Home Journals Journal of Inorganic Materials
Journal of Inorganic Materials

Abbreviation (ISO4): J Inorg Mat      Editor in chief: Lidong CHEN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
RESEARCH ARTICLE

Electrochromic Intelligent Visual Humidity Indication System

  • Mingshuo ZHEN , 1, 2 ,
  • Xiaoran LIU 1, 2 ,
  • Xiangqian FAN 2 ,
  • Wenping ZHANG 2 ,
  • Dongdong YAN 1 ,
  • Lei LIU 2 ,
  • Chen LI , 1
Expand
  • 1. State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
  • 2. School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
LI Chen, professor. E-mail:

Received date: 2023-09-26

  Revised date: 2023-12-12

  Online published: 2024-04-25

Supported by

National Natural Science Foundation of China(62205311)

National Natural Science Foundation of China(522755552)

China Aviation Development Group Industry-University-Research Cooperation Project(HFZL2020CXY019)

Central Government Guided Local Science and Technology Development Fund Project(YDZJSX2022C007)

State Key Laboratory of Precision Measuring Technology and Instruments Tianjin University(pilab2206)

Abstract

In recent years, humidity sensors have attracted widespread attention from researchers in fields such as food safety and soil monitoring. Traditional humidity sensors exhibit the advantages of good stability and high sensitivity. However, most humidity sensing systems convert humidity signals into recognizable waveforms through wired connections and large external devices, making it impossible to achieve real-time visual monitoring of changes in humidity information. Currently, direct conversion of humidity information into visible color signals by eyes provides an ideal solution to the aforementioned problems but still lacks intelligent monitor capacity. This study integrated humidity sensors and electrochromic devices (ECDs) to prepare an intelligent visual humidity monitoring system. By converting humidity signals into voltage signals to drive ECDs, stable and reversible color change in the system could be achieved. The ECDs were prepared using tungsten trioxide (WO3) as the negative electrode and zinc foil (Zn) as the positive electrode. Based on the output voltage of the humidity sensor, it achieves transitions between different working states, thereby generating color signals that can be observed by the naked eyes. Electrochemical performance and electrochromic performance of ECDs were tested and characterized by using a UV-visible spectrophotometer and an electrochemical workstation. Subsequently, the performance of the conditioning circuit was analyzed using an oscilloscope and a humidity generation platform. The results show that the intelligent electrochromic humidity indicator has good stability and rapid response performance, where the coloring time and fading time are only 7.5 s and 4.5 s, respectively. After 300 cycles, the optical modulation (ΔT) is basically maintained the same as the initial value, and the retention rate can reach more than 95%. Therefore, this visual humidity indication system which possesses novel design and simple structure has promising broad application in fields such as artificial intelligence and intelligent agriculture.

Cite this article

Mingshuo ZHEN , Xiaoran LIU , Xiangqian FAN , Wenping ZHANG , Dongdong YAN , Lei LIU , Chen LI . Electrochromic Intelligent Visual Humidity Indication System[J]. Journal of Inorganic Materials, 2024 , 39(4) : 432 -440 . DOI: 10.15541/jim20230440

湿度是农业、食品安全、土壤检测和人体健康等许多领域的重要测量参数, 能够准确、及时地确定湿度对于获取被测物体的关键信息至关重要[1-2]。目前, 相关研究工作主要集中在开发具有更高灵敏度、更快响应速度和更强抗干扰能力的湿度传感器[3]。然而, 这些湿度传感器通常采用有线连接和复杂的工艺, 并且容易受到使用场景和外界环境影响, 限制了它们在便携式电子设备的广泛应用[4]。为了解决上述问题, 开发具有简单结构的湿度传感器来指示湿度信息已迫在眉睫。颜色能够提供一种最简单的信息传递方式[5-6], 若将可视化功能集成在湿度指示系统中, 人们便可更直观地监测到湿度的实时状态[7]。电致变色是指施加外电场时, 一些材料或器件经历光学特性(如颜色、透过率和反射率)可逆变化的现象[8]。电致变色器件具有稳定性好、响应速度快、功耗低等优点[9-10], 将传感器与电致变色器件相结合实现人机交互, 为电致变色器件的发展和应用提供了新的方向[11]
随着社会信息化和智能化的逐步发展, 通过湿度传感器与电致变色器件一体化集成来可视化监测湿度信息已成为一种发展趋势[12-15]。Yu等[16]研制了一种基于压力的生物传感器, 该传感器集成了柔性压力传感器和用于视觉检测的电致变色装置。同时, 制作了一种具有良好传感性能的皮肤柔性压力传感器, 用以实时监测压力变化。Bi等[17]提出了一种以聚偏氟乙烯基质作为压力传感器、聚苯胺电致变色阵列作为显示模块的集成压电致变色触觉传感显示器, 该显示器能清晰可靠地实时显示手指或笔尖在各种压力下的运动轨迹。近期, 本课题组研制出一种电致变色型温度指示器, 将Pt100温度传感器通过调理电路与电致变色器件集成, 成功实现了对温度的可视化监测[7]。上述研究表明, 电致变色器件在传感器领域的应用已取得较大的成果。然而, 目前研究工作主要集中在压力和温度等方面[7,11 -12,18], 对湿度的研究有限, 将湿度传感器与电致变色器件一体化集成仍然面临巨大挑战。
为此, 本课题组研制了一种可视化湿度指示系统。该系统一体化集成了电致变色器件与湿度传感器, 实现了对湿度的可视化监测。通过调理电路, 高灵敏度的湿度传感模块能够使电致变色器件快速地从透明色转变为深蓝色。此外, 电致变色器件的可靠性和调理电路的稳定性表明, 基于电致变色器件的湿度指示器可以长期稳定地工作。电致变色湿度指示器在食品安全、蔬菜大棚、土壤检测等领域具有广阔的应用前景。

1 实验方法

1.1 试剂及实验用品

氯化锌(ZnCl2, 95%)从阿拉丁化学试剂购买, 二水合钨酸钠(Na2WO4·2H2O, 分析纯)购自麦克林生化科技有限公司, 氯化钠(NaCl, 分析纯)、过氧化氢(H2O2, 30%)和去离子水均是从国药集团化学试剂有限公司购买,普通玻璃、氧化铟锡透明导电玻璃(ITO)从苏州尚阳太阳能科技有限公司购买。所有试剂均在购买后直接使用, 无需进一步纯化。

1.2 实验设备

电化学工作站(CS2350H, 武汉CorrTest), 紫外-可见分光光度计(PUXI: TU-1901), 高精度湿度发生器(Humor 20, 德国E+E), 示波器(TBS1000C, 泰克公司), 直流电源。

1.3 WO3的电化学沉积

前驱液配置: 称取0.515 g Na2WO4·2H2O, 加入125 mL去离子水持续搅拌至溶解。随后加入0.3 mL的H2O2, 继续搅拌直至混合均匀, 在搅拌状态下逐滴加入浓H2SO4, 将pH调至1得到WO3的前驱液。
电化学沉积: 导电基底选用透明ITO基底, 将ITO玻璃切成3.0 cm×3.5 cm的小样, 采用三电极体系进行电化学沉积。以ITO玻璃为工作电极, 饱和的Ag/AgCl为参比电极, Pt电极为对电极进行恒电位极化。其中, 极化电压为-0.35 V, 极化时间为1200 s, 最终得到均匀的WO3薄膜[19]

1.4 电致变色器件的组装

采用电子天平称取1.36 g ZnCl2, 加入100 mL去离子水持续搅拌直至完全溶解, 得到电致变色器件的电解质溶液。同时将锌片裁剪成3.5 cm×3.5 cm的小样, 随后在中间裁剪出2 cm×2 cm的小孔并将裁剪后的锌片通过泡沫双面胶粘贴到普通玻璃上。再将各个部分(锌片、普通玻璃、沉积WO3的ITO玻璃)用双面胶粘连, 形成ITO玻璃/WO3/Zn/普通玻璃的结构。最后, 将制备的电解质溶液注入WO3及普通玻璃之间, 获得ITO玻璃/WO3/ZnCl2/Zn/普通玻璃体系的电致变色器件[20]

1.5 性能测试与分析

采用电化学工作站测定WO3和电致变色器件的电化学性能。对于WO3电极, 在0.1 mol/L的ZnCl2的溶液中, 采用三电极体系(WO3薄膜为工作电极, Pt电极为对电极, 参比电极为饱和的Ag/ AgCl)测定其电化学性能[21]。将电化学工作站与紫外-可见分光光度计的联用分析不同电压下电致变色器件的透过率, 通过高精度湿度发生器和示波器测试调理电路的电学性能。将高精度湿度发生器和紫外-可见分光光度计联用测试电致变色型湿度指示器的性能。

2 结果与讨论

图1(a)为制备的WO3薄膜样品的SEM照片, 从图中可以看出, WO3薄膜的形貌由随机分布的团簇或不同尺寸的孔隙组成。此外, 各个团簇之间还存在着许多通道边界, 这有助于电解质中离子在薄膜电极与电解液间进行快速有效的嵌入/脱出。图1(b)为WO3薄膜的掠入射XRD图谱, 扣除基底的衍射峰后可以发现图中并没有出现明显的衍射峰, 只有两个宽化的“馒头”峰, 表明薄膜具有非晶结构。为进一步分析WO3薄膜的表面元素成分及价态, 对薄膜进行了XPS表征, 如图1(c)所示。XPS全谱中可以观察到C1s、O1s、W4f、W4d和W4p的特征峰, 说明薄膜确实为WO3体系材料[22]图1(d)为不同扫描速率下WO3的循环伏安(CV)曲线, 从图中可以看出, 即使在50 mV/s的高扫描速率下, 其CV曲线仍能保持相对稳定的形状, 这表明WO3具有良好的电化学性能。WO3薄膜在着色和褪色状态之间的透过率变化如图1(e)所示。当施加-0.8 V的反向电压时, WO3薄膜处于着色状态, 在630 nm处的透过率仅为15%左右; 当施加0.7 V正向电压时, 薄膜由着色变为透明, 在可见光区域的透过率高达90%以上。随后, 通过紫外-可见分光光度计和电化学工作站的联用来测试WO3薄膜的稳定性。图1(f)给出了WO3薄膜电化学反应过程中原位着色和褪色的透过率, 透过率随着电压周期的变化而变化。即使经过2000次循环, WO3薄膜的调制幅度仍然保持其初始值的81.8%。上述研究表明, WO3薄膜表现出良好的电化学性能与电致变色性能[23-25]
图1 WO3的形貌表征及性能

Fig. 1 Characterization and performance of WO3

(a) SEM image of WO3; (b) XRD pattern of WO3; (c) XPS spectrum of WO3 thin film in the binding energy range of 0-1200 eV; (d) CV curves at different scanning speeds; (e) Transmission spectra of WO3 in bleached and colored states (photos of WO3 in different states in the illustration); (f) 2000 cycles performance of WO3

在上述WO3的研究基础上, 本课题组成功制备出WO3//Zn电致变色器件, 并对其综合电致变色性能进行了详细的研究。光学调制幅度是评价器件电致变色性能的重要指标, 被定义为器件着色态与褪色态之间透过率的差值[26-28]图2(a)为器件在300~900 nm波长范围内的透过率变化情况, 从图中可以看出, 在0.1、0.5、0.9、1.5 V的电压下, 电致变色器件在整个波段上的透过率呈现出明显差异, 其中在630 nm波长处的光学调制幅度可达60.6%。除光学调制幅度外, 器件的响应时间也是评价器件性能必不可少的指标[29-30], 被定义为着色和褪色过程中达到90%最大光学调制幅度所需要的时间。为了定量地测试电致变色器件的响应时间, 在630 nm处分别施加0.1 V持续35 s和1.5 V持续35 s的方波电压, 得到电压和透过率随时间的变化。从图2(b)中可以看出电压从0.1 V变化到1.5 V时, 电致变色器件的透过率呈同步响应。基于这一特性, 对电致变色器件的响应时间进行了详细研究, 图2(c)为电致变色器件响应时间的示意图, 从图中可以清晰地看到, WO3//Zn体系电致变色器件表现出快速的响应性能, 即着色时间为7.5 s, 而褪色时间仅为4.5 s。快速响应表明该电致变色器件几乎无延迟地指示湿度信息, 可以基本满足湿度可视化监测的需求。更多关于电致变色器件的电化学性能如图S1所示。
图2 电致变色器件的电致变色性能

Fig. 2 Electrochromic performance of ECDs

(a) Changes in transmittance at different voltages of 300-900 nm wavelengths; (b) Changes in corresponding transmittance at different voltages; (c) Response time of ECDs; (d) Stability of electrochromic performance of ECDs; (e) Optical images of ECDs at different voltages

除了具备快速变色的响应时间, 电致变色器件还需要具备良好的稳定性能[31-32]。本研究在630 nm波长下对电致变色器件进行了300次循环测试, 以评估其电致变色性能的稳定性。图2(d)为WO3//Zn体系电致变色器件初始基循环300次之后在波长为630 nm处光学调制幅度的变化。从图中可以看出经过300次循环后, 该器件的光调制率降至60.9%, 仍然保持初始值的96%。这表明电致变色器件具有出色的光学循环稳定性能。图2(e)为不同电压下电致变色器件的实物图像, 从图中可以清楚地看到, 不同电压下的电致变色器件呈现出显著的颜色差异。当施加低电压时, 电致变色器件的颜色可以从透明变为深蓝色, 并随着正向电压增加而变浅。视频S1详细展示了该电致变色器件的变色情况。因此, 电致变色器件的快速响应[33]、低功耗和高稳定性能无疑为湿度信息的可视化监测奠定了基础。
图3为SHT30湿度传感器用户手册中电压随湿度变化的关系, 从图中可以看出, 湿度从0 RH到100% RH的变化过程中, 两端电压呈现0.3~2.7 V线性输出关系。随后, 本研究采用Multisim软件对湿度调理电路进行仿真分析。图4给出了湿度为0 RH和100% RH时, 调理电路两端的电压输出。从图中可以看出, 湿度为100% RH时电路两端的输出电压约为1.5 V, 当湿度为0 RH时, 电路两端的输出电压几乎为0 V。此外, 图S2详细展示了调理电路在不同湿度下的电压输出。这种电压变化符合WO3//Zn体系下电致变色器件所需的变色电压[34]
图3 SHT30湿度传感器的湿度信息与输出电压的关系

Fig. 3 Relationship between humidity and output voltage of SHT30 humidity sensor

图4 Multisim的仿真结果

Fig. 4 Simulation results of Multisim

(a) Voltage output at 100% RH; (b) Voltage output at 0 RH

在上述仿真结果的基础上, 图5(a)给出了湿度调理电路的电路组成, 与常用的由惠斯通电桥和差分放大器组成的电路相比, 其具有电路简单、成本低、误差小等优点[35-36]图S3显示了调理电路的电路图, 其中调理电路由两个运算放大器和若干电阻组成, VDC2为调理电路的输入电压, 此电压会随湿度的改变而改变。其中A点电压:
${{U}_{\text{a}}}=\left( \frac{{{R}_{4}}}{{{R}_{3}}+{{R}_{4}}} \right)\cdot \text{VDC}2$
图5 调理电路的性能

Fig. 5 Performance of conditioning circuits

(a) Circuit diagram of the conditioning circuits; (b) Circuit performance testing platform; (c) Voltage changes at different humidities; (d) Voltage stability at different humidities

根据运算放大器的虚断特性:
${{U}_{\text{a}}}={{U}_{\text{b}}}$
根据运算放大器的虚短特性:
${{I}_{\text{b}}}={{I}_{\text{o}}}$
其中:
${{I}_{\text{b}}}=\frac{\text{VDC}3-{{U}_{\text{b}}}}{{{R}_{2}}}$
${{I}_{\text{o}}}=\left( \frac{{{U}_{\text{b}}}-{{U}_{\text{o}}}}{{{R}_{1}}} \right)$
将公式(4, 5)代入公式(3)中, 得到Uo与VDC2、VDC3的关系即
${{U}_{\text{o}}}=\text{VDC}2-\text{VDC}3$
根据分压公式:
${{U}_{\text{c}}}=\left( \frac{{{R}_{5}}}{{{R}_{5}}+{{R}_{7}}} \right)\cdot {{U}_{\text{o}}}$
随后通过电压跟随器的电压保持不变即:
${{U}_{\text{d}}}={{U}_{\text{c}}}=\left( \frac{{{R}_{5}}}{{{R}_{5}}+{{R}_{7}}} \right)\cdot (\text{VDC2}-\text{VDC}3)$
其中, Ud即为调理电路的输出电压。为进一步测试调理电路的电学性能, 本研究构建了一个如图5(b)所示的实验平台。该平台包括高精度湿度发生器、示波器、湿度传感器SHT30、湿度调理电路和直流电源。基于上述实验平台, 测试了湿度与输出电压的关系,结果如图5(c)所示。从图中可以清晰地看出, 湿度的变化会导致调理电路两端的输出电压随之改变, 并与湿度基本呈线性关系。同时, 线性关系也为后续定量分析湿度信息提供了理论支持[37]。此外, 输出电压稳定性也是评价电路性能的重要指标。因此, 对温度调理电路输出电压的稳定性进行了详细研究,结果如图5(d)所示。从图中看出, 当湿度为10% RH、40% RH、70% RH、90% RH时, 调理电路的电压分别为0.1、0.5、1.0和1.35 V。分别在不同湿度条件下保持1 h, 调理电路的输出电压仍能与初始值保持一致, 这表明该电路具有良好的电压稳定特性。
上述研究表明, 电致变色器件具有良好的电致变色性能。同时, 调理电路的输出电压与电致变色器件的变色电压完美契合, 并保持着较为稳定的电学性能。随后, 对湿度传感器、湿度调理电路与电致变色器件进行一体化集成, 形成智能湿度指示系统, 以便对湿度进行可视化监测。图6(a)所示为电致变色型湿度指示器的工作原理。从图中可以看出, 湿度传感器感知到外界湿度的变化, 并将其转换为电压信息; 随后, 调理电路对电压进行调节, 使其与电致变色器件的变色电压相匹配。同时, 电致变色器件由于电压的改变, 其颜色和透过率也会发生可逆的变化[38]图6(b)详细给出了电致变色器件在10% RH、40% RH、70% RH和90% RH湿度下的颜色变化。从图中可以看出, 随着湿度发生器中的湿度增加, 电致变色器件两端的电压也随之增大, 从而使电致变色器件从深蓝色逐渐变为透明。同理, 当湿度发生器中的湿度降低时, 电致变色器件的颜色由透明变为深蓝色, 并随着湿度的减小而呈现出不同程度的着色。
图6 电致变色型智能可视化湿度指示系统的性能测试

Fig. 6 Performance testing of an electrochromic intelligent visual humidity indicator system

(a) Structure of testing platform; (b) Color change of ECDs at different humidity conditions; (c) Transmittance under different humidity environments; (d) Stability performance of transmittance at different humidity conditions

Colorful figures are available on website

这些丰富的颜色变化不仅可直接被人眼观测, 还可通过紫外-可见分光光度计进行定量分析。图6(c)为该器件在300~900 nm波长范围、不同湿度下的透过率光谱。从图中可以看出, 不同湿度下原位透过光谱表现出明显的差异, 该结果表明电致变色器件能够准确指示湿度变化。湿度指示器同时需要具备在长期工作环境下保持稳定输出的能力。因此, 本研究对电致变色型湿度指示器的稳定性进行了测试。图6(d)给出了电致变色湿度指示器在10% RH、40% RH、70% RH和90% RH湿度下的透过率稳定性。从图中可以看出, 当湿度固定时, 电致变色湿度指示器的透过率基本保持恒定, 表明即使在长期工作条件下, 电致变色型湿度指示器仍能保持稳定输出。因此, 精准的指示、稳定的性能、快速的响应均表明电致变色型湿度指示器能够对湿度进行可视化监测。

3 结论

本研究研制了一种智能可视化湿度指示系统, 该系统集成了电致变色器件和由湿度传感器SHT30组成的调理电路, 实现了对湿度的可视化监测。得益于电解质和电极的互补协同效应, 电致变色器件的最大光调制可达62.8%。电致变色器件能够快速地在7.5 s内着色并在4.5 s内褪色, 为湿度的实时监测奠定了理论基础。同时, 湿度传感器系统的响应速度和灵敏度也很优异。基于电致变色器件和湿度传感电路的综合性能, 电致变色湿度指示器在不同湿度下能够实现可逆的颜色变化。最后, 本研究对电致变色湿度指示器的准确度和稳定性等性能进行测试。在10% RH和90% RH的湿度下, 该指示器的透过率对比度(630 nm)高达66.4%, 说明该指示器能够准确地对湿度信息进行视觉监测。即使在不同湿度环境中连续工作1 h, 该指示器的透过率仍保持稳定。上述优异的综合性能表明, 电致变色湿度指示器能够实时准确地监测湿度信息, 并通过视觉信号定性地描述不同湿度下的状态。基于上述结果, 该指示系统有望在食品安全、蔬菜大棚、土壤检测等领域得到广泛的应用。

补充材料:

本文相关补充材料请登录 https://doi.org/10.15541/jim20230440查阅。
电致变色型智能可视化湿度系统
甄明硕1,2, 刘晓然1,2, 范向前2, 张文平2, 严东东1, 刘 磊2, 李 晨1
(中北大学 1. 动态测试技术国家重点实验室; 2. 能源与动力工程学院, 太原 030051)
图S1 (a)电致变色器件在不同扫速下的CV曲线和(b)不同电流密度下的充放电曲线

Fig. S1 (a) CV curves of ECDs at different scanning speeds and (b) charge-discharge curves under different current densities

视频S1 电致变色器件的颜色变化

Video S1 Color changes of ECDs

图S2 在10% RH, 40% RH, 70% RH, 90% RH湿度下的输出电压

Fig. S2 Output voltage at humidity of 10% RH, 40% RH, 70% RH, and 90% RH, respectively

图S3 调理电路的电路图

Fig. S3 Circuit diagram for conditioning circuits

[1]
WANG G X, PEI Z B, YE C H. Inkjet-printing and performance investigation of self-powered flexible graphene oxide humidity sensors. Journal of Inorganic Materials, 2019, 34(1): 114.

DOI

[2]
YANG J, SHI R, LOU Z, et al. Flexible smart noncontact control systems with ultrasensitive humidity sensors. Small, 2019, 15(38): e1902801.

[3]
BORINI S, WHITE R, WEI D, et al. Ultrafast graphene oxide humidity sensors. ACS Nano, 2013, 7: 11166.

DOI PMID

[4]
WANG Y, HOU S, LI T, et al. Flexible capacitive humidity sensors based on ionic conductive wood-derived cellulose nanopapers. ACS Applied Materials Interfaces, 2020, 12(37): 41896.

DOI

[5]
ZHANG W, LI H, ELEZZABI A Y. Electrochromic displays having two-dimensional CIE color space tunability. Advanced Functional Materials, 2021, 32(7): 2108341.

DOI

[6]
LI C, ZHEN M, SUN B, et al. Towards two-dimensional colortunability of all-solid-state electrochromic devices using carbon dots. Frontiers in Chemistry, 2022, 10: 1001531.

DOI

[7]
LI C, ZHEN M, WANG K, et al. Temperature sensors integrated with an electrochromic readout toward visual detection. ACS Applied Materials and Interfaces, 2023, 15(34): 40772.

DOI

[8]
WANG J. Electrochromism research in China. Journal of Inorganic Materials, 2021, 36(5): 449.

DOI

[9]
DIAO X, LIU X, ZHONG X. Electrochromic devices based on tungsten oxide and nickel oxide: a review. Journal of Inorganic Materials, 2021, 36(2): 128.

DOI

[10]
LI Y, ZHAO J, CHEN X, et al. Reflective property of inorganic electrochromic materials. Journal of Inorganic Materials, 2021, 36(5): 451.

DOI

[11]
GUO Y, LI H, LI Y, et al. Wearable hybrid device capable of interactive perception with pressure sensing and visualization. Advanced Functional Materials, 2022, 32(44): 2203585.

DOI

[12]
PARK H, KIM D S, HONG S Y, et al. A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays. Nanoscale, 2017, 9(22): 7631.

DOI PMID

[13]
MA D Y, EH A L S, CAO S, et al. Wide-spectrum modulated electrochromic smart windows based on MnO2/PB films. ACS Applied Materials and Interfaces, 2022, 14(1): 1443.

DOI

[14]
KIM J H, HONG J, HAN S H. Optimized physical properties of electrochromic smart windows to reduce cooling and heating loads of office buildings. Sustainability, 2021, 13(4): 1815.

DOI

[15]
PARK B R, HONG J, CHOI E J, et al. Improvement in energy performance of building envelope incorporating electrochromic windows (ECWs). Energies, 2019, 12(6): 1181.

DOI

[16]
YU Z D, CAI G N, LIU X L, et al. Pressure-based biosensor integrated with a flexible pressure sensor and an electrochromic device for visual detection. Analytical Chemistry, 2021, 93(5): 2916.

DOI PMID

[17]
BI S, JIN W, HAN X, et al. Ultra-fast-responsivity with sharp contrast integrated flexible piezo electrochromic based tactile sensing display. Nano Energy, 2022, 102: 107629.

DOI

[18]
ZHANG H, CHEN H, LEE J H, et al. Bioinspired chromotropic ionic skin with in-plane strain/temperature/pressure multimodal sensing and ultrahigh stimuli discriminability. Advanced Functional Materials, 2022, 32(47): 2208362.

DOI

[19]
YAN H, LIU J, ZHANG Q, et al. Dynamic process of ions transport and cyclic stability of WO3 electrochromic film. Journal of Inorganic Materials, 2021, 36(2): 152.

DOI

[20]
LIU L, WANG T, HE Z, et al. All-solid-state electrochromic Li-ion hybrid supercapacitors for intelligent and wide-temperature energy storage. Chemical Engineering Journal, 2021, 414: 128892.

DOI

[21]
GONG H, ZHOU K, ZHANG Q, et al. A self-patterning multicolor electrochromic device driven by horizontal redistribution of ions. Solar Energy Materials and Solar Cells, 2020, 215: 110642.

DOI

[22]
LIU L, DU K, HE Z, et al. High-temperature adaptive and robust ultra-thin inorganic all-solid-state smart electrochromic energy storage devices. Nano Energy, 2019, 62: 46.

DOI

[23]
LIU L, ZHANG Q, DU K, et al. An intelligent and portable power storage device able to visualize the energy status. Journal of Materials Chemistry A, 2019, 7(40): 23028.

DOI

[24]
LIU L, DIAO X, HE Z, et al. High-performance all-inorganic portable electrochromic Li-ion hybrid supercapacitors toward safe and smart energy storage. Energy Storage Materials, 2020, 33: 258.

DOI

[25]
LUO Z, LIU L, YANG X, et al. Revealing the charge storage mechanism of nickel oxide electrochromic supercapacitors. ACS Applied Materials and Interfaces, 2020, 12(35): 39098.

DOI

[26]
MA D, HOU L, WANG J. Molybdenum oxide electrochromic materials and devices. Journal of Inorganic Materials, 2021, 36(5): 461.

DOI

[27]
JIA H, CAO X, JIN P. Advances in inorganic all-solid-state electrochromic materials and devices. Journal of Inorganic Materials, 2020, 35(5): 511.

DOI

[28]
WANG J, HAO X, PAN B, et al. Perovskite single-detector visible-light spectrometer. Optics Letters, 2023, 48(2): 399.

DOI PMID

[29]
DIAO X, WANG S, YANG J, et al. Preparation of lithium titanate thin film for electrochromic smart window by Sol-Gel spin coating method. Journal of Inorganic Materials, 2021, 36(5): 471.

DOI

[30]
WANG H, WU W, ZHAO Z, et al. Progress in flexible electrochromic devices. Journal of Inorganic Materials, 2021, 36(2): 140.

DOI

[31]
TONG Z, LIAN R, YANG R, et al. An aqueous aluminum-ion electrochromic full battery with water-in-salt electrolyte for high-energy density. Energy Storage Materials, 2022, 44: 497.

DOI

[32]
FAN X, YANG Y, SHI X, et al. A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance. Advanced Functional Materials, 2020, 30(52): 2007110.

DOI

[33]
YIN T, SUN X, LIAO Z, et al. Colorimetric and Coulometric dual-mode sensing based on electrochromic Prussian blue device for solid-contact ion-selective electrodes. Sensors and Actuators B: Chemical, 2022, 371: 132502.

DOI

[34]
LI C, XIONG J, ZHENG C, et al. Screen-printing preparation of high-performance nonenzymatic glucose sensors based on Co3O4 nanoparticles-embedded N-doped laser-induced graphene. ACS Applied Nano Materials, 2022, 5(11): 16655.

DOI

[35]
LI C, JIA M, HONG Y, et al. Wireless passive flexible accelerometer fabricated using micro-electro-mechanical system technology for bending structure surfaces. Frontiers of Information Technology & Electronic Engineering, 2022, 23(5): 801.

[36]
LI C, XUE Y, JIA P, et al. A wireless passive vibration sensor based on high-temperature ceramic for harsh environment. Journal of Sensors, 2021, 2021: 1.

[37]
LI C, XU A, FENG Q, et al. High-performance SAW device based on zinc-oxide substrate with electric field regulating graphene film conductivity for signal amplifier. IEEE Electron Device Letters, 2022, 43(11): 1977.

DOI

[38]
LIU L, ZHEN M, WANG L, et al. Full-temperature all-solid-state dendrite-free Zn-ion electrochromic energy storage devices for intelligent applications. Chemical Engineering Journal, 2023, 468: 143837.

DOI

Outlines

/