VOCs氧化催化剂设计与结构调控

杨雯皓, 赵东越, 宋海涛, 李俊华

化学进展 ›› 2024, Vol. 36 ›› Issue (1) : 27-47.

PDF(41160 KB)
PDF(41160 KB)
化学进展 ›› 2024, Vol. 36 ›› Issue (1) : 27-47. DOI: 10.7536/PC230604
综述

VOCs氧化催化剂设计与结构调控

作者信息 +

Design and Structure Regulation of VOCs Catalytic Oxidation Catalysts

Author information +
文章历史 +

摘要

近年来我国环境空气质量显著改善,NOx与SO2等传统污染物得到有效控制,挥发性有机物(Volatile Organic Compounds, VOCs)排放控制逐渐成为进一步解决区域复合型大气污染问题的关键因素。催化氧化法因其处理效率高、能耗低及适用范围广等优势,已成为最具应用前景的VOCs减排技术之一。高性能催化剂的研发是该技术的核心,结合反应机理进行催化剂设计和结构调控是目前研究的热点和重点。本文首先对VOCs催化氧化机理进行概述;其次从单一过渡金属氧化物、混合金属氧化物、复合金属氧化物以及相界面结构调控角度综述了非贵金属催化剂结构调控的相关研究进展;聚焦贵金属分散状态,总结了贵金属催化剂中贵金属纳米颗粒/团簇催化剂尺寸效应与载体效应相关研究成果,并对目前新兴的单原子催化剂基于金属-载体相互作用的调控手段进行概括;最后对VOCs氧化催化剂的研究现状与趋势进行总结与展望。我们认为深入解析构效关系,研发简约和精细化的催化剂结构调控手段并适配实际工况和工业放大是未来研究的重点发展方向。

Abstract

In recent years, with the improvement of the air quality in China, traditional pollutants such as NOx and SO2 have been effectively controlled. The emission control of volatile organic compounds (VOCs) has gradually become a key to further alleviating the regional composite air pollution so far. Catalytic oxidation is one of the most promising VOCs emission reduction technologies due to its high treatment efficiency, low energy consumption, and wide applicability. The development of high-performance catalysts is crucial for this technology. The design and structural regulation of catalysts associated with mechanism study is currently a research hotspot. This paper first outlines the catalytic oxidation mechanism of VOCs. Secondly, the research progress on the structural regulation of non-noble metal catalysts is reviewed from the perspectives of single transition metal oxides, mixed metal oxides, composite metal oxides, and interface structure regulation. Based on the dispersion state, the size effect and support effect of noble metal nanoparticles/clusters in noble metal catalysts are summarized. The regulation strategies based on the metal-support interaction for the emerging single-atom catalysts are also discussed. Finally, this paper provides a summary and prospects for future research trends. We believe that based on deeply clarifying the structure-activity relationship, developing simple and refined structure regulation methods of catalysts and adapting to actual operating conditions and industrial scale-up is the focus of future research.

Contents

1 Introduction

2 VOCs catalytic oxidation mechanisms

3 Structure regulation of non-noble metal catalysts

3.1 Single transition metal oxides

3.2 Mixed transition metal oxides

3.3 Composite transition metal oxides

3.4 Interface structure regulation

4 Regulation of metal dispersion state in noble metal catalysts

4.1 Noble metal nanoparticle/cluster catalysts

4.2 Noble metal single-atom catalysts

5 Conclusion and outlook

关键词

挥发性有机物 / 催化氧化 / 结构调控 / 贵金属分散状态调控 / 反应机理

Key words

volatile organic compounds(VOCs) / catalytic oxidation / structure regulation / noble metal dispersion state regulation / reaction mechanism

引用本文

导出引用
杨雯皓 , 赵东越 , 宋海涛 , . VOCs氧化催化剂设计与结构调控[J]. 化学进展. 2024, 36(1): 27-47 https://doi.org/10.7536/PC230604
, , , et al. Design and Structure Regulation of VOCs Catalytic Oxidation Catalysts[J]. Progress in Chemistry. 2024, 36(1): 27-47 https://doi.org/10.7536/PC230604
中图分类号: O643.3;X511;X701.7   

参考文献

[1]
He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z P. Chem. Rev., 2019, 119(7): 4471.
[2]
Wu P, Jin X J, Qiu Y C, Ye D Q. Environ. Sci. Technol., 2021, 55(8): 4268.
[3]
Mozaffar A, Zhang Y L, Fan M Y, Cao F, Lin Y C. Atmos. Res., 2020, 240: 104923.
[4]
Ministry of Ecology and Environment of the People's Republic of China. 2021 China Ecological Environment Status Bulletin[EB/OL]. (2022-05-27)[2023-05-17]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202205/P020220608338202870777.pdf.
(中华人民共和国生态环境部. 2021中国生态环境状况公报[EB/OL]. (2022-05-27) [2023-05-17]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202205/P020220608338202870777.pdf.)
[5]
Jin X M, Holloway T. J. Geophys. Res. Atmos., 2015, 120(14): 7229.
[6]
Li J H, Yao Q, Zhu T Y. Deep Treatment Technology and Engineering Application of Multiple Pollutants in Industrial Flue Gas. Beijing: Science Press, 2019.
(李俊华, 姚群, 朱廷钰. 工业烟气多污染物深度治理技术及工程应用. 北京: 科学出版社, 2019. ).
[7]
Ye D Q. Emission and control of industrial volatile organic compounds. Beijing: Science Press, 2017.
(叶代启. 工业挥发性有机物的排放与控制. 北京: 科学出版社, 2017.).
[8]
Guo Y L, Wen M C, Li G Y, An T C. Appl. Catal. B Environ., 2021, 281: 119447.
[9]
Behar S, Gómez-Mendoza N A, Gómez-García M Á, Świerczyński D, Quignard F, Tanchoux N. Appl. Catal. A Gen., 2015, 504: 203.
[10]
Genuino H C, Dharmarathna S, Njagi E C, Mei M C, Suib S L. J. Phys. Chem. C, 2012, 116(22): 12066.
[11]
Tseng T K, Chu H. Sci. Total Environ., 2001, 275(1-3): 83.
[12]
Hosseini M, Barakat T, Cousin R, Aboukaïs A, Su B L, De Weireld G, Siffert S. Appl. Catal. B Environ., 2012, 111-112: 218.
[13]
Banu I, Bercaru G, Bozga G, Danciu T D. Chem. Eng. Technol., 2016, 39(4): 758.
[14]
Zabihi M, Khorasheh F, Shayegan J. React. Kinet. Mech. Catal., 2015, 114(2): 611.
[15]
Banu I, Manta C M, Bercaru G, Bozga G. Chem. Eng. Res. Des., 2015, 102: 399.
[16]
Wang Q Y, Li Y X, Serrano-Lotina A, Han W, Portela R, Wang R X, Bañares M A, Yeung K L. J. Am. Chem. Soc., 2021, 143(1): 196.
[17]
Zhang Z X, Jiang Z, Shangguan W F. Catal. Today, 2016, 264: 270.
[18]
Yang C T, Miao G, Pi Y H, Xia Q B, Wu J L, Li Z, Xiao J. Chem. Eng. J., 2019, 370: 1128.
[19]
Sun H, Liu Z G, Chen S, Quan X. Chem. Eng. J., 2015, 270: 58.
[20]
Ding J Y, Yang Y J, Liu J, Wang Z. Chemosphere, 2020, 248: 125980.
[21]
Zhang T, Lang X Y, Dong A Q, Wan X, Gao S, Wang L, Wang L X, Wang W C. ACS Catal., 2020, 10(13): 7269.
[22]
Kim S C, Shim W G. Appl. Catal. B Environ., 2010, 98(3-4): 180.
[23]
Feng Q, Kanoh H, Ooi K. J. Mater. Chem., 1999, 9(2): 319.
[24]
Yang R J, Fan Y Y, Ye R Q, Tang Y X, Cao X H, Yin Z Y, Zeng Z Y. Adv. Mater., 2021, 33(9): 2004862.
[25]
Liang S H, Bulgan F T G, Zong R L, Zhu Y F. J. Phys. Chem. C, 2008, 112(14): 5307.
[26]
Zhang J H, Li Y B, Wang L, Zhang C B, He H. Catal. Sci. Technol., 2015, 5(4): 2305.
[27]
Chen B B, Wu B, Yu L M, Crocker M, Shi C. ACS Catal., 2020, 10(11): 6176.
[28]
Yang W H, Su Z A, Xu Z H, Yang W N, Peng Y, Li J H. Appl. Catal. B Environ., 2020, 260: 118150.
[29]
Yang R J, Guo Z J, Cai L X, Zhu R S, Fan Y Y, Zhang Y F, Han P P, Zhang W J, Zhu X G, Zhao Q T, Zhu Z Y, Chan C K, Zeng Z Y. Small, 2021, 17(50): 2103052.
[30]
Rong S P, Zhang P Y, Liu F, Yang Y J. ACS Catal., 2018, 8(4): 3435.
[31]
Feng C, Xiong G Y, Li Y P, Gao Q Q, Pan Y, Fei Z Y, Li Y P, Lu Y K, Liu C G, Liu Y Q. Crystengcomm, 2021, 23(43): 7602.
[32]
Jian Y F, Yu T T, Jiang Z Y, Yu Y K, Douthwaite M, Liu J Y, Albilali R, He C. ACS Appl. Mater. Interfaces, 2019, 11(12): 11369.
[33]
Yao J X, Shi H, Sun D K, Lu H Q, Hou B, Jia L T, Xiao Y, Li D B. Chemcatchem, 2019, 11(22): 5570.
[34]
Jian Y F, Tian M J, He C, Xiong J C, Jiang Z Y, Jin H, Zheng L R, Albilali R, Shi J W. Appl. Catal. B Environ., 2021, 283: 119657.
[35]
Wang X Y, Liu Y, Zhang T H, Luo Y J, Lan Z X, Zhang K, Zuo J C, Jiang L L, Wang R H. ACS Catal., 2017, 7(3): 1626.
[36]
Nolan M, Parker S C, Watson G W. Surf. Sci., 2005, 595(1-3): 223.
[37]
Peng R S, Sun X B, Li S J, Chen L M, Fu M L, Wu J L, Ye D Q. Chem. Eng. J., 2016, 306: 1234.
[38]
Torrente-Murciano L, Gilbank A, Puertolas B, Garcia T, Solsona B, Chadwick D. Appl. Catal. B Environ., 2013, 132-133: 116.
[39]
Thenuwara A C, Shumlas S L, Attanayake N H, Aulin Y V, McKendry I G, Qiao Q, Zhu Y M, Borguet E, Zdilla M J, Strongin D R. ACS Catal., 2016, 6(11): 7739.
[40]
Liu J, Yu L, Hu E Y, Guiton B S, Yang X Q, Page K. Inorg. Chem., 2018, 57(12): 6873.
[41]
McKendry I G, Mohamad L J, Thenuwara A C, Marshall T, Borguet E, Strongin D R, Zdilla M J. ACS Energy Lett., 2018, 3(9): 2280.
[42]
Thenuwara A C, Cerkez E B, Shumlas S L, Attanayake N H, McKendry I G, Frazer L, Borguet E, Kang Q, Remsing R C, Klein M L, Zdilla M J, Strongin D R. Angew. Chem. Int. Ed., 2016, 55(35): 10381.
[43]
Wang Y, Liu K S, Wu J, Hu Z M, Huang L, Zhou J, Ishihara T, Guo L M. ACS Catal., 2020, 10(17): 10021.
[44]
Ni C L, Hou J T, Li L, Li Y Z, Wang M X, Yin H, Tan W F. Chemosphere, 2020, 250: 126211.
[45]
Li D Y, Li W H, Deng Y Z, Wu X F, Han N, Chen Y F. J. Phys. Chem. C, 2016, 120(19): 10275.
[46]
Sun M, Yu L, Ye F, Diao G Q, Yu Q, Hao Z F, Zheng Y Y, Yuan L X. Chem. Eng. J., 2013, 220: 320.
[47]
Wang Q Y, Yeung K L, Bañares M A. Catal. Today, 2020, 356: 141.
[48]
Carey J J, Nolan M. Appl. Catal. B Environ., 2016, 197: 324.
[49]
Wang J, Gong X Q. Appl. Surf. Sci., 2018, 428: 377.
[50]
He C, Xu B T, Shi J W, Qiao N L, Hao Z P, Zhao J L. Fuel Process. Technol., 2015, 130: 179.
[51]
Zhang X J, Zhao J G, Song Z X, Zhao H, Liu W, Ma Z A, Zhao M, Du H X. Chemistryselect, 2019, 4(30): 8902.
[52]
Solsona B, Sanchis R, Dejoz A, García T, Ruiz-Rodríguez L, López Nieto J, Cecilia J, Rodríguez-Castellón E. Catalysts, 2017, 7(12): 96.
[53]
Zeng Y Q, Haw K G, Wang Z G, Wang Y N, Zhang S L, Hongmanorom P, Zhong Q, Kawi S. J. Hazard. Mater., 2021, 404: 124088.
[54]
Gevers L E, Enakonda L R, Shahid A, Ould-Chikh S, Silva C I Q, Paalanen P P, Aguilar-Tapia A, Hazemann J L, Hedhili M N, Wen F, Ruiz-Martinez J. Nat. Commun., 2022, 13(1).
[55]
Liao Y N, Fu M L, Chen L M, Wu J L, Huang B C, Ye D Q. Catal. Today, 2013, 216: 220.
[56]
Venkataswamy P, Rao K N, Jampaiah D, Reddy B M. Appl. Catal. B Environ., 2015, 162: 122.
[57]
Wu H R, Ma S C, Song W Y, Hensen E J M. J. Phys. Chem. C, 2016, 120(24): 13071.
[58]
Chen J, Chen X, Chen X, Xu W J, Xu Z, Jia H P, Chen J. Appl. Catal. B Environ., 2018, 224: 825.
[59]
Liu J X, Zhao Z, Xu C M, Liu J. Chinese J. Catal., 2019, 40(10): 1438.
[60]
Gutiérrez-Ortiz J I, de Rivas B, López-Fonseca R, González-Velasco J R. Appl. Catal. B Environ., 2006, 65(3-4): 191.
[61]
Long G Y, Chen M X, Li Y J, Ding J F, Sun R Z, Zhou Y F, Huang X Y, Han G R, Zhao W R. Chem. Eng. J., 2019, 360: 964.
[62]
Li S D, Wang D D, Wu X F, Chen Y F. Chinese J. Catal., 2020, 41(4): 550.
[63]
Feng J T, He Y F, Liu Y N, Du Y Y, Li D Q. Chem. Soc. Rev., 2015, 44(15): 5291.
[64]
Aguilera D A, Perez A, Molina R, Moreno S. Appl. Catal. B Environ., 2011, 104(1-2): 144.
[65]
Mo S P, Li S D, Li J Q, Deng Y Z, Peng S P, Chen J Y, Chen Y F. Nanoscale, 2016, 8(34): 15763.
[66]
Jirátová K, Kovanda F, Ludvíková J, Balabánová J, Klempa J. Catal. Today, 2016, 277: 61.
[67]
Qian Q H, Asinger P A, Lee M J, Han G, Rodriguez K M, Lin S, Benedetti F M, Wu A X, Chi W S, Smith Z P. Chem. Rev., 2020, 120(16): 8161.
[68]
Zhang X D, Lv X T, Bi F K, Lu G, Wang Y X. Mol. Catal., 2020, 482: 110701.
[69]
Zhao J H, Tang Z C, Dong F, Zhang J Y. Mol. Catal., 2019, 463: 77.
[70]
Ma Y, Wang L, Ma J Z, Wang H H, Zhang C B, Deng H, He H. ACS Catal., 2021, 11(11): 6614.
[71]
Chen X, Chen X, Yu E Q, Cai S C, Jia H P, Chen J, Liang P. Chem. Eng. J., 2018, 344: 469.
[72]
Sun H, Yu X L, Ma X Y, Yang X Q, Lin M Y, Ge M F. Catal. Today, 2020, 355: 580.
[73]
Zheng Y F, Zhao Q, Shan C P, Lu S C, Su Y, Han R, Song C F, Ji N, Ma D G, Liu Q L. ACS Appl. Mater. Interfaces, 2020, 12(25): 28139.
[74]
Li Y X, Han W, Wang R X, Weng L T, Serrano-Lotina A, Bañares M A, Wang Q Y, Yeung K L. Appl. Catal. B Environ., 2020, 275: 119121.
[75]
Dong F, Han W G, Guo Y, Han W L, Tang Z C. Chem. Eng. J., 2021, 405: 126948.
[76]
Zhang Y Z, Zeng Z Q, Li Y F, Hou Y Q, Hu J L, Huang Z G. Fuel, 2021, 288: 119700.
[77]
Wang D, Yang Q L, Yang G P, Xiong S C, Li X S, Peng Y, Li J H, Crittenden J. Chem. Eng. J., 2020, 399: 125792.
[78]
Chen Y, Deng J, Yang B, Yan T T, Zhang J P, Shi L Y, Zhang D S. Chem. Commun., 2020, 56(48): 6539.
[79]
Faure B, Alphonse P. Appl. Catal. B Environ., 2016, 180: 715.
[80]
Liu L Z, Sun J T, Ding J D, Zhang Y, Sun T H, Jia J P. Inorg. Chem., 2019, 58(19): 13241.
[81]
Liang X L, Liu P, He H P, Wei G L, Chen T H, Tan W, Tan F D, Zhu J X, Zhu R L. J. Hazard. Mater., 2016, 306: 305.
[82]
Peña M A, Fierro J L G. Chem. Rev., 2001, 101(7): 1981.
[83]
Ding J Y, Liu J, Yang Y J, Zhao L M, Yu Y N. J. Hazard. Mater., 2022, 422: 126931.
[84]
Spinicci R, Tofanari A, Faticanti M, Pettiti I, Porta P. J. Mol. Catal. A Chem., 2001, 176(1-2): 247.
[85]
Pan K L, Pan G T, Chong S, Chang M B. J. Environ. Sci., 2018, 69: 205.
[86]
Liu X Q, Mi J X, Shi L, Liu H Y, Liu J, Ding Y, Shi J Q, He M H, Wang Z S, Xiong S C, Zhang Q F, Liu Y F, Wu Z S, Chen J J, Li J H. Angew. Chem. Int. Ed., 2021, 60(51): 26747.
[87]
Chen J H, Shen M Q, Wang X Q, Qi G, Wang J, Li W. Appl. Catal. B Environ., 2013, 134-135: 251.
[88]
Wu Y, Ni X, Beaurain A, Dujardin C, Granger P. Appl. Catal. B Environ., 2012, 125: 149.
[89]
Li J J, Zhang M, Elimian E A, Lv X L, Chen J, Jia H P. Chem. Eng. J., 2021, 412: 128560.
[90]
Forty A J. Nature, 1979, 282(5739): 597.
[91]
Si W Z, Wang Y, Peng Y, Li X, Li K Z, Li J H. Chem. Commun., 2015, 51(81): 14977.
[92]
Si W Z, Wang Y, Zhao S, Hu F Y, Li J H. Environ. Sci. Technol., 2016, 50(8): 4572.
[93]
Yang Q L, Li J Y, Wang D, Peng Y, Ma Y L. Catal. Today, 2021, 376: 205.
[94]
Yang Q L, Wang D, Wang C Z, Li X F, Li K Z, Peng Y, Li J H. Catal. Sci. Technol., 2018, 8(12): 3166.
[95]
Wang X Y, Pan Z Y, Chu X F, Huang K K, Cong Y G, Cao R, Sarangi R, Li L P, Li G S, Feng S H. Angew. Chem. Int. Ed., 2019, 58(34): 11720.
[96]
Luo Y J, Wang K C, Zuo J C, Qian Q R, Xu Y X, Liu X P, Xue H, Chen Q H. Catal. Sci. Technol., 2017, 7(2): 496.
[97]
Schneider H, Fischer R X, Schreuer J. J. Am. Ceram. Soc., 2015, 98(10): 2948.
[98]
Li C, Thampy S, Zheng Y, Kweun J M, Ren Y R, Chan J Y, Kim H, Cho M, Kim Y Y, Hsu J W P, Cho K. J. Phys. Condens. Mater., 2016, 28(12): 125602.
[99]
Li H B, Wang W H, Qian X Y, Cheng Y H, Xie X J, Liu J Y, Sun S H, Zhou J G, Hu Y F, Xu J P, Li L, Zhang Y, Du X W, Gao K H, Li Z Q, Zhang C, Wang S D, Chen H J, Zhao Y D, Lu F, Wang W C, Liu H. Catal. Sci. Technol., 2016, 6(11): 3971.
[100]
Yang Q L, Wang X, Wang X Y, Li Q, Li L, Yang W N, Chu X F, Liu H, Men J S, Peng Y, Ma Y L, Li J H. ACS Catal., 2021, 11(23): 14507.
[101]
Yang Q L, Li Q, Li L, Peng Y, Wang D, Ma Y L, Li J H. J. Hazard. Mater., 2021, 403: 123811.
[102]
Liu W, Xiang W J, Chen X, Song Z X, Gao C X, Tsubaki N, Zhang X J. Fuel, 2022, 312: 122975.
[103]
Chen J, Chen X, Yan D X, Jiang M Z, Xu W J, Yu H, Jia H P. Appl. Catal. B Environ., 2019, 250: 396.
[104]
Hu F Y, Peng Y, Chen J J, Liu S, Song H, Li J H. Appl. Catal. B Environ., 2019, 240: 329.
[105]
Zagoruiko A N, Mokrinskii V V, Veniaminov S A, Noskov A S. J. Environ. Chem. Eng., 2017, 5(6): 5850.
[106]
Gao W, Tang X L, Yi H H, Jiang S X, Yu Q J, Xie X Z, Zhuang R J. J. Environ. Sci., 2023, 125: 112.
[107]
Cheng D J, Meng X J. Chem. Res. Chin. Univ., 2022, 38(3): 716.
[108]
He F, Luo J Q, Liu S T. Chem. Eng. J., 2016, 294: 362.
[109]
Fan J W, Niu X F, Teng W, Zhang P, Zhang W X, Zhao D Y. J. Mater. Chem. A, 2020, 8(33): 17174.
[110]
Wang H, Peng B, Zhang R D, Chen H X, Wei Y. Appl. Catal. B Environ., 2020, 276: 118922.
[111]
Huang Y, Liu Y, Wang W, Chen M J, Li H W, Lee S C, Ho W, Huang T T, Cao J J. Appl. Catal. B Environ., 2020, 278: 119294.
[112]
Peng S, Yang X X, Strong J, Sarkar B, Jiang Q, Peng F, Liu D F, Wang H L. J. Hazard. Mater., 2020, 396: 122750.
[113]
Kuang Q, Jiang Z Y, Xie Z X, Lin S C, Lin Z W, Xie S Y, Huang R B, Zheng L S. J. Am. Chem. Soc., 2005, 127(33): 11777.
[114]
Li B, Yang Q L, Peng Y, Chen J J, Deng L, Wang D, Hong X W, Li J H. Chem. Eng. J., 2019, 366: 92.
[115]
Yang W H, Peng Y, Wang Y, Wang Y, Liu H, Su Z A, Yang W N, Chen J J, Si W Z, Li J H. Appl. Catal. B Environ., 2020, 278: 119279.
[116]
Yang W H, Wang Y, Yang W N, Liu H, Li Z G, Peng Y, Li J H. ACS Appl. Mater. Interfaces, 2021, 13(2): 2753.
[117]
Rong S P, Zhang P Y, Yang Y J, Zhu L, Wang J L, Liu F. ACS Catal., 2017, 7(2): 1057.
[118]
Ren Q M, Mo S P, Fan J, Feng Z T, Zhang M Y, Chen P R, Gao J J, Fu M L, Chen L M, Wu J L, Ye D Q. Chinese J. Catal., 2020, 41(12): 1873.
[119]
Tang W X, Yao M S, Deng Y Z, Li X F, Han N, Wu X F, Chen Y F. Chem. Eng. J., 2016, 306: 709.
[120]
Zheng Y, Su Y, Pang C, Yang L, Song C, Ji N, Ma D, Lu X, Han R, Liu Q. Environ. Sci. Technol., 2022, 56(3): 1905.
[121]
Dong F, Han W G, Han W L, Tang Z C. Appl. Catal. B Environ., 2022, 315: 121524.
[122]
Liu L C, Corma A. Chem. Rev., 2018, 118(10): 4981.
[123]
Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Accounts Chem. Res., 2013, 46(8): 1740.
[124]
Lee S, Molina L, López M, Alonso J, Hammer B, Lee B, Seifert S, Winans R, Elam J, Pellin M, Vajda S. Angew. Chem. Int. Ed., 2009, 48(8): 1467.
[125]
Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans R E, Elam J W, Meyer R J, Redfern P C, Teschner D, Schlögl R, Pellin M J, Curtiss L A, Vajda S. Science, 2010, 328(5975): 224.
[126]
Xie S H, Tsunoyama H, Kurashige W, Negishi Y, Tsukuda T. ACS Catal., 2012, 2(7): 1519.
[127]
Garetto T F, Apesteguı́a C R. Appl. Catal. B Environ., 2001, 32(1-2): 83.
[128]
Huang H B, Hu P, Huang H L, Chen J D, Ye X G, Leung D Y C. Chem. Eng. J., 2014, 252: 320.
[129]
Peng R S, Li S J, Sun X B, Ren Q M, Chen L M, Fu M L, Wu J L, Ye D Q. Appl. Catal. B Environ., 2018, 220: 462.
[130]
Shi Y J, Wang J L, Zhou R X. Chemosphere, 2021, 265: 129127.
[131]
Haruta M, Ueda A, Tsubota S, Torres Sanchez R M. Catal. Today, 1996, 29(1-4): 443.
[132]
Sun H, Yu X L, Yang X Q, Ma X Y, Lin M Y, Shao C F, Zhao Y, Wang F Y, Ge M F. Catal. Today, 2019, 332: 153.
[133]
Liu Y X, Dai H X, Deng J G, Xie S H, Yang H G, Tan W, Han W, Jiang Y, Guo G S. J. Catal., 2014, 309: 408.
[134]
Minicò S, Scirè S, Crisafulli C, Maggiore R, Galvagno S. Appl. Catal. B Environ., 2000, 28(3-4): 245.
[135]
Scirè S, Minicò S, Crisafulli C, Satriano C, Pistone A. Appl. Catal. B Environ., 2003, 40(1): 43.
[136]
Wang Y F, Zhang C B, He H. ChemCatChem, 2018, 10(5): 998.
[137]
Guo Y L, Gao Y J, Li X, Zhuang G L, Wang K C, Zheng Y, Sun D H, Huang J L, Li Q B. Chem. Eng. J., 2019, 362: 41.
[138]
Bedia J, Rosas J M, Rodríguez-Mirasol J, Cordero T. Appl. Catal. B Environ., 2010, 94(1-2): 8.
[139]
Qi H, Alexson D, Glembocki O, Prokes S M. Nanotechnology, 2010, 21(21): 215706.
[140]
Waterhouse G I N, Bowmaker G A, Metson J B. Phys. Chem. Chem. Phys., 2001, 3(17): 3838.
[141]
Ou C C, Chen C H, Chan T S, Chen C S, Cheng S. J. Catal., 2019, 380: 43.
[142]
Ye Q, Zhao J S, Huo F F, Wang J, Cheng S Y, Kang T F, Dai H X. Catal. Today, 2011, 175(1): 603.
[143]
Lu A L, Sun H L, Zhang N W, Che L M, Shan S Y, Luo J, Zheng J B, Yang L F, Peng D L, Zhong C J, Chen B H. ACS Catal., 2019, 9(8): 7431.
[144]
Zhang J H, Li Y B, Zhang Y, Chen M, Wang L, Zhang C B, He H. Sci. Rep., 2015, 5: 12950.
[145]
Ousmane M, Liotta L F, Pantaleo G, Venezia A M, Di Carlo G, Aouine M, Retailleau L, Giroir-Fendler A. Catal. Today, 2011, 176(1): 7.
[146]
Chen X Y, Wang H H, Chen M, Qin X X, He H, Zhang C B. Appl. Catal. B Environ., 2021, 282: 119543.
[147]
Wang C Y, Li Y B, Zhang C B, Chen X Y, Liu C L, Weng W Z, Shan W P, He H. Appl. Catal. B Environ., 2021, 282: 119540.
[148]
Wen X Y, Li W C, Yan J X, Wang X J, Ren E B, Shi Z F, Li J, Ding X G, Mo S P, Mo D Q. J. Phys. Chem. C, 2022, 126(3): 1450.
[149]
Li J M, Qu Z P, Qin Y, Wang H. Appl. Surf. Sci., 2016, 385: 234.
[150]
Jiang W, Feng Y N, Zeng Y Q, Yao Y, Gu L L, Sun H C, Ji W J, Arandiyan H, Au C T. J. Catal., 2019, 375: 171.
[151]
Chang S, Jia Y, Zeng Y, Qian F, Guo L, Wu S, Lu J, Han Y. J. Rare Earth., 2021, 40(11): 1743.
[152]
Hu Z, Liu X F, Meng D M, Guo Y, Guo Y L, Lu G Z. ACS Catal., 2016, 6(4): 2265.
[153]
Xiao M L, Yu X L, Guo Y C, Ge M F. Environ. Sci. Technol., 2022, 56(2): 1376.
[154]
Yu K, Deng J, Shen Y J, Wang A Y, Shi L Y, Zhang D S. Iscience, 2021, 24(6): 102689.
[155]
Li N, Huang B, Dong X, Luo J S, Wang Y, Wang H, Miao D Y, Pan Y, Jiao F, Xiao J P, Qu Z P. Nat. Commun., 2022, 13: 2209.
[156]
Gan T, Yang J X, Morris D, Chu X F, Zhang P, Zhang W X, Zou Y C, Yan W F, Wei S H, Liu G. Nat. Commun., 2021, 12(1): 2741.
[157]
Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.
[158]
Zhang N Q, Ye C L, Yan H, Li L C, He H, Wang D S, Li Y D. Nano Res., 2020, 13(12): 3165.
[159]
Lang R, Du X R, Huang Y K, Jiang X Z, Zhang Q, Guo Y L, Liu K P, Qiao B T, Wang A Q, Zhang T. Chem. Rev., 2020, 120(21): 11986.
[160]
Wang A Q, Li J, Zhang T. Nat. Rev. Chem., 2018, 2(6): 65.
[161]
Cui T T, Li L X, Ye C L, Li X Y, Liu C X, Zhu S H, Chen W, Wang D S. Adv. Funct. Mater., 2022, 32(9): 2108381.
[162]
Weon S, Huang D H, Rigby K, Chu C H, Wu X H, Kim J H. ACS Environ. Sci. Technol. Eng., 2021, 1(2): 157.
[163]
Yan H, Su C L, He J, Chen W. J. Mater. Chem. A, 2018, 6(19): 8793.
[164]
Liu L C, Diaz U, Arenal R, Agostini G, Concepcion P, Corma A. Nat. Mater., 2017, 16(12): 1272.
[165]
Jiao L, Jiang H L. Chem-Us, 2019, 5(4): 786.
[166]
DeRita L, Dai S, Lopez-Zepeda K, Pham N, Graham G W, Pan X Q, Christopher P. J. Am. Chem. Soc., 2017, 139(40): 14150.
[167]
Duan S B, Wang R M, Liu J Y. Nanotechnology, 2018, 29(20):
[168]
Qiao B T, Liang J X, Wang A Q, Xu C Q, Li J, Zhang T, Liu J Y. Nano Res., 2015, 8(9): 2913.
[169]
Wan J W, Chen W X, Jia C Y, Zheng L R, Dong J C, Zheng X S, Wang Y, Yan W S, Chen C, Peng Q, Wang D S, Li Y D. Adv. Mater., 2018, 30(11): 1705369.
[170]
Wu Z N, Hwang I, Cha G, Qin S S, Tomanec O, Badura Z, Kment S, Zboril R, Schmuki P. Small, 2022, 18(2): 2104892.
[171]
Kunwar D, Zhou S L, DeLaRiva A, Peterson E J, Xiong H F, Pereira-Hernández X I, Purdy S C, ter Veen R, Brongersma H H, Miller J T, Hashiguchi H, Kovarik L, Lin S, Guo H, Wang Y, Datye A K. ACS Catal., 2019, 9(5): 3978.
[172]
Chen Z, Zhang Q, Chen W X, Dong J C, Yao H R, Zhang X B, Tong X J, Wang D S, Peng Q, Chen C, He W, Li Y D. Adv. Mater., 2018, 30(5): 1704720.
[173]
Liu P X, Zhao Y, Qin R X, Mo S G, Chen G X, Gu L, Chevrier D M, Zhang P, Guo Q, Zang D D, Wu B H, Fu G, Zheng N F. Science, 2016, 352(6287): 797.
[174]
Wei S J, Li A, Liu J C, Li Z, Chen W X, Gong Y, Zhang Q H, Cheong W C, Wang Y, Zheng L R, Xiao H, Chen C, Wang D S, Peng Q, Gu L, Han X D, Li J, Li Y D. Nat. Nanotechnol., 2018, 13(9): 856.
[175]
Chen J, Jiang M Z, Xu W J, Chen J, Hong Z X, Jia H P. Appl. Catal. B Environ., 2019, 259: 118013.
[176]
Zhang C B, Liu F D, Zhai Y P, Ariga H, Yi N, Liu Y C, Asakura K, Flytzani-Stephanopoulos M, He H. Angew. Chem. Int. Ed., 2012, 51(38): 9628.
[177]
Hu P P, Huang Z W, Amghouz Z, Makkee M, Xu F, Kapteijn F, Dikhtiarenko A, Chen Y X, Gu X, Tang X F. Angew. Chem. Int. Ed., 2014, 53(13): 3418.
[178]
Zhang N Q, Zhang X X, Tao L, Jiang P, Ye C L, Lin R, Huang Z W, Li A, Pang D W, Yan H, Wang Y, Xu P, An S F, Zhang Q H, Liu L C, Du S X, Han X D, Wang D S, Li Y D. Angew. Chem. Int. Ed., 2021, 60(11): 6170.
[179]
Yang W, Zhao X, Wang Y, Wang X, Liu H, Yang W, Zhou H, Wu Y A, Sun C, Peng Y, Li J. Catal. Sci. Technol., 2022, 12(19): 5932.
[180]
Fang J X, Huang Z W, Wang L P, Guo S F, Li M X, Liu Y C, Chen J M, Wu X M, Shen H Z, Zhao H W, Jing G H. J. Phys. Chem. C, 2022, 126(13): 5873.
[181]
Jiang Z Y, Feng X B, Deng J L, He C, Douthwaite M, Yu Y K, Liu J, Hao Z P, Zhao Z. Adv. Funct. Mater., 2019, 29(31): 1902041.
[182]
Jiang Z Y, Jing M Z, Feng X B, Xiong J C, He C, Douthwaite M, Zheng L R, Song W Y, Liu J, Qu Z G. Appl. Catal. B Environ., 2020, 278: 119304.
[183]
Nie L, Mei D, Xiong H, Peng B, Ren Z, Hernandez X I P, DeLaRiva A, Wang M, Engelhard M H, Kovarik L, Datye A K, Wang Y. Science, 2019, 363(6425): 1419.
[184]
Kwak J H, Hu J Z, Mei D, Yi C W, Kim D H, Peden C H F, Allard L F, Szanyi J. Science, 2009, 325(5948): 1670.
[185]
Wang F, Ma J Z, Xin S H, Wang Q, Xu J, Zhang C B, He H, Zeng X C. Nat. Commun., 2020, 11(1): 529.
[186]
Xie S H, Zhang X, Xu P, Hatcher B, Liu Y X, Ma L, Ehrlich S N, Hong S, Liu F D. Catal. Today, 2022, 402: 149.
[187]
Wang H, Dong J S, Allard L F, Lee S, Oh S, Wang J, Li W, Shen M Q, Yang M. Appl. Catal. B Environ., 2019, 244: 327.
[188]
Zhao S Z, Wen Y F, Liu X J, Pen X Y, Lu F, Gao F Y, Xie X Z, Du C C, Yi H H, Kang D J, Tang X L. Nano Res., 2020, 13(6): 1544.
[189]
Wang Z W, Yang H G, Liu R, Xie S H, Liu Y X, Dai H X, Huang H B, Deng J G. J. Hazard. Mater., 2020, 392: 122258.
[190]
Jeong H, Kwon O, Kim B S, Bae J, Shin S, Kim H E, Kim J, Lee H J. Nat. Catal., 2020, 3(4): 368.
[191]
Su Y, Fu K X, Zheng Y F, Ji N, Song C F, Ma D G, Lu X B, Han R, Liu Q L. Appl. Catal. B Environ., 2021, 288: 119980.
[192]
Jeong H, Lee G, Kim B S, Bae J, Han J W, Lee H. J. Am. Chem. Soc., 2018, 140(30): 9558.

基金

国家自然科学基金项目(22306210)
国家重点研发计划(2022YFB3504004)
中石化石油化工科学研究院院控课题(PR20230115)

PDF(41160 KB)

Accesses

Citation

Detail

段落导航
相关文章

/