Controlled Synthesis of Silver Nanomaterials and Their Environmental Applications

Ziyu Pan, Haodong Ji

Prog Chem ›› 2023, Vol. 35 ›› Issue (8) : 1229-1257.

PDF(19411 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(19411 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (8) : 1229-1257. DOI: 10.7536/PC221218
Review

Controlled Synthesis of Silver Nanomaterials and Their Environmental Applications

Author information +
History +

Abstract

Silver nanomaterials have been widely used in catalysis, medicine, environment and other fields due to their high catalytic activity, fine biocompatibility, unique physical and chemical properties. This review first introduced the species, properties and synthetic strategy of silver nanomaterials, summarized controllable synthesis method in detail, and discussed the new achievements of machine learning in the synthesis of silver nanomaterials. Then, we reviewed the applications of silver nanomaterials in the environment such as pollutant removal, sterilization and virus inactivation, sensor and so on. Based on this, the species, controlled synthesis and environmental applications of silver nanomaterials were reviewed and prospected in this paper.

Contents

1 Introduction

2 Types and synthesis methods of silver nanomaterials

2.1 Types and synthesis methods of silver nanomaterials composed of only silver element

2.2 Types and synthesis methods of silver nanomaterials of containing two or more elements

2.3 The types and synthesis methods of silver nanomaterials with different carriers

2.4 Types and synthesis methods of silver oxide,silver halide and other nanomaterials

3 Environmental applications of silver nanomaterials

3.1 Application of silver nanomaterials in pollutants-adsorption and catalytic degradation

3.2 Application of silver nanomaterials in water purification,antibacterial and antiviral

3.3 Application of silver nanomaterials in the treatment of toxic metal wastewater-sensor

4 Summary and prospects for the future

Key words

silver nanomaterials / species / controlled synthesis / environmental applications

Cite this article

Download Citations
Ziyu Pan , Haodong Ji. Controlled Synthesis of Silver Nanomaterials and Their Environmental Applications[J]. Progress in Chemistry. 2023, 35(8): 1229-1257 https://doi.org/10.7536/PC221218

References

[1]
Zhang X F, Liu Z G, Shen W, Gurunathan S. Int. J. Mol. Sci., 2016, 17(9): 1534.
[2]
Gunawan C, Marquis C P, Amal R, Sotiriou G A, Rice S A, Harry E J. ACS Nano, 2017, 11(4): 3438.
[3]
Rizzello L, Pompa P P. Chem. Soc. Rev., 2014, 43(5): 1501.
[4]
Fernando A, Dimuthu M Weerawardene K L, Karimova N V, Aikens C M. Chem. Rev., 2015, 115(12): 6112.
[5]
Islam M A, Jacob M V, Antunes E. J. Environ. Manag., 2021, 281: 111918.
[6]
Wiley B, Herricks T, Sun Y G, Xia Y N. Nano Lett., 2004, 4(9): 1733.
[7]
Li H, You Q, Feng X, Zheng C, Zeng X, Xu H. J. Drug Deliv. Sci. Tech., 2023, 80: 104165.
[8]
Steinigeweg D, Schlücker S. Chem. Commun., 2012, 48(69): 8682.
[9]
Personick M L, Langille M R, Zhang J, Wu J S, Li S Y, Mirkin C A. Small, 2013, 9(11): 1947.
[10]
Im S H, Lee Y T, Wiley B, Xia Y N. Angewandte Chemie Int. Ed., 2005, 44(14): 2154.
[11]
Rycenga M, McLellan J M, Xia Y N. Adv. Mater., 2008, 20(12): 2416.
[12]
Jana N R, Gearheart L, Murphy C J. Chem. Commun., 2001(7): 617.
[13]
Wiley B J, Chen Y, McLellan J M, Xiong Y J, Li Z Y, Ginger D, Xia Y N. Nano Lett., 2007, 7(4): 1032.
[14]
Pietrobon B, McEachran M, Kitaev V. ACS Nano, 2009, 3(1): 21.
[15]
Wiley B J, Xiong Y J, Li Z Y, Yin Y D, Xia Y N. Nano Lett., 2006, 6(4): 765.
[16]
Zhu Z X, Wang X L, Yu H Y, Zhou W, Wang Y S, Han J, Guo F. Cryst. Growth Des., 2023, 23(3): 1455.
[17]
Xinling T, Masaharu T, Michiko N, Peng J. Bull. Chem. Soc. Jpn., 2009, 82(10):1304.
[18]
Wijaya Y N, Kim J, Choi W M, Park S H, Kim M H. Nanoscale, 2017, 9(32): 11705.
[19]
Ledwith D M, Whelan A M, Kelly J M. J. Mater. Chem., 2007, 17(23): 2459.
[20]
Zhang Q, Li N, Goebl J, Lu Z D, Yin Y D. J. Am. Chem. Soc., 2011, 133(46): 18931.
[21]
Pastoriza-Santos I, Liz-Marzán L M. Nano Lett., 2002, 2(8): 903.
[22]
Korte K E, Skrabalak S E, Xia Y N. J. Mater. Chem., 2008, 18(4): 437.
[23]
Zhang S H, Xie Z X, Jiang Z Y, Xu X, Xiang J, Huang R B, Zheng L S. Chem. Commun., 2004(9): 1106.
[24]
Wiley B J, Im S H, Li Z Y, McLellan J, Siekkinen A, Xia Y N. J. Phys. Chem. B, 2006, 110(32): 15666.
[25]
Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P. Nat. Mater., 2008, 7(6): 442.
[26]
Marimuthu S, Antonisamy A J, Malayandi S, Rajendran K, Tsai P C, Pugazhendhi A, Ponnusamy V K. J. Photochem. Photobiol. B Biol., 2020, 205: 111823.
[27]
Bahcelioglu E, Unalan H E, Erguder T H. Crit. Rev. Environ. Sci. Technol., 2021, 51(20): 2389.
[28]
Heinemann M G, Rosa C H, Rosa G R, Dias D. Trends Environ. Anal. Chem., 2021, 30: e00129.
[29]
Bu Y R, Lee S. ACS Appl. Mater. Interfaces, 2012, 4(8): 3923.
[30]
Thanh N T K, Green L A W. Nano Today, 2010, 5(3): 213.
[31]
Dong B, Xue N, Mu G H, Wang M J, Xiao Z H, Dai L, Wang Z X, Huang D C, Qian H L, Chen W. Ultrason. Sonochemistry, 2021, 73: 105485.
[32]
Wang F L, Wang Y F, Feng Y P, Zeng Y Q, Xie Z J, Zhang Q X, Su Y H, Chen P, Liu Y, Yao K, Lv W Y, Liu G G. Appl. Catal. B Environ., 2018, 221: 510.
[33]
Nowack B, Krug H F, Height M. Environ. Sci. Technol., 2011, 45(4): 1177.
[34]
Bhattarai B, Zaker Y, Atnagulov A, Yoon B, Landman U, Bigioni T P. Acc. Chem. Res., 2018, 51(12): 3104.
[35]
He D, Garg S, Wang Z M, Li L, Rong H Y, Ma X M, Li G Y, An T C, David Waite T. Environ. Sci.: Nano, 2019, 6(6): 1674.
[36]
Guo Z, Cui K P, Zeng G M, Wang J J, Guo X P. Sci. Total Environ., 2018, 643: 1325.
[37]
Zhang P, Wyman I, Hu J W, Lin S D, Zhong Z W, Tu Y Y, Huang Z Z, Wei Y L. Mater. Sci. Eng. B, 2017, 223: 1.
[38]
Zhang Z, Shen W F, Xue J, Liu Y M, Liu Y W, Yan P P, Liu J X, Tang J G. Nanoscale Res. Lett., 2018, 13(1): 1.
[39]
Nasrollahzadeh M, Mahmoudi-Gom Yek S, Motahharifar N, Ghafori Gorab M. Chem. Rec., 2019, 19(12): 2436.
[40]
Cinelli M, Coles S R, Nadagouda M N, Błaszczyński J, Słowiński R, Varma R S, Kirwan K. Green Chem., 2015, 17(5): 2825.
[41]
Xue J, Liu J X, Mao S, Wang Y, Shen W F, Wang W, Huang L J, Li H L, Tang J G. Mater. Res. Bull., 2018, 106: 113.
[42]
Zhao Q X, Zhao M M, Qiu J Q, Lai W Y, Pang H, Huang W. Small, 2017, 13(38): 1701091.
[43]
Sun D L, Xu X M, Qin Y L, Jiang S P, Shao Z P. ChemSusChem, 2020, 13(1): 39.
[44]
An C H, Wang S T, Sun Y G, Zhang Q H, Zhang J, Wang C Y, Fang J Y. J. Mater. Chem. A, 2016, 4(12): 4336.
[45]
Xue W J, Huang D L, Wen X J, Chen S, Cheng M, Deng R, Li B, Yang Y, Liu X G. J. Hazard. Mater., 2020, 390: 122128.
[46]
Liang C, Lu Z A, Wu J, Chen M X, Zhang Y Y, Zhang B, Gao G L, Li S W, Xu P. ACS Appl. Mater. Interfaces, 2020, 12(49): 54266.
[47]
Zhang J A, Langille M R, Mirkin C A. J. Am. Chem. Soc., 2010, 132(35): 12502.
[48]
Landry M J, GellÉ A, Meng B Y, Barrett C J, Moores A. ACS Catal., 2017, 7(9): 6128.
[49]
Zhang J W, Winget S A, Wu Y R, Su D, Sun X J, Xie Z X, Qin D. ACS Nano, 2016, 10(2): 2607.
[50]
Zhang Y, Ahn J, Liu J Y, Qin D. Chem. Mater., 2018, 30(6): 2151.
[51]
Jia H L, Dou Y R, Yang Y Y, Li F, Zhang C Y. Nanoscale, 2021, 13(47): 20289.
[52]
Zou X X, Silva R, Huang X X, Al-Sharab J F, Asefa T. Chem. Commun., 2013, 49(4): 382.
[53]
Xu G W, Wu Y P, Dong W W, Zhao J, Wu X Q, Li D S, Zhang Q C. Small, 2017, 13(22): 1602996.
[54]
Charistoudi E, Kallitsakis M G, Charisteidis I, Triantafyllidis K S, Lykakis I N. Adv. Synth. Catal., 2017, 359(17): 2949.
[55]
Sadovnikov S I, Gusev A I. J. Mater. Chem. A, 2017, 5(34): 17676.
[56]
Sharma S, Dutta V, Raizada P, Hosseini-Bandegharaei A, Thakur V K, Kalia S, Nguyen V H, Singh P. J. Environ. Chem. Eng., 2021, 9(2): 105157.
[57]
Song W, Querebillo C J, Götz R, Katz S, Kuhlmann U, Gernert U, Weidinger I M, Hildebrandt P. Nanoscale, 2017, 9(24): 8380.
[58]
Jensen T R, Malinsky M D, Haynes C L, Van Duyne R P. J. Phys. Chem. B, 2000, 104(45): 10549.
[59]
Zulkifli N I, Muhamad M, Mohamad Zain N N, Tan W N, Yahaya N, Bustami Y, Abdul Aziz A, Nik Mohamed Kamal N N S. Molecules, 2020, 25(18): 4332.
[60]
Caswell K K, Bender C M, Murphy C J. Nano Lett., 2003, 3(5): 667.
[61]
MÉtraux G S, Mirkin C A. Adv. Mater., 2005, 17(4): 412.
[62]
Raza M, Kanwal Z, Rauf A, Sabri A, Riaz S, Naseem S. Nanomaterials, 2016, 6(4): 74.
[63]
Shameli K, Bin Ahmad M, Davoud Jazayeri S, Sedaghat S, Shabanzadeh P, Jahangirian H, Mahdavi M, Abdollahi Y. Int. J. Mol. Sci., 2012, 13(6): 6639.
[64]
Skrabalak S E, Au L, Li X D, Xia Y N. Nat. Protoc., 2007, 2(9): 2182.
[65]
Sun Y G, Xia Y N. Science, 2002, 298(5601): 2176.
[66]
Banerjee S, Loza K, Meyer-Zaika W, Prymak O, Epple M. Chem. Mater., 2014, 26(2): 951.
[67]
Xia X H, Zeng J, McDearmon B, Zheng Y Q, Li Q G, Xia Y N. Angew. Chem., 2011, 123(52): 12750.
[68]
Liu X X, Li L L, Yang Y D, Yin Y D, Gao C B. Nanoscale, 2014, 6(9): 4513.
[69]
Pan Z Y, Zhou J, Zou H Y, Li Y F, Gao P F, Huang C Z. J. Colloid Interface Sci., 2021, 584: 253.
[70]
Xu H X, Suslick K S. ACS Nano, 2010, 4(6): 3209.
[71]
Chen S L, Wang G H, Sui W J, Parvez A M, Si C L. Green Chem., 2020, 22(9): 2879.
[72]
Pan Z Y, Gao P F, Jing C J, Zhou J, Liang W T, Lei G, Feng W, Li Y F, Huang C Z. Appl. Catal. B Environ., 2021, 291: 120090.
[73]
Adhikari L, Larm N E, Bhawawet N, Baker G A. ACS Sustainable Chem. Eng., 2018, 6(5): 5725.
[74]
Hebbalalu D, Lalley J, Nadagouda M N, Varma R S. ACS Sustainable Chem. Eng., 2013, 1(7): 703.
[75]
Zhang Q, Li W Y, Moran C, Zeng J, Chen J Y, Wen L P, Xia Y N. J. Am. Chem. Soc., 2010, 132(32): 11372.
[76]
Xia Y N, Gilroy K D, Peng H C, Xia X H. Angewandte Chemie Int. Ed., 2017, 56(1): 60.
[77]
Koga N, Tanaka H. Thermochimica Acta, 2002, 388(1/2): 41.
[78]
Hosseinpour-Mashkani S M, Ramezani M. Mater. Lett., 2014, 130: 259.
[79]
Akhtar M S, Panwar J, Yun Y S. ACS Sustainable Chem. Eng., 2013, 1(6): 591.
[80]
Virkutyte J, Varma R S. Chem. Sci., 2011, 2(5): 837.
[81]
Moulton M C, Braydich-Stolle L K, Nadagouda M N, Kunzelman S, Hussain S M, Varma R S. Nanoscale, 2010, 2(5): 763.
[82]
Johnson R W, Hultqvist A, Bent S F. Mater. Today, 2014, 17(5): 236.
[83]
Sharma R K, Yadav S, Dutta S, Kale H B, Warkad I R, Zbořil R, Varma R S, Gawande M B. Chem. Soc. Rev., 2021, 50(20): 11293.
[84]
Gawande M B, Shelke S N, Zboril R, Varma R S. Acc. Chem. Res., 2014, 47(4): 1338.
[85]
Xu H X, Zeiger B W, Suslick K S. Chem. Soc. Rev., 2013, 42(7): 2555.
[86]
Bang J H, Suslick K S. Adv. Mater., 2010, 22(10): 1039.
[87]
Van Hyning D L, Zukoski C F. Langmuir, 1998, 14(24): 7034.
[88]
Wuithschick M, Paul B, Bienert R, Sarfraz A, Vainio U, Sztucki M, Kraehnert R, Strasser P, Rademann K, Emmerling F, Polte J. Chem. Mater., 2013, 25(23): 4679.
[89]
Aziz N, Faraz M, Pandey R, Shakir M, Fatma T, Varma A, Barman I, Prasad R. Langmuir, 2015, 31(42): 11605.
[90]
Dauthal P, Mukhopadhyay M. Ind. Eng. Chem. Res., 2016, 55(36): 9557.
[91]
Nadagouda M N, Varma R S. Green Chem., 2008, 10(8): 859.
[92]
Raveendran P, Fu J, Wallen S L. J. Am. Chem. Soc., 2003, 125(46): 13940.
[93]
Sutradhar P, Saha M. J. Phys. Chem. C, 2016, 120(16): 8941.
[94]
Xue Y Y, Qiu X Q, Liu Z W, Li Y. ACS Sustainable Chem. Eng., 2018, 6(6): 7695.
[95]
Boopathi S, Gopinath S, Boopathi T, Balamurugan V, Rajeshkumar R, Sundararaman M. Ind. Eng. Chem. Res., 2012, 51(17): 5976.
[96]
Kasithevar M, Saravanan M, Prakash P, Kumar H, Ovais M, Barabadi H, Shinwari Z K. J. Interdiscip. Nanomed., 2017, 2(2): 131.
[97]
Nadagouda M N, Iyanna N, Lalley J, Han C, Dionysiou D D, Varma R S. ACS Sustainable Chem. Eng., 2014, 2(7): 1717.
[98]
Nakano M, Fujiwara T, Koga N. J. Phys. Chem. C, 2016, 120(16): 8841.
[99]
Zong R L, Wang X L, Shi S K, Zhu Y F. Phys. Chem. Chem. Phys., 2014, 16(9): 4236.
[100]
Rostami S, Mehdinia A, Jabbari A. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2017, 180: 204.
[101]
Lin X, Lin S, Liu Y L, Gao M M, Zhao H Y, Liu B K, Hasi W, Wang L. Langmuir, 2018, 34(21): 6077.
[102]
Zhang L, Wang Y, Tong L M, Xia Y N. Langmuir, 2013, 29(50): 15719.
[103]
Lin Z W, Tsao Y C, Yang M Y, Huang M H. Chem. A Eur. J., 2016, 22(7): 2326.
[104]
Wiley B, Sun Y G, Mayers B, Xia Y N. Chem. A Eur. J., 2005, 11(2): 454.
[105]
Siekkinen A R, McLellan J M, Chen J Y, Xia Y N. Chem. Phys. Lett., 2006, 432(4/6): 491.
[106]
Sherry L J, Chang S H, Schatz G C, Van Duyne R P, Wiley B J, Xia Y N. Nano Lett., 2005, 5(10): 2034.
[107]
Wang Y, Zou H Y, Huang C Z. Nanoscale, 2015, 7(37): 15209.
[108]
Zhang Q, Li W Y, Wen L P, Chen J Y, Xia Y N. Chem. A Eur. J., 2010, 16(33): 10234.
[109]
Yu D B, Yam V W W. J. Am. Chem. Soc., 2004, 126(41): 13200.
[110]
Jiang L P, Xu S, Zhu J M, Zhang J R, Zhu J J, Chen H Y. Inorg. Chem., 2004, 43(19): 5877.
[111]
Washio I, Xiong Y, Yin Y, Xia Y. Adv. Mater., 2006, 18(13): 1745.
[112]
Aherne D, Ledwith D M, Gara M, Kelly J M. Adv. Funct. Mater., 2008, 18(14): 2005.
[113]
Charles D E, Aherne D, Gara M, Ledwith D M, Gun’ko Y K, Kelly J M, Blau W J, Brennan-Fournet M E. ACS Nano, 2010, 4(1): 55.
[114]
Zhu Y P, Wang X K, Guo W L, Wang J G, Wang C. Ultrason. Sonochemistry, 2010, 17(4): 675.
[115]
Zhang J, Langille M R, Mirkin C A. Nano Lett., 2011, 11(6): 2495.
[116]
Sun Y G, Yin Y D, Mayers B T, Herricks T, Xia Y N. Chem. Mater., 2002, 14(11): 4736.
[117]
Sun Y G, Gates B, Mayers B, Xia Y N. Nano Lett., 2002, 2(2): 165.
[118]
Sun Y G, Mayers B, Herricks T, Xia Y N. Nano Lett., 2003, 3(7): 955.
[119]
Kou J H, Varma R S. Chem. Commun., 2013, 49(7): 692.
[120]
Tang S C, Vongehr S, Wan N, Meng X K. Mater. Chem. Phys., 2013, 142(1): 17.
[121]
Langille M., Personick M., Mirkin C. Angewandte Chemie Int. Ed., 2013, 52(52): 13910-13940.
[122]
Sherry L J, Jin R C, Mirkin C A, Schatz G C, Van Duyne R P. Nano Lett., 2006, 6(9): 2060.
[123]
Jin R C, Cao Y W, Mirkin C A, Kelly K L, Schatz G C, Zheng J G. Science, 2001, 294(5548): 1901.
[124]
Zhang M F, Zhao A W, Sun H H, Guo H Y, Wang D P, Li D, Gan Z B, Tao W Y. J. Mater. Chem., 2011, 21(46): 18817.
[125]
Zhang B, Xu P, Xie X M, Wei H, Li Z P, Mack N H, Han X J, Xu H X, Wang H L. J. Mater. Chem., 2011, 21(8): 2495.
[126]
Kang L L, Xu P, Zhang B, Tsai H, Han X J, Wang H L. Chem. Commun., 2013, 49(33): 3389.
[127]
Tang X H, Cai W Y, Yang L B, Liu J H. Nanoscale, 2014, 6(15): 8612.
[128]
Chen S H, Fan Z Y, Carroll D L. J. Phys. Chem. B, 2002, 106(42): 10777.
[129]
Zhang D B, Qi L M, Yang J H, Ma J M, Cheng H M, Huang L. Chem. Mater., 2004, 16(5): 872.
[130]
Xia X H, Zeng J, Oetjen L K, Li Q G, Xia Y N. J. Am. Chem. Soc., 2012, 134(3): 1793.
[131]
Wang Y, Wan D H, Xie S F, Xia X H, Huang C Z, Xia Y N. ACS Nano, 2013, 7(5): 4586.
[132]
Yang Y, Matsubara S, Xiong L M, Hayakawa T, Nogami M. J. Phys. Chem. C, 2007, 111(26): 9095.
[133]
Burda C, Chen X B, Narayanan R, El-Sayed M A. Chem. Rev., 2005, 105(4): 1025.
[134]
Henglein A. Chem. Mater., 1998, 10(1): 444.
[135]
Tao A, Sinsermsuksakul P, Yang P D. Angewandte Chemie Int. Ed., 2006, 45(28): 4597.
[136]
Rebello Sousa Dias M, Leite M S. Acc. Chem. Res., 2019, 52(10): 2881.
[137]
Liu Y, Huang C Z. ACS Nano, 2013, 7(12): 11026.
[138]
Wu W, Lei M, Yang S L, Zhou L, Liu L, Xiao X H, Jiang C Z, Roy V A L. J. Mater. Chem. A, 2015, 3(7): 3450.
[139]
Chen L M, Deming C P, Peng Y, Hu P G, Stofan J, Chen S W. Nanoscale, 2016, 8(30): 14565.
[140]
Wu Y R, Sun X J, Yang Y, Li J M, Zhang Y, Qin D. Acc. Chem. Res., 2017, 50(7): 1774.
[141]
Karam T E, Smith H T, Haber L H. J. Phys. Chem. C, 2015, 119(32): 18573.
[142]
Peng Z Q, Spliethoff B, Tesche B, Walther T, Kleinermanns K. J. Phys. Chem. B, 2006, 110(6): 2549.
[143]
Sharma M, Pudasaini P R, Ruiz-Zepeda F, Vinogradova E, Ayon A A. ACS Appl. Mater. Interfaces, 2014, 6(17): 15472.
[144]
Wang P Y, Bai Y J, Yao C, Li X M, Zhou L, Wang W X, El-Toni A M, Zi J, Zhao D Y, Shi L, Zhang F. Anal. Chem., 2017, 89(4): 2583.
[145]
AbdelHamid A A, Al-Ghobashy M A, Fawzy M, Mohamed M B, Abdel-Mottaleb M M S A. ACS Sustainable Chem. Eng., 2013, 1(12): 1520.
[146]
Xia B H, He F, Li L D. Langmuir, 2013, 29(15): 4901.
[147]
Chen J Y, Wiley B, McLellan J, Xiong Y J, Li Z Y, Xia Y N. Nano Lett., 2005, 5(10): 2058.
[148]
Li J M, Sun X J, Qin D. ChemNanoMat, 2016, 2(6): 494.
[149]
Peiris S, Sarina S, Han C H, Xiao Q, Zhu H Y. Dalton Trans., 2017, 46(32): 10665.
[150]
Zhang W Q, Yang J Z, Lu X M. ACS Nano, 2012, 6(8): 7397.
[151]
Zhang Z Y, Nenoff T M, Leung K, Ferreira S R, Huang J Y, Berry D T, Provencio P P, Stumpf R. J. Phys. Chem. C, 2010, 114(34): 14309.
[152]
Ghosh Chaudhuri R, Paria S. Chem. Rev. 2012, 112(4): 2373.
[153]
Tsuji M, Miyamae N, Lim S, Kimura K, Zhang X, Hikino S, Nishio M. Cryst. Growth Des., 2006, 6(8): 1801.
[154]
Anandan S, Grieser F, Ashokkumar M. J. Phys. Chem. C, 2008, 112(39): 15102.
[155]
Samal A K, Polavarapu L, Rodal-Cedeira S, Liz-Marzán L M, PÉrez-Juste J, Pastoriza-Santos I. Langmuir, 2013, 29(48): 15076.
[156]
Yang Y, Liu J Y, Fu Z W, Qin D. J. Am. Chem. Soc., 2014, 136(23): 8153.
[157]
Zhuo X L, Zhu X Z, Li Q, Yang Z, Wang J F. ACS Nano, 2015, 9(7): 7523.
[158]
Ye Z J, Weng R, Ma Y H, Wang F Y, Liu H, Wei L, Xiao L H. Anal. Chem., 2018, 90(21): 13044.
[159]
Sun X J, Qin D. J. Mater. Chem. C, 2015, 3(45): 11833.
[160]
Carroll K J, Hudgins D M, Spurgeon S, Kemner K M, Mishra B, Boyanov M I, Brown L W III, Taheri M L, Carpenter E E. Chem. Mater., 2010, 22(23): 6291.
[161]
Li J M, Liu J Y, Yang Y, Qin D. J. Am. Chem. Soc., 2015, 137(22): 7039.
[162]
Kim C, Suh B L, Yun H, Kim J, Lee H. ACS Catal., 2017, 7(4): 2294.
[163]
Khatami M, Alijani H, Nejad M, Varma R. Appl. Sci., 2018, 8(3): 411.
[164]
Poggi E, Gohy J F. Colloid Polym. Sci., 2017, 295(11): 2083.
[165]
Jiang F R, Tian Q W, Tang M H, Chen Z G, Yang J M, Hu J Q. CrystEngComm, 2011, 13(24): 7189.
[166]
Song Y, Liu K, Chen S W. Langmuir, 2012, 28(49): 17143.
[167]
Chang Z M, Wang Z, Lu M M, Shao D, Yue J, Yang D, Li M Q, Dong W F. Colloids Surf. B Biointerfaces, 2017, 157: 199.
[168]
Wang Z, Chang Z M, Lu M M, Shao D, Yue J, Yang D, Li M Q, Dong W F. ACS Appl. Mater. Interfaces, 2017, 9(36): 30306.
[169]
Kirillova A, Schliebe C, Stoychev G, Jakob A, Lang H, Synytska A. ACS Appl. Mater. Interfaces, 2015, 7(38): 21218.
[170]
Buccolieri A, Bettini S, Salvatore L, Baldassarre F, Ciccarella G, Giancane G. Sens. Actuat. B Chem., 2018, 267: 265.
[171]
Guo Y C, Khan A U, Cao K, Liu G L. ACS Appl. Nano Mater., 2018, 1(10): 5377.
[172]
Levard C, Hotze E M, Lowry G V, Brown G E Jr. Environ. Sci. Technol., 2012, 46(13): 6900.
[173]
Sokolov S V, Tschulik K, Batchelor-McAuley C, Jurkschat K, Compton R G. Anal. Chem., 2015, 87(19): 10033.
[174]
Shao W, Liu X F, Min H H, Dong G H, Feng Q Y, Zuo S L. ACS Appl. Mater. Interfaces, 2015, 7(12): 6966.
[175]
Yang H, Liu Y, Shen Q H, Chen L F, You W H, Wang X M, Sheng J S. J. Mater. Chem., 2012, 22(45): 24132.
[176]
Chang S Q, Liu C C, Sun Y F, Yan Z F, Zhang X H, Hu X D, Zhang H Q. ACS Appl. Nano Mater., 2020, 3(3): 2302.
[177]
Cao H L, Huang H B, Chen Z, Karadeniz B, J, Cao R. ACS Appl. Mater. Interfaces, 2017, 9(6): 5231.
[178]
Gao G H, Mathkar A, Martins E P, Galvão D S, Gao D Y, Alves da Silva Autreto P, Sun C J, Cai L T, Ajayan P M. J. Mater. Chem. A, 2014, 2(9): 3148.
[179]
Xia H, Hong C Y, Shi X Q, Li B, Yuan G L, Yao Q F, Xie J P. J. Mater. Chem. A, 2015, 3(3): 1216.
[180]
Liu S, Tian J Q, Wang L, Sun X P. Carbon, 2011, 49(10): 3158.
[181]
Bhunia S K, Jana N R. ACS Appl. Mater. Interfaces, 2014, 6(22): 20085.
[182]
Lu X Q, Qi H T, Zhang X F, Xue Z H, Jin J, Zhou X B, Liu X H. Chem. Commun., 2011, 47(46): 12494.
[183]
Tang X Z, Cao Z W, Zhang H B, Liu J, Yu Z Z. Chem. Commun., 2011, 47(11): 3084.
[184]
Zhang Y M, Yuan X, Wang Y, Chen Y. J. Mater. Chem., 2012, 22(15): 7245.
[185]
Perdikaki A, Galeou A, Pilatos G, Karatasios I, Kanellopoulos N K, Prombona A, Karanikolos G N. ACS Appl. Mater. Interfaces, 2016, 8(41): 27498.
[186]
Bao Q, Zhang D, Qi P. J. Colloid Interface Sci., 2011, 360(2): 463.
[187]
Li Y Z, Cao Y L, Xie J, Jia D Z, Qin H Y, Liang Z T. Catal. Commun., 2015, 58: 21.
[188]
Jeon E K, Seo E, Lee E, Lee W, Um M K, Kim B S. Chem. Commun., 2013, 49(33): 3392.
[189]
Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R. J. Mater. Chem., 2011, 21(40): 15872.
[190]
Singh P, Lamanna G, MÉnard-Moyon C, Toma F M, Magnano E, Bondino F, Prato M, Verma S, Bianco A. Angewandte Chemie Int. Ed., 2011, 50(42): 9893.
[191]
Yan X L, Li S, Bao J H, Zhang N, Fan B B, Li R F, Liu X G, Pan Y X. ACS Appl. Mater. Interfaces, 2016, 8(27): 17060.
[192]
Zheng J W, Duan X P, Lin H Q, Gu Z Q, Fang H H, Li J H, Yuan Y Z. Nanoscale, 2016, 8(11): 5959.
[193]
Krainoi A, Kummerlöwe C, Vennemann N, Nakaramontri Y, Pichaiyut S, Nakason C. J. Appl. Polym. Sci., 2019, 136(13): 47281.
[194]
Espinosa J C, NavalÓn S, Álvaro M, García H. ChemCatChem, 2015, 7(17): 2682.
[195]
Espinosa J C, NavalÓn S, Álvaro M, García H. Catal. Sci. Technol., 2016, 6(19): 7077.
[196]
Li S, Bandy J A, Hamers R J. ACS Appl. Mater. Interfaces, 2018, 10(6): 5395.
[197]
Patel S B, Vasava D V. ChemistrySelect, 2018, 3(2): 471.
[198]
Veerakumar P, Rajkumar C, Chen S M, Thirumalraj B, Lin K C. J. Electroanal. Chem., 2018, 826: 207.
[199]
Liu J, Wang H Q, Antonietti M. Chem. Soc. Rev., 2016, 45(8): 2308.
[200]
Zhang P, Shao C L, Zhang Z Y, Zhang M Y, Mu J B, Guo Z C, Liu Y C. Nanoscale, 2011, 3(8): 3357.
[201]
Ji T, Chen L, Schmitz M, Bao F S, Zhu J H. Green Chem., 2015, 17(4): 2515.
[202]
Caltagirone C, Bettoschi A, Garau A, Montis R. Chem. Soc. Rev., 2015, 44(14): 4645.
[203]
Sharma R K, Sharma S, Dutta S, Zboril R, Gawande M B. Green Chem., 2015, 17(6): 3207.
[204]
Steffan M, Jakob A, Claus P, Lang H. Catal. Commun., 2009, 10(5): 437.
[205]
Naik B, Hazra S, Prasad V S, Ghosh N N. Catal. Commun., 2011, 12(12): 1104.
[206]
Raji V, Chakraborty M, Parikh P A. Ind. Eng. Chem. Res., 2012, 51(16): 5691.
[207]
He D, Kacopieros M, Ikeda-Ohno A, David Waite T. Environ. Sci. Technol., 2014, 48(20): 12320.
[208]
Chen Z C, Luck R L. Green Chem., 2016, 18(11): 3354.
[209]
Guillerm V, Kim D, Eubank J F, Luebke R, Liu X F, Adil K, Lah M S, Eddaoudi M. Chem. Soc. Rev., 2014, 43(16): 6141.
[210]
Zhu Q L, Xu Q. Chem. Soc. Rev., 2014, 43(16): 5468.
[211]
Czaja A U, Trukhan N, Müller U. Chem. Soc. Rev., 2009, 38(5): 1284.
[212]
Zhu N N, Liu X H, Li T, Ma J G, Cheng P, Yang G M. Inorg. Chem., 2017, 56(6): 3414.
[213]
Dutta G, Jana A K, Singh D K, Eswaramoorthy M, Natarajan S. Chem. Asian J., 2018, 13(18): 2677.
[214]
Mbhele Z H, Salemane M G, van Sittert C G C E, Nedeljković J M, Djoković V, Luyt A S. Chem. Mater., 2003, 15(26): 5019.
[215]
Zhu J F, Zhu Y J. J. Phys. Chem. B, 2006, 110(17): 8593.
[216]
Yu D Y, Tan M X, Zhang Y G. Adv. Synth. Catal., 2012, 354(6): 969.
[217]
Eisa W H, Abdel-Baset T A, Mohamed E M A, Mahrous S. J. Inorg. Organomet. Polym. Mater., 2017, 27(6): 1703.
[218]
Silvestri D, Wacławek S, Venkateshaiah A, Krawczyk K, Sobel B, Padil V V T, Černík M, Varma R S. Carbohydr. Polym., 2020, 232: 115806.
[219]
Sun W L, Meng Y, Fu Q R, Wang F, Wang G J, Gao W H, Huang X C, Lu F S. ACS Appl. Mater. Interfaces, 2016, 8(15): 9881.
[220]
Lin Y, Bunker C E, Fernando K A S, Connell J W. ACS Appl. Mater. Interfaces, 2012, 4(2): 1110.
[221]
Pang J Y, Chao Y H, Chang H H, Li H P, Xiong J, Zhang Q, Chen G Y, Qian J C, Zhu W S, Li H M. ACS Sustainable Chem. Eng., 2018, 6(4): 4948.
[222]
Zheng N F, Stucky G D. J. Am. Chem. Soc., 2006, 128(44): 14278.
[223]
Gawande M B, Pandey R K, Jayaram R V. Catal. Sci. Technol., 2012, 2(6): 1113.
[224]
Mori K, Kumami A, Tomonari M, Yamashita H. J. Phys. Chem. C, 2009, 113(39): 16850.
[225]
Poreddy R, García-Suárez E J, Riisager A, Kegnæs S. Dalton Trans., 2014, 43(11): 4255.
[226]
Stamplecoskie K G, Manser J S. ACS Appl. Mater. Interfaces, 2014, 6(20): 17489.
[227]
Virkutyte J, Varma R S. New J. Chem., 2010, 34(6): 1094.
[228]
Liang Y Q, Cui Z D, Zhu S L, Liu Y, Yang X J. J. Catal., 2011, 278(2): 276.
[229]
Deng Q, Duan X W, Ng D H L, Tang H B, Yang Y, Kong M G, Wu Z K, Cai W P, Wang G Z. ACS Appl. Mater. Interfaces, 2012, 4(11): 6030.
[230]
Ali Ansari S, Khan M M, Ansari M O, Lee J, Cho M H. J. Phys. Chem. C, 2013, 117(51): 27023.
[231]
Bai B Y, Qiao Q, Arandiyan H, Li J H, Hao J M. Environ. Sci. Technol., 2016, 50(5): 2635.
[232]
Chen X M, Ku S, Weibel J A, Ximenes E, Liu X Y, Ladisch M, Garimella S V. ACS Appl. Mater. Interfaces, 2017, 9(45): 39165.
[233]
Bouazizi N, Vieillard J, Thebault P, Desriac F, Clamens T, Bargougui R, Couvrat N, Thoumire O, Brun N, Ladam G, Morin S, Mofaddel N, Lesouhaitier O, Azzouz A, Le Derf F. Dalton Trans., 2018, 47(27): 9143.
[234]
Tang D P, Yuan R, Chai Y Q. J. Phys. Chem. B, 2006, 110(24): 11640.
[235]
Kundakovic L, Flytzani-Stephanopoulos M. Appl. Catal. A Gen., 1999, 183(1): 35.
[236]
Ghosh S, Acharyya S S, Sasaki T, Bal R. Green Chem., 2015, 17(3): 1867.
[237]
Wang Y, Liu Z M, Han B X, Huang Y, Yang G Y. Langmuir, 2005, 21(23): 10846.
[238]
Zhang H, Fu Q, Yao Y X, Zhang Z, Ma T, Tan D L, Bao X H. Langmuir, 2008, 24(19): 10874.
[239]
Guo J S, Hsu A, Chu D, Chen R R. J. Phys. Chem. C, 2010, 114(10): 4324.
[240]
Garcia A C, Gasparotto L H S, Gomes J F, Tremiliosi-Filho G. Electrocatalysis, 2012, 3(2): 147.
[241]
Wang H Q, Liu J B, Wu X, Tong Z H, Deng Z X. Nanotechnology, 2013, 24(20): 205102.
[242]
Fageria P, Gangopadhyay S, Pande S. RSC Adv., 2014, 4(48): 24962.
[243]
Wang Z C, Xin L, Zhao X S, Qiu Y, Zhang Z Y, Baturina O A, Li W Z. Renew. Energy, 2014, 62: 556.
[244]
Kundu M K, Sadhukhan M, Barman S. J. Mater. Chem. B, 2015, 3(7): 1289.
[245]
Guo S X, Zhang Q, Li H B, Guo H F, He W. Nano Res., 2017, 10(9): 3261.
[246]
Sobhani-Nasab A, Behpour M. J. Mater. Sci. Mater. Electron., 2016, 27(2): 1191.
[247]
Rashmi B N, Harlapur S F, Avinash B, Ravikumar C R, Nagaswarupa H P, Anil Kumar M R, Gurushantha K, Santosh M S. Inorg. Chem. Commun., 2020, 111: 107580.
[248]
Wen X J, Shen C H, Fei Z H, Fang D, Liu Z T, Dai J T, Niu C G. Chem. Eng. J., 2020, 383: 123083.
[249]
Li X P, Xu P, Chen M, Zeng G M, Wang D B, Chen F, Tang W W, Chen C Y, Zhang C, Tan X F. Chem. Eng. J., 2019, 366: 339.
[250]
Dargo Beyene H, Werkneh A A, Bezabh H K, Ambaye T G. Sustain. Mater. Technol., 2017, 13: 18.
[251]
Whang T J, Huang H Y, Hsieh M T, Chen J J. Int. J. Mol. Sci., 2009, 10(11): 4707.
[252]
Kanjwal M A, Barakat N A M, Sheikh F A, Khil M S, Kim H Y. Int. J. Appl. Ceram. Technol., 2010, 7: E54.
[253]
Ghaedi M, Heidarpour S, Nasiri Kokhdan S, Sahraie R, Daneshfar A, Brazesh B. Powder Technol., 2012, 228: 18.
[254]
Chen Q C, Wu Q S. J. Hazard. Mater., 2015, 283: 193.
[255]
Jiao T F, Guo H Y, Zhang Q R, Peng Q M, Tang Y F, Yan X H, Li B B. Sci. Rep., 2015, 5: 11873.
[256]
Kaviya S, Prasad E. RSC Adv., 2015, 5(32): 25532.
[257]
Sinha T, Ahmaruzzaman M. J. Colloid Interface Sci., 2015, 453: 115.
[258]
Hou C L, Ma K, Jiao T F, Xing R R, Li K K, Zhou J X, Zhang L X. RSC Adv., 2016, 6(112): 110799.
[259]
Goswami M, Baruah D, Das A M. New J. Chem., 2018, 42(13): 10868.
[260]
Jose P P A, Kala M S, Kalarikkal N, Thomas S. Res. Chem. Intermed., 2018, 44(9): 5597.
[261]
Khan M A M, Kumar S, Ahamad T, Alhazaa A N. J. Alloys Compd., 2018, 743: 485.
[262]
Liao G F, Li Q, Zhao W Z, Pang Q H, Gao H Y, Xu Z S. Appl. Catal. A Gen., 2018, 549: 102.
[263]
Wu Z C, Zhang Y, Tao T X, Zhang L F, Fong H. Appl. Surf. Sci., 2010, 257(3): 1092.
[264]
Zhang D F, Zeng F B. Res. Chem. Intermed., 2010, 36(9): 1055.
[265]
Malaikozhundan B, Vijayakumar S, Vaseeharan B, Jenifer A A, Chitra P, Prabhu N M, Kannapiran E. Microb. Pathog., 2017, 111: 316.
[266]
Rostami-Vartooni A, Moradi-Saadatmand A. IET Nanobiotechnology, 2019, 13(4): 407.
[267]
Das S K, Khan M M R, Parandhaman T, Laffir F, Guha A K, Sekaran G, Mandal A B. Nanoscale, 2013, 5(12): 5549.
[268]
Yola M L, Eren T J, Atar N, Wang S B. Chem. Eng. J., 2014, 242: 333.
[269]
Goscianska J, Pietrzak R. Catal. Today, 2015, 249: 259.
[270]
Ramalingam B, Khan M M R, Mondal B, Mandal A B, Das S K. ACS Sustainable Chem. Eng., 2015, 3(9): 2291.
[271]
Satapathy M K, Das P. Desalination Water Treat., 2016, 57(9): 4073.
[272]
Elmi Fard N, Fazaeli R. Int. J. Chem. Kinet., 2016, 48(11): 691.
[273]
Tsvetkov M, Zaharieva J, Milanova M. Catal. Today, 2020, 357: 453.
[274]
Mariselvam R, Ranjitsingh A J A, Mosae Selvakumar P, Alarfaj A A, Munusamy M A. Bioinorganic Chem. Appl., 2016, 2016: 8629178.
[275]
Yang J, An X Y, Liu L Q, Seta F T, Zhang H, Nie S X, Yao S Q, Cao H B, Xu Q L, Liu H B, Ni Y H. Cellulose, 2020, 27(9): 5071.
[276]
Okeke E S, Okoye C O, Atakpa E O, Ita R E, Nyaruaba R, Mgbechidinma C L, Donald Akan O. Resour. Conserv. Recycl., 2022, 177: 105961.
[277]
Tirkey A, Upadhyay L S B. Mar. Pollut. Bull., 2021, 170: 112604.
[278]
Hu K S, Tian W J, Yang Y Y, Nie G, Zhou P, Wang Y X, Duan X G, Wang S B. Water Res., 2021, 198: 117144.
[279]
Goh P S, Kang H S, Ismail A F, Khor W H, Quen L K, Higgins D. Chemosphere, 2022, 299: 134418.
[280]
Rout P R, Zhang T C, Bhunia P, Surampalli R Y. Sci. Total Environ., 2021, 753: 141990.
[281]
Rodriguez-Narvaez O M, Peralta-Hernandez J M, Goonetilleke A, Bandala E R. Chem. Eng. J., 2017, 323: 361.
[282]
Wang Y B, Zhao X, Cao D, Wang Y, Zhu Y F. Appl. Catal. B Environ., 2017, 211: 79.
[283]
Wang F L, Wang Y F, Li Y Y, Cui X H, Zhang Q X, Xie Z J, Liu H J, Feng Y P, Lv W Y, Liu G G. Dalton Trans., 2018, 47(20): 6924.
[284]
Ling Y, Liao G Z, Xu P, Li L S. Sep. Purif. Technol., 2019, 216: 1.
[285]
Zhao Z W, Zhang W, Liu W, Li Y Y, Ye J Y, Liang J L, Tong M P. Sci. Total Environ., 2020, 742: 140642.
[286]
Chithra A, Sekar R, Senthil Kumar P, Padmalaya G. Chemosphere, 2022, 295: 133915.
[287]
Dayana Priyadharshini S, Manikandan S, Kiruthiga R, Rednam U, Babu P S, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Environ. Pollut., 2022, 306: 119377.
[288]
Ferraris M, Perero S, Miola M, Ferraris S, VernÉ E, Morgiel J. Mater. Chem. Phys., 2010, 120(1): 123.
[289]
Hossain F, Perales-Perez O J, Hwang S, Román F. Sci. Total Environ., 2014, 466/467: 1047.
[290]
Li Q L, Mahendra S, Lyon D Y, Brunet L, Liga M V, Li D, Alvarez P J J. Water Res., 2008, 42(18): 4591.
[291]
Song B, Zhang C, Zeng G M, Gong J L, Chang Y N, Jiang Y. Arch. Biochem. Biophys., 2016, 604: 167.
[292]
Pradeep T, Anshup. Thin Solid Films, 2009, 517(24): 6441.
[293]
Rai M, Yadav A, Gade A. Biotechnol. Adv., 2009, 27(1): 76.
[294]
Guzman M, Dille J, Godet S. Nanomed. Nanotechnol. Biol. Med., 2012, 8(1): 37.
[295]
Maillard J Y, Hartemann P. Crit. Rev. Microbiol., 2013, 39(4): 373.
[296]
Le Ouay B, Stellacci F. Nano Today, 2015, 10(3): 339.
[297]
Durán N, Durán M, de Jesus M B, Seabra A B, Fávaro W J, Nakazato G. Nanomed. Nanotechnol. Biol. Med., 2016, 12(3): 789.
[298]
Xiu Z M, Zhang Q B, Puppala H L, Colvin V L, Alvarez P J J. Nano Lett., 2012, 12(8): 4271.
[299]
Praveena S M, Aris A Z. Water Qual. Expo. Health, 2015, 7(4): 617.
[300]
Prathna T C, Sharma S K, Kennedy M. Sep. Purif. Technol., 2018, 199: 260.
[301]
Jeevanandam J, Krishnan S, Hii Y S, Pan S, Chan Y S, Acquah C, Danquah M K, Rodrigues J. J. Nanostructure Chem., 2022, 12(5): 809.
[302]
Lu F, Astruc D. Coord. Chem. Rev., 2020, 408: 213180.
[303]
Lu F, Astruc D. Coord. Chem. Rev., 2018, 356: 147.
[304]
Driscoll C T, Mason R P, Chan H M, Jacob D J, Pirrone N. Environ. Sci. Technol., 2013, 47(10): 4967.
[305]
Fan Y J, Liu Z, Wang L, Zhan J H. Nanoscale Res. Lett., 2009, 4(10): 1230.
[306]
Anbazhagan V, Ahmed K B A, Janani S. Sens. Actuat. B Chem., 2014, 200: 92.
[307]
Bhattacharjee Y, Chakraborty A. ACS Sustainable Chem. Eng., 2014, 2(9): 2149.
[308]
Bootharaju M S, Pradeep T. J. Phys. Chem. C, 2010, 114(18): 8328.
[309]
Wang Y, Yang F, Yang X R. ACS Appl. Mater. Interfaces, 2010, 2(2): 339.
[310]
Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A. Sens. Actuat. B Chem., 2012, 161(1): 880.
[311]
Nanda Kumar D, Rajeshwari A, Alex S A, Chandrasekaran N, Mukherjee A. New J. Chem., 2015, 39(2): 1172.
[312]
Tan H L, Liu B X, Chen Y. Plasmonics, 2013, 8(2): 705.
[313]
Wu L P, Zhao H W, Qin Z H, Zhao X Y, Pu W D J. Anal. Methods Chem., 2012, 2012: 856947.
[314]
Manivannan S, Ramaraj R. Analyst, 2013, 138(6): 1733.
[315]
Rameshkumar P, Manivannan S, Ramaraj R. J. Nanoparticle Res., 2013, 15(5): 1639.
[316]
Ramesh G V, Radhakrishnan T P. ACS Appl. Mater. Interfaces, 2011, 3(4): 988.
[317]
Sumesh E, Bootharaju M S, Anshup, Pradeep T. J. Hazard. Mater., 2011, 189(1/2): 450.
[318]
Chen Y, Wu L H, Chen Y H, Bi N, Zheng X, Qi H B, Qin M H, Liao X, Zhang H Q, Tian Y. Microchimica Acta, 2012, 177(3/4): 341.
[319]
Bothra S, Solanki J N, Sahoo S K. Sens. Actuat. B Chem., 2013, 188: 937.
[320]
Adhikari B, Banerjee A. Chem. Mater., 2010, 22(15): 4364.
[321]
Chakraborty I, Udayabhaskararao T, Pradeep T. J. Hazard. Mater., 2012, 211/212: 396.
[322]
Ran X, Sun H J, Pu F, Ren J S, Qu X G. Chem. Commun., 2013, 49(11): 1079.
[323]
Zhan L, Yang T, Zhen S J, Huang C Z. Microchimica Acta, 2017, 184(9): 3171.
[324]
Karimi S, Samimi T. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2019, 222: 117216.

Funding

National Natural Science Foundation of China(52100069)
Shenzhen Science and Technology Program(JCYJ20220531093205013)
PDF(19411 KB)

Accesses

Citation

Detail

Sections
Recommended

/