Home Journals Journal of Inorganic Materials
Journal of Inorganic Materials

Abbreviation (ISO4): J Inorg Mat      Editor in chief: Lidong CHEN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
RESEARCH ARTICLE

Linear-like NaNbO3-based Lead-free Relaxor Antiferroelectric Ceramics with Excellent Energy-storage and Charge-discharge Properties

  • Ruijian SHI ,
  • Junwei LEI ,
  • Yi ZHANG ,
  • Aiwen XIE ,
  • Ruzhong ZUO
Expand
  • Center for Advanced Ceramics, School of Materials Science and Engineering, Anhui Polytechnic University, Wuhu 241000, China
XIE Aiwen, lecturer. E-mail: ;
ZUO Ruzhong, professor. E-mail:

Received date: 2023-10-20

  Revised date: 2023-12-10

  Online published: 2024-04-25

Supported by

National Key R&D Program of China(2022YFB3807403)

Innovation Team Project in Universities and Colleges(2022AH010058)

National Natural Science Foundation of China(52302131)

Natural Science Foundation of Anhui Province(2308085QE140)

Abstract

Antiferroelectric (AFE) materials exhibit great potential in the application of high-performance dielectric energy storage capacitors due to their electric field-induced AFE-ferroelectric (FE) phase transition. However, the large hysteresis of field-induced phase transition makes it difficult to simultaneously achieve high energy-storage density (Wrec) and efficiency (η) for AFEs. This work improved the energy-storage performance of NaNbO3-based lead-free AFE ceramics by introducing the third group Bi(Mg0.5Ti0.5)O3 into 0.76NaNbO3-0.24(Bi0.5Na0.5) TiO3 to regulate its relaxation characteristics. Novel lead-free AFE ceramics, (0.76-x)NaNbO3-0.24(Bi0.5Na0.5)TiO3-xBi(Mg0.5Ti0.5)O3, were prepared by a traditional solid-state reaction method. Their phase structure and microstructure as well as dielectric, energy-storage, and charge-discharge characteristics were studied. The results indicated that introduction of Bi(Mg0.5Ti0.5)O3 obviously enhanced the dielectric relaxor behavior of the matrix without changing its AFE R-phase structure, which led to the significantly reduced polarization hysteresis. Especially, a linear-like polarization-field hysteresis loop with extremely-low hysteresis was obtained in the composition of x=0.050. At the same time, microstructure of the ceramic was effectively optimized, its dielectric constant decreased, and its breakdown strength had significant enhanced. As a result, a high Wrec=3.5 J/cm3 and a high η=93% were simultaneously achieved under a moderate electric field of 30 kV/mm in the x=0.050 ceramic. Moreover, the x=0.050 ceramic also exhibited excellent charge-discharge characteristics with a high-power density PD=131(1±1%) MW/cm3, a high discharge energy density WD=1.66(1±6%) J/cm3 and a fast discharge rate t0.9<290 ns at 20 kV/mm. The charge-discharge properties maintained good stability within a wide temperature range of 25-125 ℃. These results indicate that 0.71NaNbO3-0.24(Bi0.5Na0.5)TiO3-0.050Bi(Mg0.5Ti0.5)O3 ceramics can be expected to be applied in high-power energy-storage capacitors.

Cite this article

Ruijian SHI , Junwei LEI , Yi ZHANG , Aiwen XIE , Ruzhong ZUO . Linear-like NaNbO3-based Lead-free Relaxor Antiferroelectric Ceramics with Excellent Energy-storage and Charge-discharge Properties[J]. Journal of Inorganic Materials, 2024 , 39(4) : 423 -431 . DOI: 10.15541/jim20230486

电介质储能电容器具有高功率密度、快速充放电特性以及高稳定性, 在脉冲功率系统中具有极大的应用潜力。然而, 其储能密度(Wrec)一般较低, 且往往易受储能效率(η)的制约。Wrec低不利于器件的小型化和轻型化; η低则使得更多的电能被转化为热能, 容易引起电容器在服役中的失效。因此, 协同提升Wrecη成为电介质储能材料研究中长期难以解决的难题。反铁电材料由于电场诱导的可逆反铁电-铁电相变, 通常表现出双电滞回线, 具有较大的极化强度(Pmax)和近零的剩余极化强度(Pr)[1-3]。这种独特的极化-电场响应特性使得反铁电材料容易实现较大的Wrec[4-7]。然而场致相变的大滞后性使得反铁电材料的η通常较低。因此, 近年来人们对反铁电储能材料进行了大量的改性研究, 其中无铅反铁电材料以其绿色环保性更是成为研究的热点[4,8 -11]
在为数不多的无铅反铁电体系中, NaNbO3(NN)基陶瓷材料由于其相对较低的成本、较高的禁带宽度以及复杂的相结构, 在介电储能领域引发研究者们越来越多的关注。纯NN陶瓷在室温下表现出反铁电正交P相(Pbma空间群)结构, 并在升温至约360 ℃时转变为反铁电正交R相(Pnma空间群)结构[12-13]。由于室温下反铁电P相与铁电正交Q相(P21ma)之间较小的自由能差异, 使得纯NN陶瓷在电场下会发生不可逆反铁电-铁电相变, 导致储能性能较差(Wrec<0.3 J/cm3, η<30%)。因此, 国内外研究人员采用离子取代、掺杂以及特殊烧结工艺等方法对NN陶瓷进行改性, 旨在稳定其反铁电P相并获得双电滞回线。研究发现,添加少量具有较低容差因子或较低B位离子极化率的第二元ABO3能够有效提高反铁电P相的稳定性, 从而增强场致反铁电-铁电相变的可逆性并获得可重复的双电滞回线。这是由于NN陶瓷的反铁电性的起源主要与Nb离子的反平行位移及氧八面体倾斜有关[14-17]。通过上述改性措施, 反铁电P相的储能性能得到明显改善, 如在无铅反铁电NaNbO3中加入具有低容差因子的CaZrO3或低B位离子极化率的NaSbO3分别获得了0.55和3.4 J/cm3Wrec[18-19]。然而, 目前报道过的NN基反铁电P相陶瓷的η一般低于60%。这是由于反铁电P相的一级场致相变的滞后性大。与反铁电P相相比, NN陶瓷高温下的反铁电R相可以通过进一步提高第二元ABO3的含量被稳定至室温。P-R一级相变温度降低与组成诱导的反铁畸变增强密切相关。研究表明被稳定至室温的反铁电R相不仅显示完全可逆的场致反铁电-铁电相变, 同时也具有明显的介电弛豫特性, 其介电弛豫特性来源于纳米级反铁电畴[20]。与反铁电P相的长程有序宏畴相比, 反铁电R相的短程有序纳米畴使得其表现出低滞后的“瘦细”双电滞回线。因此, NN基弛豫反铁电R相陶瓷在储能电容器应用方面显示出更大的潜力。然而, 即便在弛豫反铁电材料中场致反铁电-铁电相变的滞后性仍难以避免, 使得其η难以超过90%。
NN-(Bi0.5Na0.5)TiO3(NN-BNT)二元系陶瓷的多尺度结构特征及电学性能演变近期得到了系统且细致的研究。当BNT的含量为18%~30%时, NN-BNT陶瓷具有纯的弛豫反铁电R相结构, 并且储能性能出色[13]。本研究选择0.76NN-0.24BNT组成为基体, 通过引入第三组元Bi(Ti0.5Mg0.5)O3(BMT)构建(0.76-x)NN-0.24BNT-xBMT三元系固溶体。BMT是一种具有较小容差因子的复合钙钛矿材料, 加入之后应当有利于进一步稳定反铁电相并增强介电弛豫效应。此外, 加入具有6s孤电子对的Bi离子有利于获得高的极化强度[21]。当x=0.050时, 实现了Wrecη的协同提高, Wrec高达3.5 J/cm3, η高达93%。本工作为改善反铁电陶瓷的储能性能提供了一种有效的策略。

1 实验方法

1.1 样品制备

以高纯度(>99%)的Na2CO3、Nb2O5、Bi2O3、MgO和TiO2为原料, 采用常规固相反应法制备(0.76-x)NN-0.24BNT-xBMT(x=0~0.075)固溶体陶瓷。将原料按化学计算比称重后放入尼龙罐中, 以氧化锆球为磨球、无水乙醇为介质, 混合行星球磨4 h。球磨后的浆料经干燥后在900 ℃下煅烧4 h。将煅烧好的粉末再次球磨6 h, 然后烘干, 并加入聚乙烯醇(PVA)造粒。采用双向压制方法将造粒后的粉末压制成ϕ10 mm的圆片。最后, 将圆片样品放入密封坩埚并置于马弗炉中, 以3 ℃/min升温至600 ℃并保温2 h以去除 PVA, 然后以5 ℃/min升温至1200~1260 ℃并烧结2 h。机械磨抛烧结样品至不同厚度并覆盖银电极以用于不同电性能测试。

1.2 样品表征

通过X射线衍射仪(XRD, D/Max-RB, Rigaku)研究陶瓷的晶体结构。使用场发射扫描电子显微镜(SEM, SU8020, JEOL)观察陶瓷的晶粒形貌。在SEM观察之前, 需要将样品抛光并在1100~1150 ℃下热腐蚀20 min。介电性能利用LCR电桥(Agilent E4980A)在3 ℃/min的加热速率下测试, 频率范围为1 kHz~1 MHz。陶瓷的击穿场强EB测试在室温下使用耐压测试装置(BDJC-50KV, 北广精仪)进行。陶瓷的电滞回线在室温下利用铁电测试系统(Precision multiferroelectri, Radiant Technologies Inc.)进行测试, 测试频率为10 Hz。通过充放电测试系统(CFD-003, 同果)测试陶瓷材料的充放电特性。用于EB、电滞回线及充放电测试的样品的电极直径为1 mm, 厚度为0.1 mm。

2 结果与讨论

2.1 物相分析

图1(a)为(0.76-x)NN-0.24BNT-xBMT不同组成的室温XRD图谱。从图中可以看出, 所有组成陶瓷均显示纯的钙钛矿结构, 说明BMT能够完全进入0.76NN-0.24BNT的晶格。由图1(b, c)可见, 所有组成均显示(200)单峰以及(110)单峰, 这是由于反铁电R相具有短程有序的纳米畴, 而在宏观上表现为伪立方相结构。随着x增加, (200)和(110)两个特征峰均逐渐向低角度偏移, 说明加入BMT增加了晶胞体积。为了进一步分析(0.76-x)NN-0.24BNT-xBMT陶瓷相结构随组成的演变过程, 对全谱XRD进行Rietveld结构精修, 精修的结果如图2所示。根据文献报道, 0.76NN-0.24BNT应呈现单一的反铁电R相结构, 具有Pnma空间群[13]。因此, 对所有组成采用Pnma空间群进行拟合, 拟合后的结构参数及误差因子列于表1中。可信度因子RwpRp和拟合优度(χ2)分别在4.99%~6.27%、3.56%~4.05%和2.96~4.17之间, 表明所选结构模型具有较高的可靠性。随着BMT含量增加, 陶瓷的晶胞体积逐渐增大, 这与图1中的结果相一致。这是由于B位较大离子半径的Mg2+(0.072 nm)取代Nb5+(0.064 nm), 造成了晶胞体积膨胀[22]。反铁电R相的晶胞参数为理想立方钙钛矿晶胞的2×2×6倍。这是由于其具有a-b+c*(c*=A0CA0C)复杂八面体倾斜系统。根据精修得到的晶胞参数可以计算晶格常数比cp/apcp/bp以及ap/bp, 见图3。由图3可知, 晶格常数比cp/apcp/bp以及ap/bp均在0.998~1.002范围内。报道的纯NN基陶瓷反铁电P相的晶格常数比通常高于1.008, 相比之下,反铁电R相的晶格常数比极小(接近1),说明其具有较高的对称性。这导致其弱晶格畸变难以通过常规XRD检测出, 如图1(b, c)所示。
图1 不同组分(0.76-x)NN-0.24BNT-xBMT陶瓷的室温 XRD图谱

Fig. 1 XRD patterns of (0.76-x)NN-0.24BNT-xBMT ceramics with different composition at room temperature

图2 不同组分(0.76-x)NN-0.24BNT-xBMT陶瓷的全谱XRD结构精修

Fig. 2 Rietveld refinement results of XRD patterns for (0.76-x)NN-0.24BNT-xBMT ceramics with different compositions

(a) x=0; (b) x=0.025; (c) x=0.050; (d) x=0.075

表1 全谱拟合的(0.76-x)NN-0.24BNT-xBMT陶瓷精修结果参数

Table 1 Refined structural parameters of full spectrum fitting for (0.76-x)NN-0.24BNT-xBMT ceramics

x Space group Lattice parameters V/nm3 Rwp/% Rp/% χ2
0 Pnma a=0.77920 nm, b=0.77852 nm, c=2.33854 nm, α=β=γ=90o 1.418608 5.35 3.70 3.62
0.025 Pnma a=0.77965 nm, b=0.77897 nm, c=2.34045 nm, α=β=γ=90o 1.421413 5.20 3.62 3.59
0.050 Pnma a=0.77899 nm, b=0.77995 nm, c=2.33913 nm, α=β=γ=90o 1.421193 6.27 4.05 4.17
0.075 Pnma a=0.78060 nm, b=0.78000 nm, c=2.34481 nm, α=β=γ=90o 1.427666 4.99 3.56 2.96
图3 (0.76-x)NN-0.24BNT-xBMT陶瓷的晶格常数比随组成的变化

Fig. 3 Evolution of lattice constant ratios for (0.76-x)NN-0.24BNT-xBMT ceramics with composition

2.2 显微形貌分析

图4(a~d)显示了不同组成(0.76-x)NN-0.24BNT-xBMT陶瓷在其最佳烧结温度下抛光热腐蚀后的表面SEM照片。从图中可以看出, 所有陶瓷样品均表现出致密的显微结构, 晶界处没有观察到明显的气孔。通过Nano Measurer软件统计不同组成陶瓷的晶粒尺寸, 从而得到晶粒尺寸分布图和平均晶粒尺寸, 如图4(e~h)所示。结果表明, 随着BMT的加入, 陶瓷的晶粒尺寸从~2.6 μm(x=0)降低到~1.6 μm(x=0.025), 说明引入BMT可以有效减小陶瓷的晶粒尺寸。但是随着BMT含量的增加, 晶粒形貌和大小并没有出现明显变化, 说明BMT含量增加对陶瓷显微形貌几乎无影响。
图4 (0.76-x)NN-0.24BNT-xBMT陶瓷样品热腐蚀表面的晶粒形貌及相应晶粒分布图

Fig. 4 Grains morphologies of thermally etched surfaces of (0.76-x)NN-0.24BNT-xBMT ceramics and corresponding grain distributions

2.3 介电性能分析

图5(a)为(0.76-x)NN-0.24BNT-xBMT陶瓷在不同频率下的介电常数(εr)随温度的变化曲线。由图可知, 0.76NN-0.24BNT陶瓷在低温下可以观察到1个介电异常峰, 该介电异常峰与升温过程中铁电N相到反铁电R相的相变有关。随着BMT含量增大, 该介电异常峰先往高温方向移动, 然后逐渐往低温度方向移动, 同时伴随着最大介电常数出现先增大后减小的趋势。这说明加入少量BMT能够增强0.76NN-0.24BNT体系的铁电性, 而加入高含量BMT弱化了铁电性并增强了介电弛豫特性。尽管N-R相变温度随组成发生变化, 但是其仍然位于室温以下。因此, 本工作制备的不同组成(0.76-x)NN-0.24BNT-xBMT陶瓷的室温相结构均为反铁电R相, 这与图1中XRD的结果一致。此外, 图5(b)显示了不同组成(0.76-x)NN-0.24BNT-xBMT陶瓷的介电损耗(tanδ)随温度变化的曲线。从图中可以看出, 在-50~150 ℃的宽温度范围内所有组成均显示较低的介电损耗(tanδ<0.01), 这应当与陶瓷的致密度较高相关, 如图4所示。
图5 (0.76-x)NN-0.24BNT-xBMT陶瓷的介电常数和介电损耗随温度的变化曲线

Fig. 5 Temperature dependent curves of εr and tanδ of (0.76-x)NN- 0.24BNT-xBMT ceramics

2.4 电击穿性能分析

图6(a)为(0.76-x)NN-0.24BNT-xBMT陶瓷EB的威布尔分布图[23]。其横轴为Xi=lnEi, 纵轴为Yi=ln(-ln(1-i/(n+1))), pi=i/(n+1)其中n为样本总数, i表示序列号, Ei表示按升序排列的被测样本的实际EB值。对实验数据进行线性拟合可以得到陶瓷的平均EB。线性拟合曲线的斜率, 即威布尔模量m, 可以用来评估EB的分布。可以发现, 所有陶瓷的威布尔模量m均大于6.0, 说明了拟合结果的可靠性。从拟合曲线与x=0横轴的交点计算平均EB, 如图6(b)所示。(0.76-x)NN-0.24BNT-xBMT陶瓷的EB随着BMT含量的增加先显著增加后基本保持不变。通常来说, 陶瓷的耐击穿性能与其显微结构密切相关[24]
图6 (0.76-x)NN-0.24BNT-xBMT陶瓷耐击穿性能的威布尔分布图(a)以及EB随组成的变化(b)

Fig. 6 Weibull distributions of (0.76-x)NN-0.24BNT-xBMT ceramics breakdown resistance (a) and variation of EB with composition (b)

特别是在高密度的基础上, 陶瓷的击穿场强通常与平均晶粒尺寸呈指数衰减关系, 即EB∝(Ga)-α[24]。这与具有较高电阻率的晶界含量的增加有关。因此, (0.76-x)NN-0.24BNT-xBMT陶瓷的EB随组成的演变与其平均晶粒尺寸的变化密切相关(见图4), 即由于引入的BMT晶粒尺寸出现明显降低, 此时陶瓷的击穿强度也随之显著增大。然而, 随着BMT含量继续增加, 陶瓷的平均晶粒尺寸并未出现进一步的变化, 但陶瓷的击穿强度仍然缓慢增加。这应当是由BMT含量增加使得室温介电常数与介电损耗降低所致, 如图5所示。

2.5 储能性能分析

图7(a)为(0.76-x)NN-0.24BNT-xBMT陶瓷在 20 kV/mm电场下的电滞回线。从图中可以看出x=0组成仍然表现出较大的极化滞后, 因而其储能密度和储能效率均不大, 如图7(b)所示。随着BMT的引入, 陶瓷的最大极化强度从x=0时的~15 μC/cm2增长到了x=0.025时的~25 μC/cm2, 这主要归因于引入具有6s孤电子对的Bi离子增大了对于极化的贡献[21], 因此x=0.025组成的储能密度出现了显著的增加(~1.7 J/cm3), 但由于BMT的含量较低, 体系的弛豫程度仍然较小, 所以储能效率并没有得到明显改善。随着BMT含量增加, x=0.050组成的储能效率增长到了~96%, 与此同时储能密度基本维持不变。当x增加到0.075时, 尽管储能密度较之前的组成略微增加, 但储能效率却明显变差。综上, x=0.050组成的综合储能性能最为优异。
图7 (0.76-x)NN-0.24BNT-xBMT陶瓷的储能性能

Fig. 7 Energy-storage properties of (0.76-x)NN-0.24BNT-xBMT ceramics

(a, b) P-E hysteresis loops (a) and energy-storage performance (b) of different compositions measured at 20 kV/mm; (c, d) P-E hysteresis loops (c) and energy-storage performance (d) of the x=0.050 ceramic measured under different electric fields

为了进一步研究x=0.050组成的储能性能, 图7(c)展现了不同电场下(5~30 kV/mm)该组成的电滞回线, 相应的储能性能随电场的变化在图7(d)中给出。从图7(c)中可以得到, 在所有测试电场下该组成的电滞回线几乎完全呈现出近似线性的低滞后回线, 这应当与反铁电R相介电弛豫特性的增强相关。高介电弛豫特性通常意味着纳米电畴的形成。引入BMT可能进一步增强了基体陶瓷的局域组成无序, 使得内部随机场增强, 反铁电畴尺寸进一步减小。纳米反铁电畴在电场加载过程中向长程有序铁电畴的转变会被大的随机场阻碍, 而电场卸载过程中铁电畴向反铁电畴的转变过程会加快。因此, 增强介电弛豫特性会降低场致相变滞后性。x=0.050组成的极化强度随着外界电场增强而近似线性地增长, 但滞后性没有出现明显增强。滞后性极低、且对电场不敏感, 其应当还与在5~30 kV/mm电场下x=0.050组成的场致反铁电—铁电相变未完全发生有关。极化增强应当主要来源于反铁电纳米畴的取向以及向反铁电微畴的长大。从图7(d)可以看见, 在电场从 5 kV/mm增加到30 kV/mm的过程中, 该组成的储能密度从~0.02 J/cm3迅速增加到~3.5 J/cm3, 同时储能效率始终维持在90%之上(93%~98%), 表明该组成具备优异的综合储能性能。

2.6 充放电性能分析

为了进一步评估(0.76-x)NN-0.24BNT-xBMT(x= 0.050)陶瓷的实际应用潜力, 测试了该陶瓷材料的充放电性能及其温度稳定性, 如图8图9所示。图8(a, b)分别给出了x=0.050组成陶瓷在不同电场下的过阻尼放电电流-时间(I-t)曲线和放电能量密度(WD)随时间的变化曲线。WD可通过如下公式(1)进行计算:
${{W}_{D}}=R\mathop{\int }^{}I{{\left( t \right)}^{2}}dt/V$
图8 (0.76-x)NN-0.24BNT-xBMT(x=0.050)陶瓷的变电场充放电特性

Fig. 8 Electric field-dependent charge-discharge characteristics of (0.76-x)NN-0.24BNT-xBMT (x=0.050) ceramics

(a, b) Overdamped discharging current curves (a) and WD versus time curves (b) of the x=0.050 ceramic under different electric fields; (c, d) Underdamped discharging curves (c) and variation of PD, WD, and t0.9 (d) of the x=0.050 ceramics

图9 (0.76-x)NN-0.24BNT-xBMT(x=0.050)陶瓷的变温充放电特性

Fig. 9 Temperature-dependent charge-discharge characteristics of (0.76-x)NN-0.24BNT-xBMT (x=0.050) ceramics

(a, b) Overdamped discharging current curves (a) and WD versus time curves (b) of the x=0.050 ceramic under different electric fields; (c, d) Underdamped discharging curves (c) and variation of PD, WD, and t0.9 (d) of the x=0.050 ceramics

其中, R是负载电阻(180 Ω), V是陶瓷的体积。从图8(d)中可以看出, 最大放电能量密度从5 kV/mm电场下的~0.1 J/cm3增长到20 kV/mm电场下 的~1.75 J/cm3, 这一结果与通过电滞回线计算出的理论储能密度基本相当。t0.9代表了释放90%所存储能量需要的时间, 从图中可以发现在不同电场下的t0.9在200~290 ns之间, 表明样品具有快速的充放电过程。充放电速率快主要是由弛豫反铁电相的高活性纳米畴在电场下的快速响应导致。图8(c)x=0.050组成陶瓷的欠阻尼的I-t曲线。从图中可以看出不同电场下陶瓷所存储的电荷能够迅速释放, 并且只持续了非常短的时间(<150 ns)。陶瓷的功率密度可通过如下公式(2)计算:
${{P}_{D}}=E\times {{I}_{max}}/2S$
其中, EImaxS分别代表了电场强度、最大电流强度以及陶瓷的电极面积。随着电场强度增大, PD从5 kV/mm下的~10 MW/cm3迅速增加到20 kV/mm下的~132 MW/cm3。陶瓷在过阻尼和欠阻尼状态下WD, t0.9以及PD随电场强度的变化表明0.71NN-0.24BNT-0.050BMT陶瓷具有优异的充放电性能。
图9给出了x=0.050组成陶瓷在20 kV/mm电场下的充放电性能的温度稳定性。从图9(a~c)中可以看出, 在25~125 ℃温区内, 过阻尼与欠阻尼I-t曲线均显示出对温度的不敏感性。计算得到的WD=1.66(1± 6%) J/cm3, PD=131(1±1%) MW/cm3, t0.9<290 ns, 如 图9(d)所示, 表明0.71NN-0.24BNT-0.050BMT陶瓷具有优异的温度稳定性。

3 结论

采用传统固相合成法制备了一种新型(0.76-x)NN-0.24BNT-xBMT三元无铅反铁电陶瓷。通过在具有弛豫反铁电R相的0.76NN-0.24BNT组成中引入BMT改善陶瓷的介电弛豫特性进而优化其储能性能。研究发现, 引入BMT能够有效降低陶瓷的晶粒尺寸, 从而提高击穿场强。此外, 随着BMT含量增加, 体系的弛豫程度也随之增强, 使得极化强度显著减小。当x=0.050时, 陶瓷获得了最佳的储能性能: Wrec=3.5 J/cm3, η=93%。此外x=0.050组成在 20 kV/mm电场下还表现出优异的温度稳定的充放电特性:在25~125 ℃温区内, WD, t0.9PD分别为1.66(1±6%) J/cm3, <290 ns以及131(1±1%) MW/cm3。因此, 0.71NN-0.24BNT-0.050BMT陶瓷具有十分优异的综合储能性能, 是一种极具潜力的电介质储能材料。
[1]
LIU Z, LU T, YE J M, et al. Antiferroelectrics for energy storage applications: a review. Advanced Materials Technologies, 2018, 3(9): 1800111.

DOI

[2]
YANG L T, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications. Progress in Materials Science, 2019, 102: 72.

DOI

[3]
WANG G, LU Z L, LI Y, et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chemical Reviews, 2021, 121(10): 6124.

DOI

[4]
WANG H S, LIU Y C, YANG T Q, et al. Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Advanced Functional Materials, 2019, 29(7): 1807321.

DOI

[5]
QI H, ZUO R Z, XIE A W, et al. Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Advanced Functional Materials, 2019, 29(35): 1903877.

DOI

[6]
WANG X C, SHEN J, YANG T Q, et al. High energy-storage performance and dielectric properties of antiferroelectric (Pb0.97La0.02) (Zr0.5Sn0.5-xTix)O3 ceramic. Journal of Alloys and Compounds, 2016, 655: 309.

DOI

[7]
ZHANG Q F, TONG H F, CHEN J, et al. High recoverable energy density over a wide temperature range in Sr modified (Pb,La) (Zr,Sn,Ti)O3 antiferroelectric ceramics with an orthorhombic phase. Applied Physical Letters, 2016, 109(26): 262901.

DOI

[8]
TIAN Y, JIN L, ZHANG H F, et al. Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. Journal of Materials Chemistry A, 2017, 5(33): 17525.

DOI

[9]
LI J L, LI F, XU Z, et al. Multilayer lead‐free ceramic capacitors with ultrahigh energy density and efficiency. Advanced Materials, 2018, 30(32): 1802155.

DOI

[10]
LI S, HU T F, NIE H C, et al. Giant energy density and high efficiency achieved in silver niobate-based lead-free antiferroelectric ceramic capacitors via domain engineering. Energy Storage Materials, 2021, 34: 417.

DOI

[11]
TIAN A, ZUO R Z, QI H, et al. Large energy-storage density in transition-metal oxide modified NaNbO3-Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure. Journal of Materials Chemistry A, 2020, 8(17): 8352.

DOI

[12]
DARLINGTON C N W, KNIGHT K S. On the lattice parameters of sodium niobate at room temperature and above. Physica B, 1999, 266(4): 368.

DOI

[13]
QI H, XIE A W, FU J, et al. Emerging antiferroelectric phases with fascinating dielectric, polarization and strain response in NaNbO3-(Bi0.5Na0.5)TiO3 lead-free binary system. Acta Materialia, 2021, 208: 116710.

DOI

[14]
SHIMIZU H, GUO H Z, REYES-LILLO S E, et al. Lead-free antiferroelectric: xCaZrO3-(1-x)NaNbO3 system (0≤x≤0.10). Dalton Transactions, 2015, 44(23): 10763.

DOI

[15]
YE J M, WANG G S, CHEN X F, et al. Enhanced antiferroelectricity and double hysteresis loop observed in lead-free (1-x)NaNbO3-xCaSnO3 ceramics. Applied Physical Letter, 2019, 114(12): 122901.

DOI

[16]
ZENG J T, KWOK K W, CHAN H L W. Ferroelectric and piezoelectric properties of Na1-xBaxNb1-xTixO3 ceramics. Journal of the American Ceramic Society, 2006, 89(9): 2828.

DOI

[17]
DOU M X, FU J, ZUO R Z. Electric field induced phase transition and accompanying giant poling strain in lead-free NaNbO3-BaZrO3 ceramics. Journal of the European Ceramic Society, 2018, 38(9): 3104.

DOI

[18]
LIU Z Y, LU J S, MAO Y Q, et al. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases. Journal of the European Ceramic Society, 2018, 38(15): 4939.

DOI

[19]
QIAO Z L, LI T Y, QI H, et al. Excellent energy storage properties in NaNbO3-based lead-free ceramics by modulating antiferrodistortive of P phase. Journal of Alloys and Compounds, 2022, 898: 162934.

DOI

[20]
XIE A W, QI H, ZUO R Z, et al. An environmentally-benign NaNbO3 based perovskite antiferroelectric alternative to traditional lead-based counterparts. Journal of Materials Chemistry C, 2019, 7(48): 15153.

DOI

[21]
SCHÜTZ D, DELUCA M, KRAUSS W, et al. Lone-pair-induced covalency as the cause of temperature-and field-induced instabilities in bismuth sodium titanate. Advanced Functional Materials, 2012, 22(11): 2285.

DOI

[22]
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 1976, 32(5): 751.

[23]
WEIBULL W. A statistical distribution function of wide applicability. Journal of Applied Mechanics, 1951, 18(3): 293.

DOI

[24]
TUNKASIRI T, RUJIJANAGUL G. Dielectric strength of fine grained barium titanate ceramics. Journal of Materials Science Letters, 1996, 15(20): 1767.

DOI

Outlines

/