毫纳结构复合材料的制备、协同效应及其深度水处理应用

付宛宜, 李雨航, 杨志超, 张延扬, 张孝林, 刘子尧, 潘丙才

化学进展 ›› 2023, Vol. 35 ›› Issue (10) : 1415-1437.

PDF(19868 KB)
PDF(19868 KB)
化学进展 ›› 2023, Vol. 35 ›› Issue (10) : 1415-1437. DOI: 10.7536/PC230510
综述

毫纳结构复合材料的制备、协同效应及其深度水处理应用

作者信息 +

Millimeter-Sized Nanocomposites for Advanced Water Treatment: Preparation, Synergistic Effects and Applications

Author information +
文章历史 +

摘要

纳米材料具有较高的比表面积和较强的表面效应,在水处理领域展现出优异的净污性能,具有广阔的应用前景。将纳米颗粒负载于毫米级载体中制备毫纳结构复合材料,可有机结合纳米颗粒的高反应活性与载体的良好操作性,是突破纳米材料易聚团失活、难分离、稳定性差、潜在环境风险等工程应用瓶颈并实现规模化应用的重要技术手段。本文综述了毫纳结构复合材料的制备方法、结构特性及其在吸附和催化氧化除污性能及机制方面的研究进展,并从纳米颗粒的限域生长、限域吸附特性和限域催化氧化特性等方面阐述限域效应及载体-纳米颗粒的协同净污效应。最后,针对目前毫纳结构复合材料方向亟待解决的科学问题和实际应用挑战提出了展望,以期为推动纳米材料的实际应用提供一定的理论指导和技术参考。

Abstract

Nanomaterial features a high surface area-to-volume ratio and strong surface effects, offering excellent performance in water treatment and broad application prospects. Incorporating nanoparticles into millimeter-scale hosts to prepare millimeter-sized nanocomposite materials can couple the high reactivity of nanoparticles with the easy operability of millimeter-scale hosts. This is an important technical approach to overcome the engineering application bottlenecks of nanomaterials, such as their tendency to agglomerate, low stability, potential environmental risks, and difficult separation. This review summarizes the preparation methods, structural characteristics, and adsorptive and catalytic oxidative removal of pollutants from aqueous systems by millimeter-sized nanocomposites. It elaborates on the confinement effects from the perspectives of confined growth of nanoparticles, confined adsorption properties, and confined catalytic oxidation properties, as well as the synergistic purification effect between the hosts and nanoparticles. Finally, the scientific issues and practical challenges that urgently need to be addressed in the development of millimeter-sized nanocomposites are discussed. We believe this review will provide theoretical guidance and technical references for promoting the practical applications of nanomaterials.

Contents

1 Introduction

2 Common hosts and preparation methods of millimeter-sized nanocomposites

2.1 Polymeric hosts

2.2 Carbon-based hosts

2.3 Natural mineral based hosts

2.4 Ceramic-based hosts

3 Confinement effects and synergistic purification effects of millimeter-nanometer structure

3.1 Confined growth of nanoparticles in millimeter-sized hosts

3.2 Confined adsorption and regeneration of nanoparticles inside millimeter-sized hosts

3.3 Confined catalytic oxidation of nanoparticles inside millimeter-sized hosts

4 Practical applications of millimeter-sized nanocomposites in water treatment

4.1 Applications in adsorption

4.2 Applications in catalytic degradation

5 Conclusions and perspectives

5.1 Research gaps in scientific issues regarding nanoconfinement effects

5.2 Challenges to be addressed for practical applications of nanocomposite materials

关键词

毫纳结构复合材料 / 限域效应 / 水处理 / 吸附 / 催化氧化

Key words

millimeter-sized nanocomposite / confinement effects / water decontamination / adsorption / catalytic oxidation

引用本文

导出引用
付宛宜 , 李雨航 , 杨志超 , . 毫纳结构复合材料的制备、协同效应及其深度水处理应用[J]. 化学进展. 2023, 35(10): 1415-1437 https://doi.org/10.7536/PC230510
, , , et al. Millimeter-Sized Nanocomposites for Advanced Water Treatment: Preparation, Synergistic Effects and Applications[J]. Progress in Chemistry. 2023, 35(10): 1415-1437 https://doi.org/10.7536/PC230510
中图分类号: TB34 (功能材料)    X703 (废水的处理与利用)   

参考文献

[1]
Zhang Q J, Pan B C, Chen X Q, Zhang W M, Pan B J, Zhang Q X, Lv L, Zhao X S. Sci. China Ser. B, 2008, 51(4): 379.
[2]
Chen L, Zhao X, Pan B C, Zhang W X, Hua M, Lv L, Zhang W M. J. Hazard. Mater., 2015, 284: 35.
[3]
Li Z G. Master Dissertation of Nanjing University, 2014.
(李志刚. 南京大学硕士论文, 2014).
[4]
Zhang Y Y, Pan B C, Shan C, Gao X A. Environ. Sci. Technol., 2016, 50(3): 1447.
[5]
Zhang Y Y, Ahmed S, Zheng Z X, Liu F, Leung C F, Choy T Y, Kwok Y T, Pan B C, Lo I M C. Chem. Eng. J., 2021, 412: 128630.
[6]
Liu F, Shan C, Zhang X L, Zhang Y Y, Zhang W M, Pan B C. J. Hazard. Mater., 2017, 321: 290.
[7]
Sarkar S, Blaney L M, Gupta A, Ghosh D, SenGupta A K. React. Funct. Polym., 2007, 67(12): 1599.
[8]
Smith R C, Li J Z, Padungthon S, Sengupta A K. Front. Environ. Sci. Eng., 2015, 9(5): 929.
[9]
Pan B C, Chen X Q, Zhang W M, Pan B J, Shen W, Zhang Q J, Du W, Zhang Q X, Chen J. Chinese Patent No.: ZL200510095177.5, 2005, 1.
(潘丙才, 陈新庆, 张炜铭, 潘丙军, 沈威, 张庆建, 杜伟, 张全兴, 陈金. ZL200510095177.5, 2005. 1).
[10]
Pan B J, Wu J, Pan B C, Lv L, Zhang W M, Xiao L L, Wang X S, Tao X C, Zheng S R. Water Res., 2009, 43(17): 4421.
[11]
Pan B C, Xu J S, Wu B, Li Z G, Liu X T. Environ. Sci. Technol., 2013, 47(16): 9347.
[12]
Li H C, Shan C, Zhang Y Y, Cai J G, Zhang W M, Pan B C. ACS Appl. Mater. Interfaces, 2016, 8(5): 3012.
[13]
Zhang X L, Cheng C, Qian J S, Lu Z D, Pan S Y, Pan B C. Environ. Sci. Technol., 2017, 51(16): 9210.
[14]
Zhang X L, Wang Y H, Chang X F, Wang P, Pan B C. Environ. Sci.: Nano, 2017, 4(3): 679.
[15]
Nie G Z, Pan B C, Zhang S J, Pan B J. J. Phys. Chem. C, 2013, 117(12): 6201.
[16]
Rotzetter A C C, Kellenberger C R, Schumacher C M, Mora C, Grass R N, Loepfe M, Luechinger N A, Stark W J. Adv. Mater., 2013, 25(42): 6057.
[17]
Teng C Y, Sheng Y J, Tsao H K. J. Chem. Phys., 2017, 146(1): 014904.
[18]
Williams R J J, Hoppe C E, Zucchi I A, Romeo H E, Dell’Erba I E, GÓmez M L, Puig J, Leonardi A B. J. Colloid Interface Sci., 2014, 431: 223.
[19]
Chang Q G, Lin W, Ying W C. J. Hazard. Mater., 2010, 184(1/3): 515.
[20]
Gu Z M, Fang J, Deng B L. Environ. Sci. Technol., 2005, 39(10): 3833.
[21]
Savina I N, English C J, Whitby R L D, Zheng Y S, Leistner A, Mikhalovsky S V, Cundy A B. J. Hazard. Mater., 2011, 192(3): 1002.
[22]
Liu Y, Gao Y, Zhao X, Shan C, Zhang X L, Pan B C. Acta Polym. Sin., 2018(7): 939.
(刘艳, 高洋, 赵昕, 单超, 张孝林, 潘丙才. 高分子学报, 2018(7): 939.).
[23]
Nguyen T V, Vigneswaran S, Ngo H H, Kandasamy J. J. Hazard. Mater., 2010, 182(1-3): 723.
[24]
Guo X J, Chen F H. Environ. Sci. Technol., 2005, 39(17): 6808.
[25]
Alipour A, Zarinabadi S, Azimi A, Mirzaei M. Int. J. Biol. Macromol., 2020, 151: 124.
[26]
Shoukat A, Wahid F, Khan T, Siddique M, Nasreen S, Yang G, Ullah M W, Khan R. Int. J. Biol. Macromol., 2019, 129: 965.
[27]
Mullick A, Neogi S. Ultrason. Sonochem., 2018, 45: 65.
[28]
Arcibar-Orozco J A, Avalos-Borja M, Rangel-Mendez J R. Environ. Sci. Technol., 2012, 46(17): 9577.
[29]
Ghanizadeh G, Ehrampoush M, Ghaneian M. J. Environ. Health Sci. Eng., 2010, 7: 145.
[30]
Sun Z, Zhang Y X, Guo S T, Shi J M, Shi C, Qu K Q, Qi H J, Huang Z H, Murugadoss V, Huang M N, Guo Z H. Adv. Compos. Hybrid Mater., 2022, 5(2): 1566.
[31]
Wang R X, Li M Z, Liu T, Li X Y, Zhou L, Tang L, Gong C Y, Gong X A, Yu K F, Li N, Zhu W K, Chen T. J. Clean. Prod., 2022, 364: 132654.
[32]
Dai Y J, Zhang N X, Xing C M, Cui Q X, Sun Q Y. Chemosphere, 2019, 223: 12.
[33]
Li X P, Wang C B, Zhang J G, Liu B, Liu J P, Chen G Y. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34: 1047.
(李湘萍, 王传斌, 张建光, 刘彬, 刘菊平, 陈冠益. 石油学报(石油加工), 2018, 34: 1047.).
[34]
Zeng Q, Gong C L, Qian C. Technol. Dev. Chem. Ind., 2023, 52(4): 8.
(曾奇, 龚长林, 钱程. 化工技术与开发, 2023, 52(4): 8.).
[35]
Jiang Y S, Jin W Q, Zhang J, Fang S S. J. Inorg. Mater., 2002, 17(6): 1301.
(蒋引珊, 金为群, 张军, 方送生. 无机材料学报, 2002, 17(6): 1301.).
[36]
Wang L J, Zheng S L, Shu F. J. Chin. Ceram. Soc., 2006, 34(7): 823.
(王利剑, 郑水林, 舒锋. 硅酸盐学报, 2006, 34(7): 823.).
[37]
Zhang G X, Liu Y Y, Zheng S L, Sun Z M. Adv. Powder Technol., 2021, 32(11): 4364.
[38]
Zhang N, Ma Z X, Liu J. China Non-metallic Minerals Industry, 2010, (105): 23.
(张宁, 马正先, 刘江. 中国非金属矿工业导刊, 2010, (105): 23.).
[39]
Wei K J, Cao X X, Gu W C, Liang P, Huang X A, Zhang X Y. Environ. Sci. Technol., 2019, 53(12): 6917.
[40]
Wang Z C, Xu T, Tang D D, Zhou Y, Zheng B J, Qiu Y C, He D K, Zeng X, Jiang R, Mao X H. Colloids Surf. A, 2023, 658: 130560.
[41]
Qiao H, Meng Y F, Yu S Z, Yang Y X. Industrial Water Treatment, 2023, 43(03): 114.
(乔函, 孟一帆, 余思泽, 杨忆新. 工业水处理, 2023, 43(03): 114.).
[42]
He Z M, Lyu Z Y, Gu Q L, Zhang L, Wang J. Colloids Surf. A, 2019, 578: 123513.
[43]
Zhang J L, Yu H T, Quan X, Chen S, Zhang Y B. Chem. Eng. J., 2016, 301: 19.
[44]
Bao Y P, Lee W J, Lim T T, Wang R, Hu X. Appl. Catal. B, 2019, 254: 37.
[45]
Chen S, Yu J Q, Wang H, Yu H T, Quan X. Desalination, 2015, 363: 37.
[46]
Chen R, Zhang K, Wang H, Wang X M, Zhang X H, Huang X. J. Membr. Sci., 2022, 652: 120509.
[47]
Lee W J, Bao Y P, Guan C T, Hu X, Lim T T. Chem. Eng. J., 2021, 410: 128307.
[48]
Parija A, Waetzig G R, Andrews J L, Banerjee S. J. Phys. Chem. C, 2018, 122(45): 25709.
[49]
Zhang X L, Shen J L, Pan S Y, Qian J S, Pan B C. Adv. Funct. Mater., 2020, 30(12): 1909014.
[50]
Cantaert B, Beniash E, Meldrum F C. Chem. A Eur. J., 2013, 19(44): 14918.
[51]
Wucher B, Yue W B, Kulak A N, Meldrum F C. Chem. Mater., 2007, 19(5): 1111.
[52]
Tian C, Zhao J A, Zhang J, Chu S Q, Dang Z, Lin Z, Xing B S. Environ. Sci.: Nano, 2017, 4(11): 2134.
[53]
Yang D R, Feng J, Jiang L L, Wu X L, Sheng L Z, Jiang Y T, Wei T, Fan Z J. Adv. Funct. Mater., 2015, 25(45): 7080.
[54]
Pan B C, Han F C, Nie G Z, Wu B, He K, Lu L. Environ. Sci. Technol., 2014, 48(9): 5101.
[55]
Pan S Y, Zhang X L, Qian J S, Lu Z D, Hua M, Cheng C, Pan B C. Nanoscale, 2017, 9(48): 19154.
[56]
Fumagalli L, Esfandiar A, Fabregas R, Hu S, Ares P, Janardanan A, Yang Q, Radha B, Taniguchi T, Watanabe K. Science, 2018, 360: 1339.
[57]
Lu C H, Hu C Z, Ritt C L, Hua X, Sun J Q, Xia H L, Liu Y Y, Li D W, Ma B W, Elimelech M, Qu J H. J. Am. Chem. Soc., 2021, 143(35): 14242.
[58]
Schulthess C P, Taylor R W, Ferreira D R. Soil Sci. Soc. Am. J., 2011, 75(2): 378.
[59]
Kovaleva E G, Molochnikov L S, Antonov D O, Tambasova Stepanova D P, Hartmann M, Tsmokalyuk A N, Marek A, Smirnov A I. J. Phys. Chem. C, 2018, 122(35): 20527.
[60]
Jonchhe S, Pandey S, Emura T, Hidaka K, Hossain M A, Shrestha P, Sugiyama H, Endo M, Mao H B. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(38): 9539.
[61]
Sowers T D, Harrington J M, Polizzotto M L, Duckworth O W. Geochim. Cosmochim. Acta, 2017, 198: 194.
[62]
van Genuchten C M, Addy S E A, Peña J, Gadgil A J. Environ. Sci. Technol., 2012, 46(2): 986.
[63]
Zhang Y Y, Wang M L, Gao X A, Qian J S, Pan B C. Environ. Sci. Technol., 2021, 55(1): 665.
[64]
Cumbal L, SenGupta A K. Environ. Sci. Technol., 2005, 39(17): 6508.
[65]
Zhang Y Y, She X W, Gao X A, Shan C, Pan B C. Environ. Sci. Technol., 2019, 53(1): 365.
[66]
Zhang S, Sun M, Hedtke T, Deshmukh A, Zhou X C, Weon S, Elimelech M, Kim J H. Environ. Sci. Technol., 2020, 54(17): 10868.
[67]
Muñoz-Santiburcio D, Wittekindt C, Marx D. Nat. Commun., 2013, 4: 2349.
[68]
Plecis A, Schoch R B, Renaud P. Nano Lett., 2005, 5(6): 1147.
[69]
Argyris D, Cole D R, Striolo A. ACS Nano, 2010, 4(4): 2035.
[70]
Kovaleva E G, Molochnikov L S, Venkatesan U, Marek A, Stepanova D P, Kozhikhova K V, Mironov M A, Smirnov A I. J. Phys. Chem. C, 2016, 120(5): 2703.
[71]
Kovaleva E G, Molochnikov L S, Tambasova D, Marek A, Chestnut M, Osipova V A, Antonov D O, Kirilyuk I A, Smirnov A I. J. Membr. Sci., 2020, 604: 118084.
[72]
Zhang S, Hedtke T, Wang L, Wang X X, Cao T C, Elimelech M, Kim J H. Environ. Sci. Technol., 2021, 55(24): 16708.
[73]
Di Trani N, Pimpinelli A, Grattoni A. ACS Appl. Mater. Interfaces, 2020, 12(10): 12246.
[74]
Yu Z H, Ji N, Li X Y, Zhang R, Qiao Y N, Xiong J, Liu J, Lu X B. Angew. Chem. Int. Ed., 2023, 62(3): e202213612.
[75]
Zhang S, Hedtke T, Zhu Q H, Sun M, Weon S, Zhao Y M, Stavitski E, Elimelech M, Kim J H. Environ. Sci. Technol., 2021, 55(13): 9266.
[76]
Zhang Y Y, Zhang W X, Pan B C. Chemosphere, 2015, 141: 227.
[77]
Li Q H. Master Dissertation of Nanjing University, 2021.
(李求豪. 南京大学硕士论文, 2021).
[78]
Gao X. Master Dissertation of Nanjing University, 2019.
(高翔. 南京大学硕士论文, 2019).
[79]
Hua M, Xiao L L, Pan B C, Zhang Q X. Front. Environ. Sci. Eng., 2013, 7(3): 435.
[80]
Xu P Z. Master Dissertation of Nanjing University, 2020.
(许沛智. 南京大学硕士论文, 2020.).
[81]
Kim J H, Kim S B, Lee S H, Choi J W. Environ. Technol., 2018, 39(6): 770.
[82]
Zhang X L, Zhang L, Li Z X, Jiang Z, Zheng Q, Lin B, Pan B C. Environ. Sci. Technol., 2017, 51(22): 13363.
[83]
Deng Z N, Cheng S K, Xu N A, Zhang X L, Pan B C. ACS EST Eng., 2023, 3(2): 226.
[84]
Cai J G, Zhang Y Y, Pan B C, Zhang W M, Lv L, Zhang Q X. Water Res., 2016, 102: 109.
[85]
Chinese Academy of Sciences. News, 2015-11-03.
(中国科学院. 合肥研究院智能所“天然矿物纳米复合除氟剂饮用水除氟技术”通过鉴定. 2015-11-03[2023-05-01]. https://www.cas.cn/yx/201511/t20151103_4453117.shtml).
[86]
Sylvester P, Westerhoff P, Möller T, Badruzzaman M, Boyd O. Environ. Eng. Sci., 2007, 24(1): 104.
[87]
Deng Z N, Fang Z Y, Liu A R, Xu N, Zhang X L. Sci. Total Environ., 2021, 777: 146103.
[88]
Pranudta A, Chanthapon N, Kidkhunthod P, El-Moselhy M M, Nguyen T T, Padungthon S. J. Environ. Chem. Eng., 2021, 9(5): 106282.
[89]
Science and Technology Development Center of the Ministry of Education. Appraisal of achievements, 2013-09-26.
(教育部科技发展中心. 基于环境纳米复合材料的重金属废水深度处理与资源化新技术. 2013-09-26[2023-05-01]. http://www.cutech.edu.cn/cn/gxzxjdcgjj/arwlyfl/ssjhxm/2013/09/1380130862897976.htm).
[90]
Huang M J, Li Y S, Zhang C Q, Yu H Q. Proc. Natl. Acad. Sci.U.S.A., 2022, 119: e2202682119.
[91]
Zhu Y Q, Chen S, Quan X, Zhang Y B, Gao C, Feng Y J. J. Membr. Sci., 2013, 431: 197.
[92]
Zhu Y Q. Doctoral Dissertation of Dalian University of Technology, 2013.
(朱云庆. 大连理工大学博士论文, 2013).
[93]
Zhang J L. Doctoral Dissertation of Dalian University of Technology, 2017.
(张建琳. 大连理工大学博士论文, 2017).
[94]
Yu J Q. Master Dissertation of Dalian University of Technology, 2015.
(于金旗. 大连理工大学硕士论文, 2015.).
[95]
Zhang K. Doctoral Dissertation of Tsinghua University, 2020.
(张凯. 清华大学博士论文, 2020.).
[96]
Corneal L M, Masten S J, Davies S H R, Tarabara V V, Byun S, Baumann M J. J. Membr. Sci., 2010, 360(1/2): 292.
[97]
Moslemi M, Davies S H, Masten S J. Water Res., 2011, 45(17): 5529.
[98]
Wang X Y, Davies S H, Masten S J. Sep. Purif. Technol., 2017, 186: 182.
[99]
Kim J, Shan W Q, Davies S H R, Baumann M J, Masten S J, Tarabara V V. Environ. Sci. Technol., 2009, 43(14): 5488.
[100]
Karnik B S, Davies S H, Baumann M J, Masten S J. Environ. Sci. Technol., 2005, 39(19): 7656.
[101]
Byun S, Davies S H, Alpatova A L, Corneal L M, Baumann M J, Tarabara V V, Masten S J. Water Res., 2011, 45(1): 163.
[102]
Alpatova A L, Davies S H, Masten S J. Sep. Purif. Technol., 2013, 107: 179.
[103]
He C. Doctoral Dissertation of China University of Mining & Technology-Beijing, 2021.
(何灿. 中国矿业大学 (北京) 博士论文, 2021.).
[104]
He C, Wang J B, Wang C R, Zhang C H, Hou P, Xu X Y. Water Res., 2020, 183: 116090.
[105]
He C, Huang Q, Zhang L L, Luo H L, Xue T. Industrial Water Treatment, 2019, 39(11): 107.
(何灿, 黄祁, 张力磊, 罗华霖, 薛通. 工业水处理, 2019, 39(11): 107.).
[106]
Wu Z W, Zhang G Q, Zhang R Y, Yang F L. Ind. Eng. Chem. Res., 2018, 57(6): 1943.
[107]
Pan B J, Xiao L L, Nie G Z, Pan B C, Wu J, Lv L, Zhang W M, Zheng S R. J. Environ. Monit., 2010, 12(1): 305.
[108]
Shan C, Dong H, Huang P, Hua M, Liu Y, Gao G D, Zhang W M, Lv L, Pan B C. Chem. Eng. J., 2019, 360: 982.
[109]
Guan X H, Liu F, Zhang W M, Pan B C. Ind. Eng. Chem. Res., 2017, 56(18): 5309.
[110]
Liu B M, Pan S L, Liu Z Y, Li X, Zhang X, Xu Y H, Sun Y J, Yu Y, Zheng H L. J. Hazard. Mater., 2020, 386: 121969.
[111]
Blaney L M, Cinar S, SenGupta A K. Water Res., 2007, 41(7): 1603.
[112]
Sengupta S, Pandit A. Water Res., 2011, 45(11): 3318.
[113]
Lee S Y, Kang D, Jeong S, Do H T, Kim J H. ACS Omega, 2020, 5(8): 4233.
[114]
Wang Y, Xie X M, Chen X L, Huang C H, Yang S. J. Hazard. Mater., 2020, 396: 122626.
[115]
Chan H F, Shi C C, Wu Z X, Sun S H, Zhang S K, Yu Z H, He M H, Chen G X, Wan X F, Tian J F. J. Colloid Interface Sci., 2022, 608: 1414.
[116]
Suazo-Hernández J, Sepúlveda P, Manquián-Cerda K, Ramírez-Tagle R, Rubio M A, Bolan N, Sarkar B, Arancibia-Miranda N. J. Hazard. Mater., 2019, 373: 810.
[117]
Guaya D A, Valderrama C, Farran A, Armijos C, Cortina J L. Chem. Eng. J., 2015, 271: 204.
[118]
He Y H, Lin H, Dong Y B, Wang L. Appl. Surf. Sci., 2017, 426: 995.
[119]
Shi W M, Fu Y W, Jiang W, Ye Y Y, Kang J X, Liu D Q, Ren Y Z, Li D S, Luo C G, Xu Z. Chem. Eng. J., 2019, 357: 33.
[120]
Jang M, Min S H, Park J K, Tlachac E J. Environ. Sci. Technol., 2007, 41(9): 3322.
[121]
Yuan P, Liu D, Fan M D, Yang D, Zhu R L, Ge F, Zhu J X, He H P. J. Hazard. Mater., 2010, 173(1/3): 614.
[122]
Wang J X, Zhang G Q, Qiao S, Zhou J T. Chem. Eng. J., 2021, 412: 128696.
[123]
Sun Z M, Zheng S L, Ayoko G A, Frost R L, Xi Y F. J. Hazard. Mater., 2013, 263: 768.
[124]
Sreethawong T, Chavadej S. J. Hazard. Mater., 2008, 155(3): 486.
[125]
Shao S J, Lei D, Song Y, Liang L N, Liu Y Z, Jiao W Z. Ind. Eng. Chem. Res., 2021, 60(5): 2123.
[126]
Shao S J, Li Z X, Zhang J W, Gao K C, Liu Y Z, Jiao W Z. Chem. Eng. Sci., 2022, 248: 117246.

基金

国家重点研发计划(2022YFA1205601)
国家重点研发计划(2022YFA1205602)
国家自然科学基金项目(21925602)
国家自然科学基金项目(22236003)

PDF(19868 KB)

Accesses

Citation

Detail

段落导航
相关文章

/