Application of Metal-Organic Framework Materials in the Field of Energy Storage
Received date: 2023-09-04
Revised date: 2023-12-19
Online published: 2024-04-16
Supported by
National Natural Science Foundation of China(51974081)
Fundamental Research Funds for the Central Universities(N2225045)
Liaoning Provincial Applied Basic Research Program Project(23JH2/101600057)
Liaoning Provincial Department of Education Project(zd202006)
Liaoning Provincial Department of Education Project(JYTQN2023385)
Due to the characteristics of large specific surface area,porosity,adjustable structure and easy modification,metal-organic framework materials and their derivatives are widely used as electrode materials,separators,electrocatalysts and other energy storage materials.However,there are still many problems In the practical application of MOFs.This paper reviews the latest developments in the application of MOFs and their derived materials in energy storage devices such as alkali metal ion batteries,metal chalcogenide batteries,aqueous zinc ion batteries,and supercapacitors,and proposes design solutions for problems such as dendrite growth and shuttle effects that often occur in secondary batteries.in addition,the design ideas of MOFs-derived carbon material heterostructure and metal compound structure modification are also summarized.Finally,the intrinsic regulation of MOFs precursors and the modification strategies of derived materials are summarized and prospected。
1 Introduction
2 MOFs are used in the field of energy storage
2.1 Applications in lithium-ion batteries
2.2 Applications in sodium-ion batteries
2.3 Applications in potassium-ion batteries
2.4 Applications in metal-chalcogen batteries
2.5 Applications in aqueous zinc-ion batteries
2.6 Applications in supercapacitors
3 Modification strategies for MOFs and their derived materials
3.1 Intrinsic regulation of MOFs
3.2 MOFs-derived carbon materials
3.3 MOFs-derived metal compounds
4 Conclusion and outlook
Hanlin Shen , Min Dai , Zhuo Li , Yunan Tian , Tianwei Li , Xianwei Hu . Application of Metal-Organic Framework Materials in the Field of Energy Storage[J]. Progress in Chemistry, 2024 , 36(5) : 724 -740 . DOI: 10.7536/PC230823
图1 (a) Co4-Ir MOF合成与结构示意图;(b) HLIC在不同电流密度下从100到4000 mA·g-1的恒电流充放电曲线[26];(c) Fe-Co-Se/NC的CV曲线;(d) Fe-Co-Se/NC与其他两个对照组在1 A·g-1时的循环性能图[27]Fig. 1 (a) Synthesis and structure diagram of Co4-Ir MOF, (b) HLIC constant current charge-discharge curves from 100 to 4000 mA·g-1 at different current densities [26]. Copyright 2021 Wiley-VCH GmbH, (c) cyclic voltammetry of Fe-Co-Se/NC, (d) Fe-Co-Se/NC cycling performance plot at 1 A·g-1 with two other control groups [27]. Copyright 2023, University of Science and Technology Beijing |
图2 (a) Co2P@NC制备方法;(b) 0.1 mV·s-1扫描速率下Co2P@NC-12.5的CV曲线;(c) 3种对比条件的Co2P@NC电流密度为0.1 A·g-1时的充放电稳定性[33];(d) CoSe@NC/MoSe2制备过程;(e) CoSe@NC/MoSe2与对照电极在5.0 A·g-1下的长期循环稳定性[34];(f) Zn-TDPAT MOF的合成和结构;(g) Zn-TDPAT-GC倍率性能;(h) 在20 mA·g-1和100 mA·g-1下Zn-TDPAT-GC电极的循环性能测试[35]Fig. 2 (a) Co2P@NC preparation method, (b) Cyclic voltammetry curve of Co2P@NC-12.5 at 0.1 mV·s-1 scan rate, (c) Charge-discharge stability of Co2P@NC at a current density of 0.1 A·g-1 under three comparison conditions[33]. Copyright 2023 Elsevier B.V. All rights reserved, (d) CoSe@NC/MoSe2 preparation method, (e) CoSe@NC/MoSe2 long-term cycling stability with reference electrode at 5.0 A·g-1 [34].Copyright 2023 Elsevier B.V. All rights reserved. (f) Zn-TDPAT MOF synthesis process and structure diagram, (g) Zn-TDPAT-GC magnification performance, (h) cycling performance test of Zn-TDPAT-GC electrode at current densities of 20 mA·g-1 and 100 mA·g-1 [35]. Copyright 2023 Elsevier Ltd. All rights reserved |
图3 (a) Co-MOF-rGO杂化材料的制备示意图;(b) Co- MOF-rGO复合负极材料电化学性能测试图[40];(c) Bi@N-CNCs产物的合成过程[42];(d) 3D结构Bi-MOF的制备[39];(e) Bi/Bi3Se4@CNR的合成过程[43]Fig. 3 (a) Co-MOF-rGO preparation process; (b) Electrochemical performance test of composite anode material Co-MOF-rGO[40]. Copyright 2020, American Chemical Society, (c) Bi@N-CNCs preparation process [42]. Copyright 2020 Wiley-VCH GmbH. (d) 3D structure Bi-MOF preparation process [39]. Copyright 2023 Wiley-VCH GmbH. (e) Bi/Bi3Se4@CNR preparation process [43]. Copyright 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved |
图4 (a) MOF@GO隔膜的制备过程[46];(b) ZIF-67/ SA-PAN的合成过程;(c) Celgard2325和ZIF-67/SA-PAN隔膜的多硫化物渗透测试对比[47];(d) Bio-MOF-100诱导锂均匀沉积的方案[49];(e) NiCoP@NC改性隔膜的制备过程[50];(f) MnM-MIL-100的制备(其中,M代表掺入的次级金属离子)[52]Fig. 4 (a) Preparation process of MOF@GO separator[46]. Copyright 2016, Springer Nature Limited, (b) ZIF-67/SA-PAN preparation process, (c) Comparison of polysulfide penetration tests for separator Celgard2325 and ZIF-67/SA-PAN [47]. Copyright 2022, American Chemical Society, (d) Scheme of uniform lithium deposition induced by Bio-MOF-100[49]. Copyright 2021, American Chemical Society. (e) Preparation process of NiCoP@NC separator [50]. Copyright 2023 Elsevier Inc. All rights reserved. (f) MnM-MIL-100 preparation process (here M represents the secondary metal ions incorporated into the metal-organic linker molecule)[52]. Copyright 2021 Wiley-VCH GmbH |
图5 (a) UiO-67-3D和UiO-67-2D的晶体结构[56];(b) Zn表面演变示意图[57];(c) D-UiO-66层的合成路线[58];(d) Mn-H3BTC-MOF-4中Mn(Ⅱ)的合成过程及配位环境;(e) Mn-H3BTC-MOF-4在3000 mA·g-1下的循环性能[60];(f) 二维CuHHTP/MX异质结构与Zn/Cu-HHTTP/MX电池机理示意图[61]Fig. 5 (a) Crystal structure of UiO-67-3D and UiO-67-2D [56]. Copyright 2022, Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature. (b) Schematic illustration of Zn surface evolution [57]. Copyright 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Preparation process of D-UiO-66 [58]. Copyright 2023, The Author(s). (d) Diagrammatic sketch of the synthetic procedure and coordination environment of Mn(II) in Mn-H3BTC-MOF-4, (e) cycling performance of Mn-H3BTC-MOF-4 at 3000 mA·g-1 [60]. Copyright 2021, American Chemical Society. (f) schematic illustration of the formation of 2D CuHHTP/MX heterostructure and the mechanism of Zn/Cu-HHTP/MX batteries [61]. Copyright 2022 Wiley-VCH GmbH. |
图6 (a) Ni3(HITP)2的分子结构与理想空间填充图[64];(b) Co-MOF-74|FGO-180的合成过程;(c) Co-MOF-74|FGO-180电极与参比电极电化学性能测试图[66]Fig. 6 (a) Ni3(HITP)2 molecular structure and ideal space filling diagram [64].Copyright 2016, Springer Nature Limited. (b) Preparation process of Co-MOF-74|FGO-180, (c) Electrochemical performance test diagram of Co-MOF-74|FGO-180 electrode and reference electrode [66]. Copyright 2022 Elsevier B.V. All rights reserved |
图7 (a) Pb2+离子的配位几何结构,[PbO2]∞链与沿c轴的一维通道的多面体的3D框架[69];(b) Ti-MOF电极的结构[70];(c) S@Mn-CCs合成及分子笼状结构示意图[71]Fig. 7 (a) Coordination geometry of Pb2+ ion, [PbO2]∞ chain and 3D framework with the highlighted polyhedra showing the 1D channels along the c-axis[69].Copyright 2017, Ameri can Chemical Society. (b) Structure of the Ti-MOF electrode[70]. Copyright 2018 Elsevier Ltd. All rights reserved. (c) Schematic diagram of S@Mn-CCs synthesis and molecular cage structure[71]. Copyright 2019 Royal Society of Chemistry |
表1 Application of pristine MOFs materials to secondary battery performanceTable 1 Pristine MOFs for battery |
Pristine MOFs | Application | Cycle number | Reversible capacity | ref |
---|---|---|---|---|
Ni-MOF | LIBs | 100 | 620 mAh·g-1 at 100 mA·g-1 | 78 |
Mn-CCs | LSBs | 200 | 990 mAh·g-1 at 0.2 C | 71 |
Fe-BTC | LIBs | 100 | 1021 mAh·g-1 at 100 mA·g-1 | 79 |
Pb-MOF | LIBs | 500 | 489 mAh·g-1 at 100 mA·g-1 | 69 |
Mn-BTC | LIBs | 100 | 694 mAh·g-1 at 103 mA·g-1 | 68 |
Ti-MOF | LIBs | 50 | 527.12 mAh·g-1 at 100 mA·g-1 | 70 |
Zn-MOF | LSBs | 200 | 609 mAh·g-1 at 0.2 C | 80 |
ZIF-7 | ZIBs | 20/180 | 188.4 mAh·g-1/129.1 mAh·g-1 at 500 mA·g-1 | 81 |
MIL-53 | LIBs | 50 | 71 mAh·g-1 at 0.2 C | 82 |
MIL-68 | LIBs | 12 | 32 mAh·g-1 at 0.2 C | 83 |
MIL-100(Cr) | LSBs | 60 | ~450 mAh·g-1 at 0.1 C | 84 |
Fe-MIL-88B | LIBs | 400 | 744.5 mAh·g-1 at 60 mA·g-1 | 85 |
MIL-47 | LIBs | 50 | 70 mAh·g-1 at 10 mA·g-1 | 86 |
MIL-88A | LSBs | 1000 | 300 mAh·g-1 at 0.5 C | 87 |
MIL-125 | PIBs | 200 | 157 mAh·g-1 at 50 mA·g-1 | 88 |
ZIF-8 | LSBs | 300 | 553 mAh·g-1 at 0.5 C | 89 |
图8 (a) BTCC制备流程[92];(b) HNPC、NPC和NSPC合成;(c-e) HNPC-900的SEM与TEM图[93]Fig. 8 (a) Preparation process of BTCC [92]. Copyright 2021 Elsevier Inc. All rights reserved. (b) Preparation process of HNPC, NPC and NSPC, (c-e) SEM and TEM diagrams of HNPC-900 [93]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
图10 (a) 制备Co@N-HPCFs催化剂的示意图;(b~d) PAN纳米纤维、MOFs/PAN纳米纤维和Co@N-HPCF-800的SEM图像;(e~g) Co@N-HPCF-800的TEM和HRTEM图像[105]Fig. 10 (a) Schematic illustration for preparing Co@N- HPCFs catalyst. SEM images of (b) PAN nanofibers, (c) MOFs/PAN nanofibers, and (d) Co@N-HPCF-800. (e~g) TEM and HRTEM images of Co@N-HPCF-800[105]. Copyright 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved. |
图11 (a) NiCo@HCS合成[107];(b) CoNiSe2/C纳米球的合成以及Ni-Co-MOF、Ni-MOF和Co-MOF的SEM和TEM图像[108];(c) SEM、粉末X射线衍射(PXRD)图谱、花状Zn-TDPAT纳米片模型,以及Zn-TDPAT纳米片在900 ℃下衍生的花状微孔氮掺杂碳纳米片(FMNCN-900)[109];(d) 碳化前的Co-SCPC以及Co-SCPC在不同放大倍率下的SEM图像[110]Fig. 11 (a) Preparation process of NiCo@HCS[107]. Copyright 2023, American Chemical Society. (b) Synthesis of CoNiSe2/C nanospheres and SEM and TEM images of Ni-Co-MOF, Ni-MOF, Co-MOF [108]. Copyright 2022 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. (c) SEM, Powder X-ray Diffraction (PXRD) Pattern, Flower-like Zn-TDPAT nanosheet model, and flower-like microporous nitrogen-doped carbon nanosheets (FMNCN-900) derived from Zn-TDPAT nanosheets at 900 ℃[109]. Copyright 2018, American Chemical Society. (d) SEM images of Co-SCPC before carbonization and Co-SCPC with different magnification [110]. Copyright 2022 Elsevier B.V. All rights reserved. |
图12 (a) ZIF-67衍生的多级卵黄壳Co3O4/C十二面体示意图以及将ZIF-67在氩气气氛中450 ℃加热2 h,得到ZIF-67/C,然后将样品在270 ℃空气中退火3 h,得到蛋黄壳Co3O4/C[116];(b) 合成TiO2/C复合材料的示意图,其亚微米片剂形态源自MOF前体MIL125(Ti)[118];(c)用于合成CoSx-rGO-CoSx和rGO@CoSx复合材料的示意图[119]Fig. 12 (a) Schematic of ZIF-67-derived hierarchical yolk-shell Co3O4/C dodecahedrons. ZIF-67 was heated at 450 ℃ for 2 h in an argon atmosphere to obtain ZIF-67/C, and then the sample was annealed at 270 ℃ for 3 h in air to obtain yolk-shell Co3O4/C[116]. Copyright 2017, Tsinghua University Press and Springer-Verlag Berlin Heidelberg. (b) Schematic illustration for the synthesis of TiO2/C composite with submicron-tablets morphology derived from a MOF precursor, MIL125(Ti)[118]. Copyright 2015 Royal Society of Chemistry. (c) Schematic illustration of the procedures used to synthesize CoSx-rGO-CoSx and rGO@CoSx composites[119]. Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim |
图13 (a) rGO/ZnO/Co3O4合成的简化示意图[124];(b) CNC-350和CNC-400制备[125];(c)中空Fe-Zn-S@S-doped-C微球的制备过程和锂离子存储特性示意图[127];(d) 阴极NMCS和阳极TPC制备离子工艺示意图[130]Fig. 13 (a) Simplified schematic diagram of rGO/ZnO/Co3O4 synthesis[124]. Copyright 2023, American Chemical Society. (b) Preparation process of CNC-350 and CNC-400[125]. Copyright 2023 The Authors. Published by American Chemical Society. (c) Schematic illustration of the preparation process and Li-ion storage properties of hollow Fe-Zn-S@S-doped-C microsphere[127]. Copyright 2019 Elsevier B.V. All rights reserved. (d) Schematic of cathode NMCS and anode TPC preparation process[130]. Copyright 2023 Elsevier B.V. All rights reserved. |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
|
[106] |
|
[107] |
|
[108] |
|
[109] |
|
[110] |
|
[111] |
|
[112] |
|
[113] |
|
[114] |
|
[115] |
|
[116] |
|
[117] |
|
[118] |
|
[119] |
|
[120] |
|
[121] |
|
[122] |
|
[123] |
|
[124] |
|
[125] |
|
[126] |
|
[127] |
|
[128] |
|
[129] |
|
[130] |
|
/
〈 |
|
〉 |