光催化甲烷直接转化制甲醇提高甲烷转化率和甲醇选择性

韩春秋, 曹玥晗, 黄川, 吕伟峰, 周莹

化学进展 ›› 2024, Vol. 36 ›› Issue (6) : 867-877.

PDF(23040 KB)
PDF(23040 KB)
化学进展 ›› 2024, Vol. 36 ›› Issue (6) : 867-877. DOI: 10.7536/PC231020
综述

光催化甲烷直接转化制甲醇提高甲烷转化率和甲醇选择性

作者信息 +

Photocatalytic Methane Oxidation to Methanol in Promoting Methane Conversion Rate and Methanol Selectivity

Author information +
文章历史 +

摘要

The photocatalytic direct conversion of methane (CH4) to methanol (CH3OH) provides an effective approach for chemical energy storage and the synthesis of high-value chemicals. However, because the activation of CH4 molecules is difficult, and CH3OH is more active than CH4 and more prone to peroxidation, the conversion of CH4 is low, and the selectivity of CH3OH is also low. Therefore, the selective photocatalytic direct conversion of CH4 to CH3OH still faces great challenges. In this review, recent research ideas for improving CH4 conversion and CH3OH selectivity in photocatalytic CH4 direct conversion to CH3OH, as well as the corresponding catalyst design strategies, are summarized. In terms of improving the conversion rate of CH4, it is mainly through improving the activation of active oxygen radicals or catalytic activation pathway to effectively activate CH4. In terms of improving the selectivity of CH3OH, it is mainly to inhibit the peroxidation of CH3OH or to achieve the regeneration of CH3OH. In order to improve the conversion of CH4 and the selectivity of CH3OH, the main strategies of catalytic design are loading cocatalyst, controlling the size of catalytic materials and constructing oxygen vacancies. Finally, the future research directions of photocatalytic direct conversion of CH4 to CH3OH are proposed in this review.

Abstract

Photocatalytic direct conversion of methane(CH4)to methanol(CH3OH)provides an effective way for efficient energy storage and the synthesis of high-value chemicals.However,due to the difficulty in activating CH4molecules and the fact that CH3OH is more reactive than CH4and prone to peroxidation,the conversion rate of CH4is low,and the selectivity of CH3OH is low as well.Therefore,the selective photocatalytic direct conversion of CH4to CH3OH still faces significant challenges.This review focuses on the research ideas on promoting CH4conversion rate and CH3OH selectivity in recent years in the direct conversion of photocatalytic CH4to CH3OH,as well as the corresponding catalyst design strategies.In terms of promoting the CH4conversion rate,the main research idea is to effectively activate CH4by improving reactive oxygen radical activation or catalytic activation pathways.In terms of promoting CH3OH selectivity,the main idea is to inhibit the peroxidation of CH3OH or achieve CH3OH regeneration.In order to improve the conversion rate of CH4and the selectivity of CH3OH,catalytic design strategies mainly include loading cocatalysts,controlling the size of catalytic materials and constructing oxygen vacancies.Finally,this review provides an outlook on the future research direction of photocatalytic direct conversion of CH4to CH3OH .

Contents

1 Introduction

2 Approach of promoting CH4conversion rate

2.1 Reactive oxygen radical activation

2.2 Catalytic activation

3 Strategies for the design of catalysts to enhance the conversion rate of CH4

3.1 Reactive radicals

3.2 Active site of photocatalysts

4 Approach of promoting CH3OH selectivity

4.1 Inhibiting CH3OH peroxidation

4.2 Achieving CH3OH regeneration

5 Conclusion and outlook

关键词

光催化 / 甲烷转化 / 甲醇 / 促进C—H键活化 / 抑制甲醇过氧化

Key words

photocatalytic / CH4 conversion / CH3OH / promoting activation of C—H bond / inhibiting CH3OH peroxidation

引用本文

导出引用
韩春秋 , 曹玥晗 , 黄川 , . 光催化甲烷直接转化制甲醇提高甲烷转化率和甲醇选择性[J]. 化学进展. 2024, 36(6): 867-877 https://doi.org/10.7536/PC231020
, , , et al. Photocatalytic Methane Oxidation to Methanol in Promoting Methane Conversion Rate and Methanol Selectivity[J]. Progress in Chemistry. 2024, 36(6): 867-877 https://doi.org/10.7536/PC231020
中图分类号: O643.3    O622.3   

参考文献

[1]
Sher Shah M S A, Oh C, Park H, Hwang Y J, Ma M, Park J H. Adv. Sci., 2020, 7(23): 2001946.
[2]
Amano F, Akamoto C, Ishimaru M, Inagaki S, Yoshida H. Chem. Commun., 2020, 56(47): 6348.
[3]
Wang J, Yao N. Prog. Chem., 2017, 29: 1509.
(王晶, 姚楠. 化学进展, 2017, 29: 1509.)
[4]
BP plc. BP Statistical Review of World Energy 2021. London: BP plc, 2021.
(英国石油公司. BP世界能源统计年鉴2021. 伦敦: 英国石油公司, 2021.)
[5]
Holmen A. Catal. Today, 2009, 142(1/2): 2.
[6]
Yuniar G, Saputera W H, Sasongko D, Mukti R R, Rizkiana J, Devianto H. Molecules, 2022, 27(17): 5496.
[7]
Yuliati L, Yoshida H. Chem. Soc. Rev., 2008, 37(8): 1592.
[8]
Li Q, Ouyang Y, Li H, Wang L, Zeng J. Angew. Chem. Int. Ed., 2022, 61: e202108069.
[9]
Gunsalus N J, Koppaka A, Park S H, Bischof S M, Hashiguchi B G, Periana R A. Chem. Rev., 2017, 117(13): 8521.
[10]
Natte K, Neumann H, Beller M, Jagadeesh R V. Angew. Chem. Int. Ed., 2017, 56(23): 6384.
[11]
An B, Li Z, Wang Z, Zeng X D, Han X, Cheng Y Q, Sheveleva A M, Zhang Z Y, Tuna F, McInnes E J L, Frogley M D, Ramirez-Cuesta A J, Natrajan L S, Wang C, Lin W B, Yang S H, Schröder M. Nat. Mater., 2022, 21(8): 932.
[12]
Boulamanti A, Moya J A. Renew. Sustain. Energy Rev., 2017, 68: 1205.
[13]
Hogerwaard J, Dincer I, Naterer G F, Patterson B D. Int. J. Energy Res., 2019, 43(11): 5687.
[14]
Tabibian S S, Sharifzadeh M. Renew. Sustain. Energy Rev., 2023, 179: 113281.
[15]
Zhou Y Y, Wang H P, Liu X C, Qiao S M, Shao D K, Zhou J, Zhang L, Wang W Z. Nano Energy, 2021, 79: 105449.
[16]
Zeng Y, Tang Z Y, Wu X Y, Huang A H, Luo X, Xu G Q, Zhu Y F, Wang S L. Appl. Catal. B Environ., 2022, 306: 120919.
[17]
Yang J, Hao J Y, Wei J P, Dai J, Li Y. Fuel, 2020, 266: 117104.
[18]
Tian Y D, Piao L Y, Chen X B. Green Chem., 2021, 23(10): 3526.
[19]
Sun H L, Hu L F, Li Z Y, Lang J Y, Wang C L, Liu X H, Hu Y H, Jin F M. ChemCatChem, 2022, 14(10): e202200001.
[20]
Yang Y, Chai Z, Qin X, Zhang Z, Muhetaer A, Wang C, Huang H, Yang C, Ma D, Li Q, Xu D. Angew. Chem. Int. Ed., 2022, 61: e202200567.
[21]
Cao S F, Zhang K, Hanna B, Al-Sayed E. Chin. Chemical Lett., 2022, 33(4): 1757.
[22]
Kwon Y, Kim T Y, Kwon G, Yi J, Lee H. J. Am. Chem. Soc., 2017, 139(48): 17694.
[23]
Zuo Z J, Ramírez P J, Senanayake S D, Liu P, Rodriguez J A. J. Am. Chem. Soc., 2016, 138(42): 13810.
[24]
Jørgensen M, Grönbeck H. ACS Catal., 2016, 6(10): 6730.
[25]
Song H, Meng X G, Wang S Y, Zhou W, Song S, Kako T, Ye J H. ACS Catal., 2020, 10(23): 14318.
[26]
Cheng F Y, Duan X Y, Xie K. Angew. Chem., 2021, 133(34): 18940.
[27]
Bai S X, Liu F F, Huang B L, Li F, Lin H P, Wu T, Sun M Z, Wu J B, Shao Q, Xu Y, Huang X Q. Nat. Commun., 2020, 11: 954.
[28]
Sushkevich V L, Palagin D, Ranocchiari M, van Bokhoven J A. Science, 2017, 356(6337): 523.
[29]
Lu J, Guo Y, Liu Q, Han G, Wang Z J. Prog. Chem., 2017, 29: 1471.
(卢君颖, 郭禹, 刘其瑞, 韩广智, 王周君. 化学进展, 2017, 29: 1471.)
[30]
Olivos-Suarez A I, Szécsényi À, Hensen E J M, Ruiz-Martinez J, Pidko E A, Gascon J. ACS Catal., 2016, 6(5): 2965.
[31]
Qi G D, Davies T E, Nasrallah A, Sainna M A, Howe A G R, Lewis R J, Quesne M, Catlow C R A, Willock D J, He Q, Bethell D, Howard M J, Murrer B A, Harrison B, Kiely C J, Zhao X L, Deng F, Xu J, Hutchings G J. Nat. Catal., 2022, 5(1): 45.
[32]
Periana R A, Taube D J, Evitt E R, Löffler D G, Wentrcek P R, Voss G, Masuda T. Science, 1993, 259(5093): 340.
[33]
Periana R A, Taube D J, Gamble S, Taube H, Satoh T, Fujii H. Science, 1998, 280(5363): 560.
[34]
Hashiguchi B G, Bischof S M, Konnick M M, Periana R A. Acc. Chem. Res., 2012, 45(6): 885.
[35]
Jin Z, Wang L, Zuidema E, Mondal K, Zhang M, Zhang J, Wang C T, Meng X J, Yang H Q, Mesters C, Xiao F S. Science, 2020, 367(6474): 193.
[36]
Hammond C, Forde M M, Ab Rahim M H, Thetford A, He Q, Jenkins R L, Dimitratos N, Lopez-Sanchez J A, Dummer N F, Murphy D M, Carley A F, Taylor S H, Willock D J, Stangland E E, Kang J, Hagen H, Kiely C J, Hutchings G J. Angew. Chem. Int. Ed., 2012, 51(21): 5129.
[37]
Agarwal N, Freakley S J, McVicker R U, Althahban S M, Dimitratos N, He Q, Morgan D J, Jenkins R L, Willock D J, Taylor S H, Kiely C J, Hutchings G J. Science, 2017, 358(6360): 223.
[38]
Li X Y, Wang C, Tang J W. Nat. Rev. Mater., 2022, 7(8): 617.
[39]
Shoji S, Peng X B, Yamaguchi A, Watanabe R, Fukuhara C, Cho Y, Yamamoto T, Matsumura S, Yu M W, Ishii S, Fujita T, Abe H, Miyauchi M. Nat. Catal., 2020, 3(2): 148.
[40]
Song H, Meng X G, Wang Z J, Liu H M, Ye J H. Joule, 2019, 3(7): 1606.
[41]
Xiang X L, Zhu B C, Cheng B, Yu J G, Lv H J. Small, 2020, 16(26): 2001024.
[42]
He J R, Hu L J, Shao C T, Jiang S J, Sun C Z, Song S Q. ACS Nano, 2021, 15(11): 18006.
[43]
Cao Y H, Guo L, Dan M, Doronkin D E, Han C Q, Rao Z Q, Liu Y, Meng J, Huang Z A, Zheng K B, Chen P, Dong F, Zhou Y. Nat. Commun., 2021, 12: 1675.
[44]
Han C Q, Zhang R M, Ye Y H, Wang L, Ma Z Y, Su F Y, Xie H Q, Zhou Y, Wong P K, Ye L Q. J. Mater. Chem. A, 2019, 7(16): 9726.
[45]
Ran J R, Jaroniec M, Qiao S Z. Adv. Mater., 2018, 30(7): 1704649.
[46]
Wang J B, Huang Z A, Wang Y, Wu J D, Rao Z Q, Wang F, Zhou Y. Chin. Chemical Lett., 2022, 33(10): 4687.
[47]
Song H, Meng X G, Wang S Y, Zhou W, Wang X S, Kako T, Ye J H. J. Am. Chem. Soc., 2019, 141(51): 20507.
[48]
Zheng K, Wu Y, Zhu J C, Wu M Y, Jiao X C, Li L, Wang S M, Fan M H, Hu J, Yan W S, Zhu J F, Sun Y F, Xie Y. J. Am. Chem. Soc., 2022, 144(27): 12357.
[49]
Xie J, Jin R, Sankar G, Li A, Bi Y, Ruan Q, Deng Y, Ma D, Tang J. Nat. Catal., 2018, 1: 889.
[50]
Han C, Cao Y, Yu W, Huang Z, Dong F, Ye L, Yu S, Zhou Y. J. Am. Chem. Soc., 2023, 145: 8609.
[51]
Cao Y H, Guo R, Ma M Z, Huang Z A, Zhou Y. Acta Phys. Chim. Sin., 2023: 2303029.
[52]
Nosaka Y, Nosaka A Y. Chem. Rev., 2017, 117(17): 11302.
[53]
Gan Y P, Huang M, Yu F, Yu X, He Z J, Liu J, Lin T J, Dai Y Y, Niu Q, Zhong L S. ACS Sustainable Chem. Eng., 2023, 11(14): 5537.
[54]
Cao Y, Huang Z, Han C, Zhou Y. Adv. Sci., 2024: 2306891.
[55]
Schwach P, Pan X L, Bao X H. Chem. Rev., 2017, 117(13): 8497.
[56]
Villa K, Galán-Mascarós J R. ChemSusChem, 2021, 14(9): 2023.
[57]
Li Y, Li J, Zhang G K, Wang K, Wu X Y. ACS Sustainable Chem. Eng., 2019, 7(4): 4382.
[58]
Gondal M A, Hameed A, Yamani Z H, Arfaj A. Chem. Phys. Lett., 2004, 392(4/6): 372.
[59]
Wang P, Shi R, Zhao Y X, Li Z H, Zhao J Q, Zhao J Q, Waterhouse G I N, Wu L Z, Zhang T R. Angew. Chem. Int. Ed., 2023, 62(23): e202304301.
[60]
Li L, Li G D, Yan C, Mu X Y, Pan X L, Zou X X, Wang K X, Chen J S. Angew. Chem. Int. Ed., 2011, 50(36): 8299.
[61]
Chen Y, Wang F, Huang Z A, Chen J H, Han C Q, Li Q L, Cao Y H, Zhou Y. ACS Appl. Mater. Interfaces, 2021, 13(39): 46694.
[62]
Feng N D, Lin H W, Song H, Yang L X, Tang D M, Deng F, Ye J H. Nat. Commun., 2021, 12: 4652.
[63]
Li K, Wang H, Wei Y, Ao X, Liu M. Prog. Chem., 2008, 20: 1306.
(李孔斋, 王华, 魏永刚, 敖先权, 刘明春. 化学进展, 2008, 20: 1306.)
[64]
He K, Shen R, Hao L, Li Y, Zhang P, Jiang J, Xin L. Acta Phys.-Chim. Sin., 2022, 38: 2201021.
(何科林, 沈荣晨, 郝磊, 李佑稷, 张鹏, 江吉周, 李鑫. 物理化学学报, 2022, 38: 2201021)
[65]
Zhu S, Li X D, Pan Z K, Jiao X C, Zheng K, Li L, Shao W W, Zu X L, Hu J, Zhu J F, Sun Y F, Xie Y. Nano Lett., 2021, 21(9): 4122.
[66]
Fan Y Y, Zhou W C, Qiu X Y, Li H D, Jiang Y H, Sun Z H, Han D X, Niu L, Tang Z Y. Nat. Sustain., 2021, 4(6): 509.
[67]
Zhou Y, Zhang L, Wang W. Nat. Commun., 2019, 10: 506.
[68]
Zhou W C, Qiu X Y, Jiang Y H, Fan Y Y, Wei S L, Han D X, Niu L, Tang Z Y. J. Mater. Chem. A, 2020, 8(26): 13277.
[69]
Zhang Z J, Zhang J, Zhu Y R, An Z, Shu X, Song H Y, Wang W L, Chai Z G, Shang C B, Jiang S J, Jing Y S, Zheng L R, He J. Chem Catal., 2022, 2(6): 1440.
[70]
Cao Y H, Yang Y T, Yu W, Li G, Rao Z Q, Huang Z A, Wang F, Yuan C D, Zhou Y. ACS Appl. Mater. Interfaces, 2022, 14(11): 13344.
[71]
Liu Y H, Zhang W, Zheng W T. Nano Micro Lett., 2022, 14(1): 158.
[72]
Abdelghafar F, Xu X M, Jiang S P, Shao Z P. Mater. Rep. Energy, 2022, 2(3): 100144.
[73]
Wang P, Shi R, Zhao J, Zhang T. Adv. Sci., 2023, 2305471.
[74]
Yu X, Zholobenko V L, Moldovan S, Hu D, Wu D, Ordomsky V V, Khodakov A Y. Nat. Energy, 2020, 5(7): 511.
[75]
Xie P F, Ding J, Yao Z H, Pu T C, Zhang P, Huang Z N, Wang C H, Zhang J L, Zecher-Freeman N, Zong H, Yuan D S, Deng S W, Shahbazian-Yassar R, Wang C. Nat. Commun., 2022, 13: 1375.
[76]
Luo P P, Zhou X K, Li Y, Lu T B. ACS Appl. Mater. Interfaces, 2022, 14(18): 21069.
[77]
Miao T J, Wang C, Xiong L Q, Li X Y, Xie J J, Tang J W. ACS Catal., 2021, 11(13): 8226.
[78]
Song S, Song H, Li L, Wang S, Chu W, Peng K, Meng X, Wang Q, Deng B, Liu Q. Nat. Catal., 2021, 4: 1032.
[79]
Lustemberg P G, Palomino R M, Gutiérrez R A, Grinter D C, Vorokhta M, Liu Z Y, Ramírez P J, Matolín V, Ganduglia-Pirovano M V, Senanayake S D, Rodriguez J A. J. Am. Chem. Soc., 2018, 140(24): 7681.
[80]
He Y L, Guo F C, Yang K R, Heinlein J A, Bamonte S M, Fee J J, Hu S, Suib S L, Haller G L, Batista V S, Pfefferle L D. J. Am. Chem. Soc., 2020, 142(40): 17119.
[81]
Han C Q, Cao Y H, Qiu J, Ma Z M, Dong F, Zhou Y. Chin. Sci. Bull., 2023, 68: 4544.
(韩春秋, 曹玥晗, 邱杰, 马敏智, 董帆, 周莹. 科学通报, 2023, 68: 4544.)
[82]
Ding J, Teng Z Y, Su X Z, Kato K, Liu Y H, Xiao T, Liu W, Liu L Y, Zhang Q, Ren X Y, Zhang J C, Chen Z Y, Teruhisa O, Yamakata A, Yang H B, Huang Y Q, Liu B, Zhai Y M. Chem, 2023, 9(4): 1017.
[83]
Luo L, Fu L, Liu H F, Xu Y X, Xing J L, Chang C R, Yang D Y, Tang J W. Nat. Commun., 2022, 13: 2930.
[84]
Luo L, Gong Z Y, Xu Y X, Ma J N, Liu H F, Xing J L, Tang J W. J. Am. Chem. Soc., 2022, 144(2): 740.
[85]
Jiang Y H, Li S Y, Wang S K, Zhang Y, Long C, Xie J, Fan X Y, Zhao W S, Xu P, Fan Y Y, Cui C H, Tang Z Y. J. Am. Chem. Soc., 2023, 145(4): 2698.
[86]
Bai Y, Chen T, Wang P Q, Wang L, Ye L Q. Chem. Eng. J., 2016, 304: 454.
[87]
Li H, Zhang L Z. Curr. Opin. Green Sustain. Chem., 2017, 6: 48.
[88]
Cao Y, Yu W, Han C, Yang Y, Rao Z, Guo R, Dong F, Zhang R, Zhou Y. Angew. Chem. Int. Ed., 2023, 62: e202302196.

基金

国家自然科学基金项目(22209135)
国家自然科学基金项目(52325401)
国家自然科学基金项目(22209136)
中国博士后科学基金(2022M722635)
四川省博士后创新人才支持项目(BX202220)

PDF(23040 KB)

Accesses

Citation

Detail

段落导航
相关文章

/