Photo-Driven Whole-Cell Biohybrids Based on Semiconductors and Microorganisms
Received date: 2024-05-07
Online published: 2025-03-28
Supported by
National Natural Science Fund for Distinguished Young Scholars(52225001)
Solar energy is the energy source for all life on Earth, and its efficient conversion is of great significance for solving the global energy crises and environmental issues. Inspired by natural photosynthesis, researchers have recently developed whole-cell biohybrids based on semiconductors and microorganisms by integrating the excellent light absorption ability of photosensitizer semiconductors and the efficient biocatalysis ability of whole-cell microbes. The development of whole-cell biohybrids aims to realize efficient solar-to-chemical production in a green and low-carbon pathway. This review clarifies the operation principle and advantages of whole-cell biohybrids, and the properties of photosensitizer semiconductors are summarized, including the band structure, excitation wavelength and quantum yield. Moreover, this work innovatively concludes the construction mechanisms of whole-cell biohybrids and the electron transfer mechanisms in the interface between semiconductor and microbe. Moreover, the advanced progress of whole-cell biohybrids are reviewed, such as the high-value conversion of carbon dioxide, artificial nitrogen fixation, hydrogen production as well as pollutant removal and recovery. Finally, the environmental impacts and challenges of whole-cell biohybrids are discussed and the perspectives for the development of whole-cell biohybrids are proposed. This article is expected to provide fundamental insights for the further development and actual application of whole-cell biohybrids.
1 Introduction
2 Principles and advantages of whole-cell biohybrids
3 Types of photosensitizers in whole-cell biohybrids
3.1 Inorganic semiconductors
3.2 Organic semiconductors
4 Construction mechanisms of whole-cell biohybrids
5 Advanced application progresses of whole-cell biohybrids
5.1 High-value conversion of CO2
5.2 Artificial nitrogen fixation
5.3 Hydrogen production
5.4 Pollutants removal and resource recovery
6 The environmental impacts and challenges in whole-cell biohybrids
7 Conclusion and outlook
Key words: solar energy; semiconductor; microorganism; whole-cell biohybrid; electron transport
Kaichong Wang , Han Wang , Yayi Wang . Photo-Driven Whole-Cell Biohybrids Based on Semiconductors and Microorganisms[J]. Progress in Chemistry, 2025 , 37(2) : 157 -172 . DOI: 10.7536/PC240501
表1 全细胞杂合体中无机半导体的种类、能带结构、激发波长及量子效率Table 1 The types, band structures, excitation wavelength and quantum yield of inorganic semiconductors in whole-cell biohybrids |
Type | VB (V vs SHE) | CB (V vs SHE) | Bandgap (eV) | Excitation wavelength (nm) | QY (%) | ref |
---|---|---|---|---|---|---|
CdS | -0.68 | 1.62 | 2.30 | 395~ 460 | 0.06 ~ 23.4 | 20,39⇓⇓ -42 |
NiCu@CdS | -1.00 | 1.68 | 2.68 | 395 | 12.41 | 43 |
CdS@Fe3O4 | - | - | - | 420 | 11.5 | 44 |
BiVO4:Mo | -0.3 | 2.1 | 2.40 | > 200 | 0.70 | 45 |
SrTiO3:La,Rh | -0.9 | 2.3 | 3.20 | > 200 | 0.70 | 45 |
InP | 0.9 | -0.44 | 1.34 | Cold white | 0.70 | 46 |
CdSexS1-x | -0.63 | 1.83 | 2.46 | 420 | 27.56 | 47 |
Cd0.8Zn0.2S | -0.58 | 1.75 | 2.62 | 450 | 16.82 | 37 |
Cu2O | 1.89 | -0.51 | 2.40 | > 420 | - | 48 |
InP QDs | - | - | 1.35 | - | 6~8 | 49 |
CdSe QDs | -1.4 | 1.0 | 2.40 | 530 | 0.17 | 29 |
CdTe QDs | - | - | 2.19 | 505~657 | 7.1~ 47.2 | 13 |
InP/ZnSe QDs | - | - | 2.64~3.1 | 400 | - | 50 |
CuInS2/ZnS QDs | -0.6 | 1.5 | 2.1 | 420~780 | 15.02 | 51 |
TiO2 | -0.29 | 2.91 | 3.2 | 300~350 | 31.2 | 27 |
Al2O3 | - | - | 3.20 | 410 | - | 52 |
Ag3PO4 | - | - | 1.55 | 400~780 | - | 34 |
Au NCs | - | - | - | Simulated solar light | 2.86 | 53 |
Au nanoparticles | - | - | - | 400~800 | 19.31 | 54 |
表2 全细胞杂合体中有机半导体的种类、能带结构、激发波长及量子效率Table 2 The types, band structures, excitation wavelength and quantum yield of of organic semiconductors in whole-cell biohybrids |
Type | LUMO (eV) | HOMO (eV) | Bandgap (eV) | Excitation wavelength (nm) | QY (%) | ref |
---|---|---|---|---|---|---|
Oligofluorene (OF) | -1.66 | -5.01 | 3.35 | Visible light | - | 67 |
Polythiophene (PTP) | -2.40 | -5.42 | 3.02 | Visible light | - | 67 |
Poly(fluorene-alt-thienopyrazine) (PFTP) | -3.51 | -5.40 | 1.89 | > 420 | 1.25 | 58 |
MEH-PPV | -3.79 | -6.03 | 2.24 | > 420 | 1.25 | 58 |
Poly(fluorene-alt-phenylene) (PFP) | -2.81 | -5.73 | 2.92 | 350~800 | 0.83 | 68 |
PDI | -3.89 | -6.02 | 2.13 | > 420 | 1.6 | 38 |
PFP | -2.60 | -5.54 | 2.94 | White light | 1.43~1.6 | 31,38 |
COE-IC | -0.85 (VB) | +0.90 (CB) | 1.75 | 400~700 | - | 59 |
CDPCN | -0.49 | 2.30 | 2.68 | 395 | - | 69 |
NCNCNx | -0.86 | 1.90 | 2.76 | 395 | 50.3 | 61 |
PFODTBT | -0.90(VB) | +1.06(CB) | 2.96 | Simulated solar light | 2.27 | 70 |
C3N4 QDs | - | - | - | Simulated solar light | - | 60 |
I-HTCC | -0.53 | 0.66 | 1.19 | 470~700 | 9.11 | 71 |
图2 基于外膜结合的全细胞杂合体:(A)Saccharomyces cerevisiae-InP杂合体结构示意[46];(B)M. thermoacetica -CdS杂合体(左)与M. thermoacetica(右)的对比[41];(C)扫描电子显微镜下的M. barkeri -NiCu@CdS杂合体[43];(D)扫描透射电子显微镜(STEM)下M. thermoacetica-CdS杂合体的高角环形暗场成像(HAADF)[15];激光共聚焦显微镜(CLSM)下的M. barkeri -NCNCNx(E)和Azotobacter Chroococcum-PFP杂合体(F)[61,68]Fig. 2 Whole-cell biohybrids based on outer membrane binding. (A) Structure of Saccharomyces cerevisiae-InP biohybrid[46]; (B) Comparison of M.thermoacetica-CdS biohybrid (left) with M.thermoacetica (right)[41]; (C) M.barkeri-NiCu @CdS biohybrid under scanning electron microscope[43]; (D) High-angle annular dark field imaging (HAADF) of M.thermoacetica-CdS biohybrid under scanning transmission electron microscopy (STEM)[15]; M.barkeri-NCNCNx (E) and Azotobacter Chroococcum-PFP biohybrids (F) under confocal laser scanning microscopy (CLSM)[61,68] |
图3 基于胞内结合的全细胞杂合体:(A)STEM下的E. coli -CdS杂合体[75];(B)Azotobacter vinelandii(A. vinelandii)- InP/ZnSe QDs杂合体的HAADF-STEM成像[50];(C)E. coli -C3N4 QDs杂合体的CLSM成像组合图[60];(D)M. thermoacetica-Au NCs杂合体的结构光照明显微成像(SIM)[53];(E)基于同步辐射的三维X射线荧光层析成像实验方法及全细胞杂合体的三维X射线荧光断层扫描重构[75]Fig. 3 Whole-cell biohybrids based on intracellular binding. (A) E.coli-CdS biohybrid under STEM[75]; (B) HAADF-STEM imaging of Azotobacter vinelandii (A.vinelandii)-InP/ZnSe QDs biohybrid[50]; (C) CLSM imaging of E.coli-C3N4 QDs biohybrids[60]; (D) The structure illumination microscopy (SIM) of M.thermoacetica-Au nanoclusters biohybrid [53]; (E) Synchrotron radiation-based three-dimensional X-ray fluorescence tomography experimental method and three-dimensional X-ray fluorescence tomography reconstruction of whole-cell biohybrid[75] |
表3 全细胞杂合体在CO2高值转化中的应用进展及性能对比Table 3 The application progress and performance comparison of whole-cell hybrids in the high-value conversion of CO2 |
Semiconductors | Microbes | Products | Product yields | QY (%) | Operation time | ref |
---|---|---|---|---|---|---|
CdS | M. thermoacetica | CH3COOH | 0.7 mM/d | 2.44 ± 0.62 | 4 d | 15 |
Au NCs | M. thermoacetica | CH3COOH | 6.0 mmol/gdcw | 2.86 ± 0.38 | 7 d | 32 |
PFP/PDI | M. thermoacetica | CH3COOH | 0.21 mM/d | 1.6 | 3 d | 38 |
InP QDs | S.ovata | CH3COOH | 0.9 mM/h | 6~8 | 7 d | 49 |
CdS | S.ovata | CH3COOH | 0.17 mM/h | 16.8 ± 9 | 5 d | 82 |
SrTiO3:La,Rh and BiVO4:Mo | S.ovata | CH3COOH | 0.6 mM/h | 0.7 | 15 h | 45 |
Cd0.8Zn0.2S | S. ovata | CH3COOH | 8.2 ± 0.6 mM/d | 16.82 ± 1.21 | 7 d | 37 |
Zn-metal organic framework functionalized with TiO2 | Mixed culture composed of Clostridium ljungdahlii, Acetobacterium woodii, and P. aeruginosa | CH3COOH CH3CH2OH | 0.32 g/(L·d) 1.06 g/(L·d) | - | 70 h | 83 |
CdS-mineralized biofilms | E. Coli | HCOOH | 0.11 mM/h | 0.13 | 15 h | 20 |
Co porphyrin | Paenibacillus azotofixans | HCOOH | 1.4 × 10−14 mol/(h·cell) | 2.25 | 48 h | 84 |
CdS | M. barkeri | CH4 | 0.19 μmol/h | 0.34 | 5 d | 85 |
NiCu@CdS | M. barkeri | CH4 | 9.5 mmol/gcat | 12.41 ± 0.16 | 5 d | 43 |
NCNCNx | M. barkeri | CH4 | 341.8 ± 15.7 μmol/gcat | 50.3 | 20 d | 61 |
PFODTBT | RH16 | PHB | 21.3 ± 3.8 mg/(L·d) | 2.27 | 2 d | 70 |
CdTe QDs | X. autotrophicus | Biomass | 60.5 mgCO2/(L·d) | 47.2 ± 7.3 | 4 d | 13 |
*dcw represents cell dry weight, cat indicates catalyst |
图5 全细胞杂合体固氮机理及示意图:(A)半导体光生电子向MoFe蛋白转移示意图[50];(B)A. vinelandii-COE-IC杂合体[59];(C)单一全细胞杂合体和(D)多个全细胞杂合体联用同步CO2和N2固定示意图[13,31]Fig. 5 Nitrogen fixation mechanism and diagram of whole-cell biohybrids. (A) The illustration of the transfer of photogenerated electrons from semiconductor to MoFe protein[50]; (B) schematic diagram of A.vinelandii-COE-IC biohybrid[59]; schematics of single whole-cell biohybrids (C)and multiple whole-cell biohybrids (D) for synchronized CO2 and N2 fixation[13,31] |
表4 全细胞杂合体在人工固氮中的应用进展及性能对比Table 4 The application progress and performance comparison of whole-cell hybrids in artificial nitrogen fixation |
Semiconductors | Microbes | Products | Product yields | QY (%) | Operation time | ref |
---|---|---|---|---|---|---|
CdS | R. palustris | Biomass | 0.25 × 109 cell/(mL·d) | 6.73 | 120 h | 39 |
CdTe QDs | X. autotrophicus | Biomass | 3.85 mgN/(L·d) | 7.1 ± 1.1 | 4 d | 13 |
InP/ZnSe QDs | A. vinelandii | NH3 | 4.6 × 107 mol NH4+/mol CFUinitial | - | 8 h | 50 |
COE-IC | A. vinelandii | NH3 | 1.47 nmol/(mL·h) | - | 24 h | 59 |
Poly(fluorene-alt-phenylene) | A. Chroococcum | NH3 L-amino acids | 0.215 μg/(109 cell·d) 0.725 nmol/(109·cell d) | 0.83 | 48 h | 68 |
PFP | Synechocystis sp.-PFP R. palustris | γ-PGA | 14.42mg/(L·d) | 1.43 | 10 d | 31 |
表5 全细胞杂合体在制氢中的应用进展及性能对比Table 5 The application progress and performance comparison of whole-cell hybrids in hydrogen production |
Semiconductors | Microbes | H2 yields | QY (%) | Operation time | ref |
---|---|---|---|---|---|
TiO2 | E. coli | - | 31.2 | > 400 min | 27 |
CdS | E. coli | - | 0.1 | 6 h | 99 |
I-HTCC | E. coli | ~0.7 mmol/h | 9.11 | 9 h | 71 |
CdSxSe1-x | E. coli | 70.2 μmol/108 cells | 27.56 | 48 h | 47 |
C3N4 QDs | E. coli | 7800 ± 12 μmol/(gdcw·h) | - | 50 h | 60 |
TiO2−x | E. coli | 0.42 mmol/h | - | 3 h | 100 |
CdS | E. coli BL21 | 0.52 ± 0.01 mmol/(108 cells·d) | - | 96 h | 101 |
Cu2O/reduced graphene oxide | S. oneidensis MR-1 | 80.5 μmol/(gCu2O·h) | - | 4 h | 48 |
CuInS2/ZnS QDs | S. oneidensis MR-1 | 56.64μmol/h | 15.02 | 45 h | 51 |
CdS | S. oneidensis MR-1 | 5.03 μmol/mg | - | 72 h | 40 |
CdSe QDs | S. oneidensis MR-1 | 75.65 μmol/h | 0.17 ± 0.05 | 350 h | 29 |
CdS | S. oneidensis | 6.71 μmol/(gdcw·h) | 6.2 | 70 h | 44 |
CdS@Fe3O4 | S. oneidensis | 17.45 μmol/(gdcw·h) | 11.5 | 70 h | 44 |
CdS | Desulfo vibrio desulfuricans | 418 μmol/(gdcw·h) | 23 | 100 h | 98 |
CdS | Desulfo vibrio desulfuricans | 36 μmol/(gdcw·h) | 4 | 10 d | 98 |
OF/PTP | R. palustris | 1.25 μmol/h | - | 2 h | 67 |
Au nanoparticles | C. butyricum | 5.67 mL/(L·h) | 19.31 | 168 h | 54 |
CdS | Rhodospirillum rubrum | 240 μmol/(OD600·d) | 0.17 | 5 d | 102 |
表6 全细胞杂合体在污染物去除及资源化中的应用进展及性能对比Table 6 The application progress and performance comparison of whole-cell hybrids in pollutants removal and recovery |
Semiconductors | Microbes | Pollutants | Removal efficiencies | Operation time | ref |
---|---|---|---|---|---|
Bi12O17Cl2 coated carrier | Sludge cultured by oxytetracycline-containing wastewater | Oxytetracycline, 10 mg/L | 94% | 400 h | 105 |
BiVO4/FeOOH | Sludge cultured by pyridine-containing wastewater | Pyridine, 150 mg/L | 100% | 48 h | 118 |
Ag3PO4 | S. oneidensis MR-1 | Rhodamine B, 15 mg/L | 100% | 7 d | 34 |
CdS | S. oneidensis MR-1 | Direct blue 71, 100 mg/L | 100% | 5 h | 119 |
CdS/g-C3N4 | S. oneidensis MR-1 | Acid orange7, 15 mg/L | 100% | 120 min | 36 |
Ag2S QDs | E. coli | Methylene blue, 20 mg/L | 70.8% | 100 min | 120 |
CdS | Clostridium thermocellum | Methyl violet, 100 mg/L | 100% | 30 min | 121 |
CdS | Clostridium thermocellum | Crystal violet, 100 mg/L | 99.6% | 30 min | 121 |
CdS | Clostridium thermocellum | Malachite green, 100 mg/L | 100% | 20 min | 121 |
CDPCN | M. barkeri | Poly(lactic acid), 50 mg/mL | CH4 yield of 9.39 mmol/gcat and CH4 selectivity of 99.1% | 120 d | 69 |
CdS | T. denitrificans | Nitrate, 14 mgN/L | 72.1% ± 1.1% | 68 h | 111 |
CdS@Mn3O4 | T. denitrificans | Nitrate, 8 mgN/L | 100% | 18 h | 109 |
Anthraquinone-2-Sulfonate | T. denitrificans | Nitrate, 7 mgN/L | 100% | 10 h | 122 |
Suwannee River natural organic matter (2R101N) | T. denitrificans | Nitrate, 2~40 mgN/L | 4.7 ± 0.9 μg/(L·h·109 cell) | 12 h | 113 |
CdSexS1-x QDs | P. aeruginosa | Nitrate, 1 mM | 97.1% | 5 d | 79 |
CdS | Anammox bacteria | Nitrate, 10 mgN/L | 88% | 12 h | 26 |
g-C3N4 | Anammox bacteria | Ammonia and total nitrogen | 100 % and 94.25 % | 100 d | 123 |
CdS | S. oneidensis | Cr(VI), 25 mg/L | 100% | 450 min | 107 |
NH2-doped carbon dots | S. oneidensis MR-1 | Cr(VI), 50 mg/L | 100% | 72 h | 124 |
图7 全细胞杂合体在污染物去除及资源化中的应用及机理示意图。(A)利用V. natriegens -CdS杂合体实现有机污染物资源化[110];(B)T. denitrificans-CdS杂合体去除硝酸盐并生成氧化亚氮[116];(C)M. barkeri-CDPCN杂合体将微塑料转化为CH4甲烷[69];(D)S. oneidensis-CdS杂合体还原Cr(VI)[107]Fig. 7 The application and mechanism of whole-cell biohybrids in pollutants removal and resource recovery. (A) Utilization of V. natriegens-CdS biohybrid for the resource recovery of organic pollutants[110]; (B) nitrate removal and nitrous oxide production by T. denitrificans -CdS biohybrid[116]; (C) the conversion of microplastics into methane via M. barkeri-CDPCN biohybrids[69]; (D) Reduction of Cr(VI) by S.oneidensis-CdS biohybrids[107] |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
(鲁安怀, 王鑫, 李艳, 丁竑瑞, 王长秋, 曾翠平, 郝瑞霞, 杨晓雪. 中国科学: 地球科学, 2014, 44(6): 1117.)
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
(张德善, 佟振合, 吴骊珠. 化学进展, 2022, 34(7): 1590.)
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
(胡安东, 周顺桂, 叶捷. 化学进展, 2021, 33(11): 2103.)
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
(吴丹. 华东师范大学博士论文, 2022.)
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
(刘礼兵, 周鑫, 白昊天, 黄一鸣, 吕凤婷, 王树. 中国科学: 化学, 2022, 52(2): 241.)
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
García de Arquer F P,
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
Editorial. Nat. Synth, 2023, 2(7): 581.
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
|
[106] |
|
[107] |
|
[108] |
|
[109] |
|
[110] |
|
[111] |
|
[112] |
|
[113] |
|
[114] |
|
[115] |
|
[116] |
|
[117] |
|
[118] |
|
[119] |
|
[120] |
|
[121] |
|
[122] |
|
[123] |
|
[124] |
|
/
〈 |
|
〉 |