
Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation
Zhaoyang WANG, Peng QIN, Yin JIANG, Xiaobo FENG, Peizhi YANG, Fuqiang HUANG
J Inorg Mat ›› 2024, Vol. 39 ›› Issue (4) : 383-389.
Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation
TiO2 nanomaterials are widely used photocatalysts due to high photocatalytic activity, good chemical stability, low cost, and nontoxicity. However, its lower photon utilization efficiency is still limited by larger bandgap width and higher recombination rate between photon and hole. In this study, two-dimensional TiO2 nanosheets were synthesized via microetching, which were then inserted by ruthenium atoms to form an efficient photocatalyst Ru@TiO2 with sandwich structure. The surface morphology, electronic structure, photoelectric properties, and photocatalytic degradation performance of tetracycline hydrochloride of Ru@TiO2 sandwich structure were investigated using different measurements. Results indicated that the material’s photoresponse range extended from UV to visible- near-infrared regions, improving photon absorption and carrier separation efficiency while enhancing photocatalytic activity. Under simulated sunlight irradiation (AM 1.5 G, 100 mW·cm-2) for 80 min, sandwich structured Ru@TiO2 efficient photocatalyst exhibited superior degradation performance on tetracycline hydrochloride with a degradation efficiency up to 91.91%. This work offers an effective way for the construction of efficient TiO2 based photocatalysts.
layered titanium dioxide / ruthenium intercalation / photocatalysis / tetracycline hydrochloride
[1] |
|
[2] |
|
[3] |
|
[4] |
Antimicrobial resistance not only increases the contagiousness of infectious diseases but also a threat for the future as it is one of the health care concern around the globe. Conventional antibiotics are unsuccessful in combating chronic infections caused by multidrug-resistant (MDR) bacteria, therefore it is important to design and develop novel strategies to tackle this problems. Among various novel strategies, Structurally Nanoengineered Antimicrobial Peptide Polymers (SNAPPs) have been introduced in recent years to overcome this global health care issue and they are found to be more efficient in their performance. Many facile methods are adapted to synthesize complex SNAPPs with required dimensions and unique functionalities. Their unique characteristics and remarkable properties have been exploited for their immense applications in various fields including biomedicine, targeting therapies, gene delivery, bioimaging, and many more. This review article deals with its background, design, synthesis, mechanism of action, and wider applications in various fields of SNAPPs.
|
[5] |
|
[6] |
Organic pollutants are highly toxic, accumulative, and difficult to degrade or eliminate. As a low-cost, high-efficiency and energy-saving environmental purification technology, photocatalytic technology has shown great advantages in solving increasingly serious environmental pollution problems. The development of efficient and durable photocatalysts for the degradation of organic pollutants is the key to the extensive application of photocatalysis technology. Polyoxometalates (POMs) are a kind of discrete metal-oxide clusters with unique photo/electric properties which have shown promising applications in photocatalytic degradation. This review summarizes the recent advances in the design and synthesis of POM-based photocatalysts, as well as their application in the degradation of organic dyes, pesticides and other pollutants. In-depth perspective views are also proposed in this review.This journal is © The Royal Society of Chemistry.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
The anatase/rutile mixed crystal TiO2 was prepared and modified with Ag decoration and SnO2 coupling to construct a Ag@SnO2/anatase/rutile composite photocatalytic material. The crystal structure, morphology, element valence, optical properties and surface area were characterized, and the effects of Ag decoration and SnO2 coupling on the structure and photocatalytic properties of TiO2 were studied. Ag decoration and SnO2 coupling are beneficial to reduce the recombination of photogenerated electrons and holes. When the two modification are combined, a synergistic effect is produced in suppressing the photogenerated charge recombination, making Ag@SnO2/TiO2 exhibits the highest quantum utilization. After 30 min of illumination, the degradation degree of tetracycline hydrochloride (TC) by pure TiO2 increased from 63.3% to 83.1% with Ag@SnO2/TiO2.
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
Uses of layered alkali titanates (A2Ti nO2 n+1; Na2Ti3O7, K2Ti4O9, and Cs2Ti5O11) for energy and environmental issues are summarized. Layered alkali titanates of various structural types and compositions are regarded as a class of nanostructured materials based on titanium oxide frameworks. If compared with commonly known titanium dioxides (anatase and rutile), materials design based on layered alkali titanates is quite versatile due to the unique structure (nanosheet) and morphological characters (anisotropic particle shape). Recent development of various synthetic methods (solid-state reaction, flux method, and hydrothermal reaction) for controlling the particle shape and size of layered alkali titanates are discussed. The ion exchange ability of layered alkali titanate is used for the collection of metal ions from water as well as a way of their functionalization. These possible materials design made layered alkali titanates promising for energy (including catalysis, photocatalysts, and battery) and environmental (metal ion concentration from aqueous environments) applications. |
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
Temperature-dependent X-ray scattering studies have been carried out on 4-undecyloxy-4'-cyanobiphenyl (11OCB) and 4-(12,12-dimethyltridecyloxy)-4'-cyanobiphenyl (t-Bu-11OCB) in the smectic A phase, from which their layer spacings and translational order parameters were obtained. Marked differences between the layer structures of the two compounds were demonstrated, showing that the addition of the t-Bu group results in a higher translational order parameter and wider layer spacing for t-Bu-11OCB than 11OCB. Fully atomistic MD simulations of both compounds run for >1000 ns demonstrated the spontaneous formation of smectic mesophases from isotropic starting geometries, and experimental trends in order parameters and absolute layer spacings were shown to be replicated well. Further analysis showed that both the aromatic head-groups and the alkyl tail-groups exhibit interdigitation in the simulated smectic phases of both compounds, and the difference in the layer structures between 11OCB and t-Bu-11OCB could be attributed mainly to a shape segregation effect arising from the addition of the bulky t-Bu end-group to the alkyl chain.
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
The design of mesoporous Ti1−xRuxO2−y crystals in a two-step process offers an effective way for the preparation of efficient photocatalysts based on high photon absorption and charge extraction simultaneously.
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
/
〈 |
|
〉 |