
Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells
Man YU, Rongyao GAO, Yujun QIN, Xicheng AI
J Inorg Mat ›› 2024, Vol. 39 ›› Issue (4) : 359-366.
Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells
Hysteresis effect greatly impacted performance and stability of perovskite solar cells. Ion migration and the resulting accumulation of interface ions were widely recognized as the most important origins. In this study, upconversion luminescent nanoparticles (UCNP) were used to modify the interface of the electron transport layer/perovskite active layer and the intrinsic perovskite active layer, and the effects of UCNP on the morphology, structure, spectral/optoelectronic properties, and ion migration kinetics of perovskite were systematically explored. The results indicated that the device with UCNP modified perovskite active layer has the best photoelectric conversion efficiency (PCE, 16.27%) and significantly improves the hysteresis factor (HF, 0.05). Furthermore, circuit switching transient optoelectronic technology was employed to investigate the ion migration kinetics without interference from photo-generated carriers, revealing the dual role of UCNP in suppressing ion migration and accumulation during the optoelectronic conversion process of perovskite solar cells. On the one hand, UCNP formed barrier layers that hinder ion accumulation. On the other hand, UCNP infiltrated into grain boundaries of perovskite phase during annealing, hindering ion migration and reducing the recovery voltage from 0.43 V to 0.28 V. The mechanism of carriers and ions interaction was explained based on the polarization-induced trap state model to declare the process of UCNP suppressing the hysteresis of perovskite photovoltaic devices. This work provides effective solution for regulating the hysteresis of perovskite solar cells.
upconversion luminescent nanoparticles / perovskite solar cell / hysteresis effect / ion migration
[1] |
Two organolead halide perovskite nanocrystals, CH(3)NH(3)PbBr(3) and CH(3)NH(3)PbI(3), were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells. When self-assembled on mesoporous TiO(2) films, the nanocrystalline perovskites exhibit strong band-gap absorptions as semiconductors. The CH(3)NH(3)PbI(3)-based photocell with spectral sensitivity of up to 800 nm yielded a solar energy conversion efficiency of 3.8%. The CH(3)NH(3)PbBr(3)-based cell showed a high photovoltage of 0.96 V with an external quantum conversion efficiency of 65%.
|
[2] |
The energy costs associated with separating tightly bound excitons (photoinduced electron-hole pairs) and extracting free charges from highly disordered low-mobility networks represent fundamental losses for many low-cost photovoltaic technologies. We report a low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight. This "meso-superstructured solar cell" exhibits exceptionally few fundamental energy losses; it can generate open-circuit photovoltages of more than 1.1 volts, despite the relatively narrow absorber band gap of 1.55 electron volts. The functionality arises from the use of mesoporous alumina as an inert scaffold that structures the absorber and forces electrons to reside in and be transported through the perovskite.
|
[3] |
\n Improvements to perovskite solar cells (PSCs) have focused on increasing their power conversion efficiency (PCE) and operational stability and maintaining high performance upon scale-up to module sizes. We report that replacing the commonly used mesoporous–titanium dioxide electron transport layer (ETL) with a thin layer of polyacrylic acid–stabilized tin(IV) oxide quantum dots (paa-QD-SnO\n 2\n ) on the compact–titanium dioxide enhanced light capture and largely suppressed nonradiative recombination at the ETL–perovskite interface. The use of paa-QD-SnO\n 2\n as electron-selective contact enabled PSCs (0.08 square centimeters) with a PCE of 25.7% (certified 25.4%) and high operational stability and facilitated the scale-up of the PSCs to larger areas. PCEs of 23.3, 21.7, and 20.6% were achieved for PSCs with active areas of 1, 20, and 64 square centimeters, respectively.\n
|
[4] |
|
[5] |
|
[6] |
Solar cells based on organometal halide perovskites have seen rapidly increasing efficiencies, now exceeding 15%. Despite this progress, there is still limited knowledge on the fundamental photophysics. Here we use microwave photoconductance and photoluminescence measurements to investigate the temperature dependence of the carrier generation, mobility, and recombination in (CH3NH3)PbI3. At temperatures maintaining the tetragonal crystal phase of the perovskite, we find an exciton binding energy of about 32 meV, leading to a temperature-dependent yield of highly mobile (6.2 cm(2)/(V s) at 300 K) charge carriers. At higher laser intensities, second-order recombination with a rate constant of γ = 13 × 10(-10) cm(3) s(-1) becomes apparent. Reducing the temperature results in increasing charge carrier mobilities following a T(-1.6) dependence, which we attribute to a reduction in phonon scattering (Σμ = 16 cm(2)/(V s) at 165 K). Despite the fact that Σμ increases, γ diminishes with a factor six, implying that charge recombination in (CH3NH3)PbI3 is temperature activated. The results underline the importance of the perovskite crystal structure, the exciton binding energy, and the activation energy for recombination as key factors in optimizing new perovskite materials.
|
[7] |
\n The performance of organic-inorganic hybrid perovskite planar solar cells has steadily improved. One outstanding issue is that grain boundaries and defects in polycrystalline films degrade their output. Now, two studies report the growth of millimeter-scale single crystals. Nie\n et al.\n grew continuous, pinhole-free, thin iodochloride films with a hot-casting technique and report device efficiencies of 18%. Shi\n et al.\n used antisolvent vapor-assisted crystallization to grow millimeter-scale bromide and iodide cubic crystals with charge-carrier diffusion lengths exceeding 10 mm.\n
|
[8] |
Lead halide perovskite solar cells are presently the forerunner among the third generation solution-processed photovoltaic technologies. With efficiencies exceeding 20% and low production costs, they are prime candidates for commercialization. Critical insights into their light harvesting, charge transport, and loss mechanisms have been gained through time-resolved optical probes such as femtosecond transient absorption spectroscopy (fs-TAS), transient photoluminescence spectroscopy, and time-resolved terahertz spectroscopy. Specifically, the discoveries of long balanced electron-hole diffusion lengths and gain properties in halide perovskites underpin their significant roles in uncovering structure-function relations and providing essential feedback for materials development and device optimization. In particular, fs-TAS is becoming increasingly popular in perovskite characterization studies, with commercial one-box pump-probe systems readily available as part of a researcher's toolkit. Although TAS is a powerful probe in the study of charge dynamics and recombination mechanisms, its instrumentation and data interpretation can be daunting even for experienced researchers. This issue is exacerbated by the sensitive nature of halide perovskites where the kinetics are especially susceptible to pump fluence, sample preparation and handling and even degradation effects that could lead to disparate conclusions. Nonetheless, with end-users having a clear understanding of TAS's capabilities, subtleties, and limitations, cutting-edge work with deep insights can still be performed using commercial setups as has been the trend for ubiquitous spectroscopy instruments like absorption, fluorescence, and transient photoluminescence spectrometers. Herein, we will first briefly examine the photophysical processes in lead halide perovskites, highlighting their novel properties. Next, we proceed to give a succinct overview of the fundamentals of pump-probe spectroscopy in relation to the spectral features of halide perovskites and their origins. In the process, we emphasize some key findings of seminal photophysical studies and draw attention to the interpretations that remain divergent and the open questions. This is followed by a general description into how we prepare and conduct the TAS characterization of CH3NH3PbI3 thin films in our laboratory with specific discussions into the potential pitfalls and the influence of thin film processing on the kinetics. Lastly, we conclude with our views on the challenges and opportunities from the photophysical perspective for the field and our expectations for systems beyond lead halide perovskites.
|
[9] |
|
[10] |
Surface engineering has been shown critical for the success of perovskite solar cells by passivating the surface enriched defects and mobile species. The discovery of surface modulators with superior interaction strength to perovskite is of paramount importance since they can retain reliable passivation under various environments. Here, we report a chelation strategy for surface engineering of CsPbIBr perovskite, in which dithiocarbamate molecules can be coordinate to surface Pb sites via strong bidentate chelating bonding. Such chelated CsPbIBr perovskite can realize excellent passivation of surface under-coordinated defects, reaching a champion power conversion efficiency of 17.03% and an open-circuit voltage of 1.37 V of CsPbIBr solar cells. More importantly, our chelation strategy enabled excellent device stability by maintaining 98% of their initial efficiency for over 1400 h in ambient condition. Our findings provide scientific insights on the surface engineering of perovskite that can facilitate the further development and application of perovskite optoelectronics.
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
Organic-inorganic semiconductors, which adopt the perovskite crystal structure, have perturbed the landscape of contemporary photovoltaics research. High-efficiency solar cells can be produced with solution-processed active layers. The materials are earth abundant, and the simple processing required suggests that high-throughput and low-cost manufacture at scale should be possible. While these materials bear considerable similarity to traditional inorganic semiconductors, there are notable differences in their optoelectronic behavior. A key distinction of these materials is that they are physically soft, leading to considerable thermally activated motion. In this Account, we discuss the internal motion of methylammonium lead iodide (CH3NH3PbI3) and formamidinium lead iodide ([CH(NH2)2]PbI3), covering: (i) molecular rotation-libration in the cuboctahedral cavity; (ii) drift and diffusion of large electron and hole polarons; (iii) transport of charged ionic defects. These processes give rise to a range of properties that are unconventional for photovoltaic materials, including frequency-dependent permittivity, low electron-hole recombination rates, and current-voltage hysteresis. Multiscale simulations, drawing from electronic structure, ab initio molecular dynamic and Monte Carlo computational techniques, have been combined with neutron diffraction measurements, quasi-elastic neutron scattering, and ultrafast vibrational spectroscopy to qualify the nature and time scales of the motions. Electron and hole motion occurs on a femtosecond time scale. Molecular libration is a sub-picosecond process. Molecular rotations occur with a time constant of several picoseconds depending on the cation. Recent experimental evidence and theoretical models for simultaneous electron and ion transport in these materials has been presented, suggesting they are mixed-mode conductors with similarities to fast-ion conducting metal oxide perovskites developed for battery and fuel cell applications. We expound on the implications of these effects for the photovoltaic action. The temporal behavior displayed by hybrid perovskites introduces a sensitivity in materials characterization to the time and length scale of the measurement, as well as the history of each sample. It also poses significant challenges for accurate materials modeling and device simulations. There are large differences between the average and local crystal structures, and the nature of charge transport is too complex to be described by common one-dimensional drift-diffusion models. Herein, we critically discuss the atomistic origin of the dynamic processes and the associated chemical disorder intrinsic to crystalline hybrid perovskite semiconductors.
|
[17] |
Organic–inorganic hybrid perovskites are exciting candidates for next-generation solar cells, with CH3NH3PbI3 being one of the most widely studied. While there have been intense efforts to fabricate and optimize photovoltaic devices using CH3NH3PbI3, critical questions remain regarding the crystal structure that governs its unique properties of the hybrid perovskite material. Here we report unambiguous evidence for crystallographic twin domains in tetragonal CH3NH3PbI3, observed using low-dose transmission electron microscopy and selected area electron diffraction. The domains are around 100–300 nm wide, which disappear/reappear above/below the tetragonal-to-cubic phase transition temperature (approximate 57 °C) in a reversible process that often ‘memorizes’ the scale and orientation of the domains. Since these domains exist within the operational temperature range of solar cells, and have dimensions comparable to the thickness of typical CH3NH3PbI3 films in the solar cells, understanding the twin geometry and orientation is essential for further improving perovskite solar cells.
|
[18] |
|
[19] |
The power conversion efficiency (PCE) of CH3NH3PbX3 (X = I, Br, Cl) perovskite solar cells has been developed rapidly from 6.5 to 18% within 3 years. However, the anomalous hysteresis found in I-V measurements can cause an inaccurate estimation of the efficiency. We attribute the phenomena to the ferroelectric effect and build a model based on the ferroelectric diode to explain it. The ferroelectric effect of CH3NH3PbI3-xClx is strongly suggested by characterization methods and the E-P (electrical field-polarization) loop. The hysteresis in I-V curves is found to greatly depend on the scan range as well as the velocity, which is well explained by the ferroelectric diode model. We also find that the current signals show exponential decay in ∼10 s under prolonged stepwise measurements, and the anomalous hysteresis disappears using these stabilized current values. The experimental results accord well with the model based on ferroelectric properties and prove that prolonged stepwise measurement is an effective way to evaluate the real efficiency of perovskite solar cells. Most importantly, this work provides a meaningful perspective that the ferroelectric effect (if it really exists) should be paid special attention in the optimization of perovskite solar cells.
|
[20] |
Ion migration has been suspected as the origin of various irreproducible and unstable properties, most notably the hysteresis, of lead halide perovskite photovoltaic (PV) cells since the early stage of the research. Although many evidence of ionic movement have been presented both numerically and experimentally, a coherent and quantitative picture that accounts for the observed irreproducible phenomena is still lacking. At the same time, however, it has been noticed that in certain types of PV cells, the hysteresis is absent or at least within the measurement reproducibility. We have previously shown that the electronic properties of hysteresis-free cells are well represented in terms of the conventional inorganic semiconductors. The reproducibility of these measurements was confirmed typically within tens of minutes under the biasing field of -1 V to +1.5 V. In order to probe the effect of ionic motion in the hysteresis-free cells, we extended the time scale and the biasing rage in the electronic measurements, from which we conclude the following: (1) From various evidence, it appears that ion migration is inevitable. However, it does not cause detrimental effects to the PV operation. (2) We propose, based on the quantitative characterization, that the degradation is more likely due to the chemical change at the interfaces between the carrier selective layers and perovskite rather than the compositional change of the lead iodide perovskite bulk. Together, they give much hope in the use of the lead iodide perovskite in the use of actual application.
|
[21] |
Long-term stability is crucial for the future application of perovskite solar cells, a promising low-cost photovoltaic technology that has rapidly advanced in the recent years. Here, we designed a nanostructured carbon layer to suppress the diffusion of ions/molecules within perovskite solar cells, an important degradation process in the device. Furthermore, this nanocarbon layer benefited the diffusion of electron charge carriers to enable a high-energy conversion efficiency. Finally, the efficiency on a perovskite solar cell with an aperture area of 1.02 cm(2), after a thermal aging test at 85 degrees C for over 500 h, or light soaking for 1,000 h, was stable of over 15% during the entire test. The present diffusion engineering of ions/molecules and photo generated charges paves a way to realizing long-term stable and highly efficient perovskite solar cells.
|
[22] |
|
[23] |
2D PVSCs with “favorable” ion accumulation are realized via thermal–light post-treatment, which increases the built-in potential and device performance.
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
Charge recombination dynamics in intrinsic perovskite film and in meso-superstructured perovskite solar cells have been systematically studied, which are found to be mediated by the energetic distribution of intra-gap trap states as described by the trap-limited recombination theory. Besides, the passivation effect of the hole-transport material on trap states is discussed.
|
[34] |
|
[35] |
With rapid progress in a power conversion efficiency (PCE) to reach 25%, metal halide perovskite-based solar cells became a game-changer in a photovoltaic performance race. Triggered by the development of the solid-state perovskite solar cell in 2012, intense follow-up research works on structure design, materials chemistry, process engineering, and device physics have contributed to the revolutionary evolution of the solid-state perovskite solar cell to be a strong candidate for a next-generation solar energy harvester. The high efficiency in combination with the low cost of materials and processes are the selling points of this cell over commercial silicon or other organic and inorganic solar cells. The characteristic features of perovskite materials may enable further advancement of the PCE beyond those afforded by the silicon solar cells, toward the Shockley-Queisser limit. This review summarizes the fundamentals behind the optoelectronic properties of perovskite materials, as well as the important approaches to fabricating high-efficiency perovskite solar cells. Furthermore, possible next-generation strategies for enhancing the PCE over the Shockley-Queisser limit are discussed.
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
The hysteresis effect is a vital issue in perovskite solar cells that warrants close scrutiny, of which ion migration and the resultant interfacial ion accumulation are widely considered to be the most important origination. However, owing to the lack of specific characterization tools to disentangle the complicated interaction between ions and charge carriers, it is yet unidentified which ionic species govern the hysteresis effect, bringing difficulties in further device optimization. Herein, adopting a home-built circuit-switched transient photoelectric technique, whereby ion migration dynamics can be studied without interference from photogenerated charge carriers, the role of different ions in the photoelectric conversion process is elucidated. As suggested by the experimental results, the hysteresis effect dominantly arises from the migration of organic cations instead of the halide anions and can be well interpreted in terms of the strongly coupled cation–electron pairs. On the basis of these findings, we showcase the effectiveness of suppressing the hysteresis factor by the inhibition of the methylamine cations' migration. The present work can provide targeted and sufficient guidance for the preparation of high-stability and high-efficiency perovskite solar cells.
|
[41] |
The TiO2-nanoparticle scaffold suppresses ion accumulation in mesoporous perovskite solar cells by reducing the electrostatic interaction between the conductive substrate and the perovskite active layer.
|
[42] |
|
/
〈 |
|
〉 |