双网络水凝胶制备及其力学改性

李立清, 钟秀敏, 章礼旭, 刘昆明, 王全兵, 马杰

化学进展 ›› 2023, Vol. 35 ›› Issue (11) : 1674-1685.

PDF(4291 KB)
PDF(4291 KB)
化学进展 ›› 2023, Vol. 35 ›› Issue (11) : 1674-1685. DOI: 10.7536/PC230401
综述

双网络水凝胶制备及其力学改性

作者信息 +

Preparation of Double Network Hydrogels and their Mechanical Modification

Author information +
文章历史 +

摘要

双网络水凝胶(Double Network Hydrogels)是两个互穿或半穿三维网络组成的聚合物材料,其独特的对比互穿网络结构和可调节的网络交联方式克服了单网络水凝胶在力学性能上的障碍,并以其良好的机械、抗溶胀、自修复等力学性能而被广泛地应用于组织工程、智能传感器、离子吸附等领域。然而,现有技术存在合成步骤繁多、制备条件复杂以及使用有毒有害的化学交联等问题,限制了双网络水凝胶的大规模生产应用。因此,近年来对双网络水凝胶的改性研究受到了越来越多的关注,科研工作者主要围绕如何提高双网络水凝胶的力学性能开展了一系列结构修饰研究,旨在扩宽其在各个领域的应用。本文综述了双网络水凝胶的种类,详细介绍了不同的水凝胶的制备方法、结构和独特性能。重点针对改善其机械性能、抗溶胀性能和自修复性能等力学性能的改性研究进行了分析,旨在突破双网络水凝胶目前的局限性,为其未来的发展提供思路和方向。

Abstract

Double Network Hydrogels are polymer materials composed of two interpenetrating or semi-penetrating three-dimensional networks, and their unique contrast interpenetrating network structure and adjustable network crosslinking method overcome the obstacles in mechanical properties of single-network hydrogels, and are widely used in tissue engineering, intelligent sensors, ion adsorption and other fields with their good mechanical, anti-swelling, self-healing and other mechanical properties. However, the existing technologies suffer from numerous synthesis steps, complicated preparation conditions and the use of toxic and harmful chemical cross-linking, which limit the mass production of double network hydrogels for applications. Therefore, in recent years, the modification of double network hydrogels has received more and more attention, and researchers have carried out a series of structural modification studies mainly around how to improve the mechanical properties of double network hydrogels, aiming to broaden their application in various fields. In this paper, the types of double network hydrogels are reviewed, and the preparation methods, structures and unique properties of different hydrogels are introduced in detail. The research on modification to improve mechanical properties, anti-swelling performance and self-healing properties is analyzed, aiming to break through the current limitations of double network hydrogels and provide ideas and directions for their future development.

Contents

1 Introduction

2 Types and preparation methods of double network hydrogels

2.1 Study on the preparation of organic-organic double network hydrogels

2.2 Study on the preparation of organic-inorganic double network hydrogels

3 Research on improving the performance of double network hydrogels

3.1 Improving mechanical properties

3.2 Improving anti-swelling properties

3.3 Improving self-healing properties

4 Conclusion and outlook

关键词

双网络水凝胶 / 制备 / 力学性能 / 改性

Key words

double network hydrogel / preparation / mechanical properties / modification

引用本文

导出引用
李立清 , 钟秀敏 , 章礼旭 , . 双网络水凝胶制备及其力学改性[J]. 化学进展. 2023, 35(11): 1674-1685 https://doi.org/10.7536/PC230401
, , , et al. Preparation of Double Network Hydrogels and their Mechanical Modification[J]. Progress in Chemistry. 2023, 35(11): 1674-1685 https://doi.org/10.7536/PC230401
中图分类号: O647.3    X703 (废水的处理与利用)   

参考文献

[1]
Xu S C, Tang N, Bai X J, Liu Y F, Yang W J. Modern Chemical Industry, 2021, 41(6): 37.
( 许世超, 唐楠, 白学健, 刘宇凡, 杨伟静. 现代化工, 2021, 41(6):37.)
[2]
Chen X Y, Ji N, Li F, Qin Y, Wang Y F, Xiong L, Sun Q J. Foods, 2022, 11(9): 1315.
[3]
Li Z L, Lin Z Q. Aggregate, 2021, 2(2): e21.
[4]
Huang X X, Li J C, Luo J, Gao Q, Mao A, Li J Z. Mater. Today Commun., 2021, 29: 102757.
[5]
Li T, Zhang X H, Xia B H, Ma P M, Chen M Q, Du M L, Wang Y, Dong W F. New J. Chem., 2020, 44(38): 16569.
[6]
Liang J, Shan G R, Pan P J. Soft Matter, 2017, 13(22): 4148.
[7]
Li K Y, Liu Y, Ge Y Q, Cao H Y, Zhuang S J, Yang X T, Zhao Y Y, Gu X L. J. Mater. Chem. C, 2023, 11(5): 1908.
[8]
Chen Q, Chen H, Zhu L, Zheng J. Macromol. Chem. Phys., 2016, 217(9): 1017.
[9]
Tarashi S, Nazockdast H, Sodeifian G. Polymer, 2019, 183: 121837.
[10]
Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Adv. Mater., 2003, 15(14): 1155.
[11]
Chen Q, Chen H, Zhu L, Zheng J. J. Mater. Chem. B, 2015, 3(18): 3654.
[12]
Yang Y Y, Wang X, Wu D C. Acta Chimica Sinica, 2021, 79(1): 1.
( 杨艳宇, 王星, 吴德成. 化学学报, 2021, 79(1):1.)
[13]
Li L Q, Wu P W, Yu F, Ma J. J. Mater. Chem. A, 2022, 10(17): 9215.
[14]
Yu F, Yang P Y, Yang Z Q, Zhang X C, Ma J. Chem. Eng. J., 2021, 426: 131900.
[15]
Yang J, Li Y, Zhu L, Qin G, Chen Q. J. Polym. Sci. B Polym. Phys., 2018, 56(19): 1351.
[16]
Tang J X, Huang J M, Zhou G Y, Liu S H. J. Chem. Thermodyn., 2020, 141: 105918.
[17]
Zhou L J, Pei X J, Fang K, Zhang R, Fu J. Polymer, 2020, 192: 122319.
[18]
Yue Y Y, Wang X H, Han J Q, Yu L, Chen J Q, Wu Q L, Jiang J C. Carbohydr. Polym., 2019, 206: 289.
[19]
Gong Z Y, Zhang G P, Zeng X L, Li J H, Li G, Huang W P, Sun R, Wong C. ACS Appl. Mater. Interfaces, 2016, 8(36): 24030.
[20]
Chu L, Liu C B, Zhou G Y, Xu R, Tang Y H, Zeng Z B, Luo S L. J. Hazard. Mater., 2015, 300: 153.
[21]
Li L Q, Wu P W, Ma J. Progress in Chemistry, 2021, 33(6): 1010.
( 李立清, 吴盼旺, 马杰. 化学进展, 2021, 33(6):1010.)
[22]
Li L, Ni R, Shao Y, Mao S R. Carbohydr. Polym., 2014, 103: 1.
[23]
Liu S J, Li L. ACS Appl. Mater. Interfaces, 2016, 8(43): 29749.
[24]
Yu F, Cui T R, Yang C F, Dai X H, Ma J. Chemosphere, 2019, 237: 124417.
[25]
Guo Y, He M M, Peng Y, Zhang Q, Yan L K, Zan X J. J. Mater. Sci., 2020, 55(21): 9109.
[26]
Milovanovic M, Isselbaecher N, Brandt V, Tiller J C. Chem. Mater., 2021, 33(21): 8312.
[27]
Ma J, Xiong Y C, Dai X H, Yu F. Chem. Eng. J., 2020, 380: 122387.
[28]
Zhuang Y, Yu F, Chen H, Zheng J, Ma J, Chen J H. J. Mater. Chem. A, 2016, 4(28): 10885.
[29]
Mohammadi S, Keshvari H, Eskandari M, Faghihi S. React. Funct. Polym., 2016, 106: 120.
[30]
Huang P, Chen W F, Yan L F. Nanoscale, 2013, 5(13): 6034.
[31]
Yang X Z, Zhou T Z, Ren B Z, Hursthouse A, Zhang Y Z. Sci. Rep., 2018, 8: 10717.
[32]
Chu Y Y, Song X F, Zhao H X. J. Appl. Polym. Sci., 2019, 136(35): 47905.
[33]
Kamio E, Yasui T, Iida Y, Gong J P, Matsuyama H. Adv. Mater., 2017, 29(47): 1704118.
[34]
Ran J B, Jiang P, Liu S N, Sun G L, Yan P, Shen X Y, Tong H. Mater. Sci. Eng. C, 2017, 78: 130.
[35]
Fan J C, Shi Z X, Lian M, Li H, Yin J. J. Mater. Chem. A, 2013, 1(25): 7433.
[36]
Yang D Y. Chem. Mater., 2022, 34(5): 1987.
[37]
Ning X J, Huang J N, Yimuhan A, Yuan N N, Chen C, Lin D H. Int. J. Mol. Sci., 2022, 23(24): 15757.
[38]
Yu H C, Li C Y, Du M, Song Y H, Wu Z L, Zheng Q. Macromol., 2019, 2: 629.
[39]
Yang C, Liu Z, Chen C, Shi K, Zhang L, Ju X J, Wang W, Xie R, Chu L Y. ACS Appl. Mater. Interfaces, 2017, 9(18): 15758.
[40]
Nakajima T, Sato H, Zhao Y, Kawahara S, Kurokawa T, Sugahara K, Gong J P. Adv. Funct. Mater., 2012, 22(21): 4426.
[41]
Chen Q, Zhu L, Zhao C, Wang Q M, Zheng J. Adv. Mater., 2013, 25(30): 4171.
[42]
Ye L N, Lv Q, Sun X Y, Liang Y Z, Fang P W, Yuan X Y, Li M, Zhang X Z, Shang X F, Liang H Y. Soft Matter, 2020, 16(7): 1840.
[43]
Xu P, Shang Z J, Yao M L, Ke Z Y, Li X X, Liu P D. J. Mol. Liq., 2022, 368: 120611.
[44]
Liu C Y, Liu H Y, Xiong T H, Xu A R, Pan B L, Tang K Y. Polymers, 2018, 10(8): 835.
[45]
Wu S J, Yuan C Y, Tang J X, Tang L. J. Xiangtan Univ. Nat. Sci. Ed., 2022, 44(1): 31.
( 伍绍吉, 袁尘瑜, 汤建新, 汤力. 湘潭大学学报(自然科学学报), 2022, 44(1): 31.)
[46]
Louf J F, Lu N B, O’Connell M G, Cho H J, Datta S S. Sci. Adv., 2021, 7(7): eabd2711.
[47]
Kamata H, Akagi Y, Kayasuga-Kariya Y, Chung U I, Sakai T. Science, 2014, 343(6173): 873.
[48]
Li H F, Wang H B, Zhang D F, Xu Z Y, Liu W G. Polymer, 2018, 153: 193.
[49]
Cong H P, Wang P, Yu S H. Chem. Mater., 2013, 25(16): 3357.
[50]
Zhang H J, Zhai D D, He Y. RSC Adv., 2014, 4(84): 44600.
[51]
Fan X L, Liu H, Wang J R, Tang K Y. J. Appl. Polym. Sci., 2020, 137(24): 48805.
[52]
Bi S C, Pang J H, Huang L, Sun M J, Cheng X J, Chen X G. Int. J. Biol. Macromol., 2020, 146: 99.
[53]
Liu Y, Xia M, Wu L L, Pan S X, Zhang Y H, He B Q, He P X. Ind. Eng. Chem. Res., 2019, 58(47): 21649.
[54]
Shi C, Yang F M, Hu L, Wang H B, Wang Y X, Wang Z C, Pan S H, Chen J D. Mater. Lett., 2022, 316: 132048.
[55]
Wang J L, Su S H, Qiu J J. New J. Chem., 2017, 41(10): 3781.
[56]
Kim J R, Woo S H, Son Y L, Kim J R, Kasi R M, Kim S C. Macromolecules, 2021, 54(5): 2439.
[57]
Wu F, Pang Y, Liu J Y. Nat. Commun., 2020, 11: 4502.
[58]
Wang Z, Zheng X J, Ouchi T, Kouznetsova T B, Beech H K, Av-Ron S, Matsuda T, Bowser B H, Wang S, Johnson J A, Kalow J A, Olsen B D, Gong J P, Rubinstein M, Craig S L. Science, 2021, 374(6564): 193.
[59]
Mi Z Y, Chen X Y, Yao X L, Xu K, Liu H B, Li N, Liu N. Mod. Food Sci. Technol., 2022, 38(1): 398.
( 糜志远, 陈晓雨, 姚晓琳, 徐凯, 刘华兵, 李娜, 刘宁. 现代食品科技, 2022, 38(1): 398.)
[60]
Zhang H T, Wu X J, Qin Z H, Sun X, Zhang H, Yu Q Y, Yao M M, He S S, Dong X R, Yao F L, Li J J. Cellulose, 2020, 27(17): 9975.
[61]
Zhao L Y, Zheng Q F, Liu Y X, Wang S, Wang J, Liu X F. Eur. Polym. J., 2020, 124: 109474.
[62]
Sun J Y, Zhao X H, Illeperuma W R K, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J, Suo Z G. Nature, 2012, 489(7414): 133.
[63]
Zheng Q F, Zhao L Y, Wang J, Wang S, Liu Y X, Liu X F. Colloids Surf. A Physicochem. Eng. Aspects, 2020, 589: 124402.
[64]
Wei D D, Yang J, Zhu L, Chen F, Tang Z Q, Qin G, Chen Q. Polym. Test., 2018, 69: 167.
[65]
Shang X Q, Wang Q L, Li J H, Zhang G J, Zhang J G, Liu P, Wang L M. Carbohydr. Polym., 2021, 257: 117626.

基金

江西省自然科学基金重点项目,离子型稀土萃取剂的靶向分子设计规律及其构效关系研究(20224ACB203010)
江西省高层次高技能领军人才培训工程(2022)
江西省自然科学基金(20212BAB203013)
江西省教育厅科技项目(GJJ22008207)

PDF(4291 KB)

Accesses

Citation

Detail

段落导航
相关文章

/