Wan L, Li Z L, Suh H, Ren J X, Ocola L E, Hu W B, Ji S X, Nealey P F. ACS Macro Lett., 2016, 5(3): 396.
[93]
Zhang X S, He Q B, Chen Q, Nealey P F, Ji S X. ACS Macro Lett., 2018, 7(6): 751.
[94]
Aissou K, Mumtaz M, Fleury G, Portale G, Navarro C, Cloutet E, Brochon C, Ross C A, Hadziioannou G. Adv. Mater., 2015, 27(2): 261.
[95]
Seshimo T, Maeda R, Odashima R, Takenaka Y, Kawana D, Ohmori K, Hayakawa T. Sci. Rep., 2016, 6: 19481.
[96]
Nakatani R, Takano H, Chandra A, Yoshimura Y, Wang L, Suzuki Y, Tanaka Y, Maeda R, Kihara N, Minegishi S, Miyagi K, Kasahara Y, Sato H, Seino Y, Azuma T, Yokoyama H, Ober C K, Hayakawa T. ACS Appl. Mater. Interfaces, 2017, 9(37): 31266.
[97]
Yang G W, Wu G P, Chen X X, Xiong S S, Arges C G, Ji S X, Nealey P F, Lu X B, Darensbourg D J, Xu Z K. Nano Lett., 2017, 17(2): 1233.
[98]
Zhang B L, Liu W C, Meng L K, Zhang Z P, Zhang L B, Wu X, Dai J Y, Mao G P, Wei Y Y. RSC Adv., 2019, 9(7): 3828.
[99]
Jacobberger R M, Thapar V, Wu G P, Chang T H, Saraswat V, Way A J, Jinkins K R, Ma Z Q, Nealey P F, Hur S M, Xiong S S, Arnold M S. Nat. Commun., 2020, 11: 4151.
[100]
Pang Y Y, Jin X S, Huang G C, Wan L, Ji S X. Macromolecules, 2019, 52(8): 2987.
[101]
Yoshimura Y, Chandra A, Nabae Y, Hayakawa T. Soft Matter, 2019, 15(17): 3497.
[102]
Dong L, Chandra A, Wylie K, Nakatani R, Nabae Y, Hayakawa T. J. Photopol. Sci. Technol., 2020, 33(5): 529.
[103]
Kim S, Nealey P F, Bates F S. ACS Macro Lett., 2012, 1(1): 11.
[104]
Kim S, Nealey P F, Bates F S. Nano Lett., 2014, 14(1): 148.
[105]
Feng H B, Dolejsi M, Zhu N, Griffin P J, Craig G S W, Chen W, Rowan S J, Nealey P F. Adv. Funct. Mater., 2022, 32(46): 2206836.
[106]
Yoshida K, Tian L, Miyagi K, Yamazaki A, Mamiya H, Yamamoto T, Tajima K, Isono T, Satoh T. Macromolecules, 2018, 51(20): 8064.
[107]
Zhou S X, Janes D W, Bin Kim C, Willson C G, Ellison C J. Macromolecules, 2016, 49(21): 8332.
[108]
Song S W, Hur Y H, Park Y, Cho E N, Han H J, Jang H, Oh J, Yeom G, Lee J S, Yoon K S, Park C M, Kim I, Kim Y, Jung Y S. J. Mater. Chem. C, 2021, 9(39): 14021.
[109]
Woo S, Jo S, Ryu D Y, Choi S H, Choe Y, Khan A, Huh J, Bang J. ACS Macro Lett., 2017, 6(12): 1386.
[110]
Feng H B, Dolejsi M, Zhu N, Yim S, Loo W, Ma P Y, Zhou C, Craig G S W, Chen W, Wan L, Ruiz R, de Pablo J J, Rowan S J, Nealey P F. Nat. Mater., 2022, 21(12): 1426.

PDF(17535 KB)

Accesses

Citation

Detail

段落导航
相关文章

/