Advances in Nanotechnology-Based Drug Delivery Systems in the Treatment of Hepatocellular Carcinoma

Senlin YANG, Yang XIANG, Yijun YANG

Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (3) : 384-392.

PDF(1021 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1021 KB)
Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (3) : 384-392. DOI: 10.3881/j.issn.1000-503X.15669
Review Articles

Advances in Nanotechnology-Based Drug Delivery Systems in the Treatment of Hepatocellular Carcinoma

Author information +
History +

Abstract

Primary liver cancer is one of the most common malignant tumors of the digestive system,of which hepatocellular carcinoma(HCC)accounts for more than 90%of the total cases.the patients with early HCC treated by surgical resection generally demonstrate good prognosis.However,due to the insidious onset,HCC in the vast majority of patients has progressed to the mid-to-late stage when being diagnosed.as a result,surgical treatment has unsatisfactory effects,and non-surgical treatment methods generally have severe side effects and low tumor selectivity.Nanoparticles(NP)with small sizes,large specific surface areas,and unique physical and chemical properties have become potential carriers for the delivery of therapeutic agents such as drugs,genes,and cytokines.the nano-delivery systems with NP as the carrier can regulate the metabolism and transformation of drugs,genes,and cytokines in vivo from time,space,and dose via functional modification,showing great potential in the treatment of HCC.this paper introduces the current status and advantages of several common nano-delivery systems,including organic nano-carriers,inorganic nano-carriers,and exosomes,in the treatment of HCC.Furthermore,This paper summarizes the mechanisms of NP-based nano-carriers in treating HCC and provides reference for the development of new nano-delivery systems。

Key words

hepatocellular carcinoma / nanotechnology / drug/gene-delivery system / targeted therapy

Cite this article

Download Citations
Senlin YANG , Yang XIANG , Yijun YANG. Advances in Nanotechnology-Based Drug Delivery Systems in the Treatment of Hepatocellular Carcinoma[J]. Acta Academiae Medicinae Sinicae. 2024, 46(3): 384-392 https://doi.org/10.3881/j.issn.1000-503X.15669

References

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.DOI:10.3322/caac.21660.
[2]
Parikh S, Hyman D. Hepatocellular cancer:a guide for the internist[J]. Am J Med, 2007, 120(3):194-202.DOI:10.1016/j.amjmed.2006.11.020.
[3]
Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology:the impact of passive and active targeting in the era of modern cancer biology[J]. Adv Drug Deliv Rev, 2014, 66:2-25.DOI:10.1016/j.addr.2013.11.009.
[4]
Huang W, Chen L, Kang L, et al. Nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs[J]. Adv Drug Deliv Rev, 2017, 115:82-97.DOI:10.1016/j.addr.2017.06.004.
[5]
Hu JJ, Cheng YJ, Zhang XZ. Recent advances in nanomaterials for enhanced photothermal therapy of tumors[J]. Nanoscale, 2018, 10(48):22657-22672.DOI:10.1039/c8nr07627h.
[6]
Auffan M, Rose J, Bottero JY, et al. Towards a definition of inorganic nanoparticles from an environmental,health and safety perspective[J]. Nat Nanotechnol, 2009, 4(10):634-641.DOI:10.1038/nnano.2009.242.
[7]
Thakor AS, Gambhir SS. Nanooncology:the future of cancer diagnosis and therapy[J]. CA Cancer J Clin, 2013, 63(6):395-418.DOI:10.3322/caac.21199.
[8]
Zhang JM, Li JJ, Shi Z, et al. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities[J]. Acta Biomater, 2017, 58:349-364.DOI:10.1016/j.actbio.2017.04.029.
[9]
Hu QD, Wang K, Sun X, et al. A redox-sensitive,oligopeptide-guided,self-assembling,and efficiency-enhanced (ROSE) system for functional delivery of microRNA therapeutics for treatment of hepatocellular carcinoma[J]. Biomaterials, 2016, 104:192-200.DOI:10.1016/j.biomaterials.2016.07.016.
[10]
Chen XY, Zhang Q, Li JL, et al. Rattle-structured rough nanocapsules with in-situ-formed gold nanorod cores for complementary gene/chemo/photothermal therapy[J]. ACS nano, 2018, 12(6):5646-5656.DOI:10.1021/acsnano.8b01440.
[11]
Yang XM, Xiao JM, Jiang LY, et al. A multifunctional vanadium-iron-oxide nanoparticle eradicates hepatocellular carcinoma via targeting tumor and endothelial cells[J]. ACS Appl Mater Interfaces, 2022, 14(25):28514-28526.DOI:10.1021/acsami.2c03474.
[12]
Li JC, Wang SQ, Fontana F, et al. Nanoparticles-based phototherapy systems for cancer treatment:current status and clinical potential[J]. Bioact Mater, 2023, 23:471-507.DOI:10.1016/j.bioactmat.2022.11.013.
[13]
Karlsson J, Vaughan HJ, Green JJ. Biodegradable polymeric nanoparticles for therapeutic cancer treatments[J]. Annu Rev Chem Biomol Eng, 2018, 9:105-127.DOI:10.1146/annurev-chembioeng-060817-084055.
[14]
Suk JS, Xu QG, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery[J]. Adv Drug Deliv Rev, 2016, 99(Pt A):28-51.DOI:10.1016/j.addr.2015.09.012.
[15]
Tang X, Chen L, Li A, et al. Anti-GPC3 antibody-modified sorafenib-loaded nanoparticles significantly inhibited HepG2 hepatocellular carcinoma[J]. Drug Deliv, 2018, 25(1):1484-1494.DOI:10.1080/10717544.2018.1477859.
[16]
Dong H, Wu GY, Xu H, et al. N-acetylaminogalactosyl-decorated biodegradable PLGA-TPGS copolymer nanoparticles containing emodin for the active targeting therapy of liver cancer[J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup2):260-272.DOI:10.1080/21691401.2018.1455055.
[17]
Cavallaro G, Farra R, Craparo EF, et al. Galactosylated polyaspartamide copolymers for siRNA targeted delivery to hepatocellular carcinoma cells[J]. Int J Pharm, 2017, 525(2):397-406.DOI:10.1016/j.ijpharm.2017.01.034.
[18]
Li JH, Zhang Y, Cai C, et al. Collaborative assembly of doxorubicin and galactosyl diblock glycopolymers for targeted drug delivery of hepatocellular carcinoma[J]. Biomater Sci, 2020, 8(1):189-200.DOI:10.1039/c9bm01604j.
[19]
Swierczewska M, Han HS, Kim K, et al. Polysaccharide-based nanoparticles for theranostic nanomedicine[J]. Adv Drug Deliv Rev, 2016, 99(Pt A):70-84.DOI:10.1016/j.addr.2015.11.015.
[20]
Zhan JH, Wu YJ, Wang HH, et al. An injectable hydrogel with pH-sensitive and self-healing properties based on 4armPEGDA and N-carboxyethyl chitosan for local treatment of hepatocellular carcinoma[J]. Int J Biol Macromol, 2020, 163:1208-1222.DOI:10.1016/j.ijbiomac.2020.07.008.
[21]
Bozzuto G, Molinari A. Liposomes as nanomedical devices[J]. Int J Nanomedicine, 2015, 10:975-999.DOI:10.2147/IJN.S68861.
[22]
Li XC, Diao WB, Xue HT, et al. Improved efficacy of doxorubicin delivery by a novel dual-ligand-modified liposome in hepatocellular carcinoma[J]. Cancer Lett, 2020, 489:163-173.DOI:10.1016/j.canlet.2020.06.017.
[23]
Tang JJ, Wang QT, Yu QW, et al. A stabilized retro-inverso peptide ligand of transferrin receptor for enhanced liposome-based hepatocellular carcinoma-targeted drug delivery[J]. Acta Biomater, 2019, 83:379-389.DOI:10.1016/j.actbio.2018.11.002.
[24]
Lim J, Wong SYS, Huang FY, et al. Roles and regulation of long noncoding RNAs in hepatocellular carcinoma[J]. Cancer Res, 2019, 79(20):5131-5139.DOI:10.1158/0008-5472.CAN-19-0255.
[25]
Xiao L, Hou Y, He HM, et al. A novel targeted delivery system for drug-resistant hepatocellular carcinoma therapy[J]. Nanoscale, 2020, 12(32):17029-17044.DOI:10.1039/d0nr01908a.
[26]
Zhou LL, Zou MS, Zhu K, et al. Development of 11-DGA-3-O-Gal-modified cantharidin liposomes for treatment of hepatocellular carcinoma[J]. Molecules, 2019, 24(17):3080.DOI:10.3390/molecules24173080.
[27]
Ashrafizadeh M, Delfi M, Zarrabi A, et al. Stimuli-responsive liposomal nanoformulations in cancer therapy:pre-clinical & clinical approaches[J]. J Control Release, 2022, 351:50-80.DOI:10.1016/j.jconrel.2022.08.001.
[28]
Varshney A, Panda JJ, Singh AK, et al. Targeted delivery of microRNA-199a-3p using self-assembled dipeptide nanoparticles efficiently reduces hepatocellular carcinoma in mice[J]. Hepatology, 2018, 67(4):1392-1407.DOI:10.1002/hep.29643.
[29]
Huang YK, Hu L, Huang S, et al. Curcumin-loaded galactosylated BSA nanoparticles as targeted drug delivery carriers inhibit hepatocellular carcinoma cell proliferation and migration[J]. Int J Nanomedicine, 2018, 13:8309-8323.DOI:10.2147/IJN.S184379.
[30]
Ishiguro K, Yan IK, Lewis-Tuffin L, et al. Targeting liver cancer stem cells using engineered biological nanoparticles for the treatment of hepatocellular cancer[J]. Hepatol Commun, 2020, 4(2):298-313.DOI:10.1002/hep4.1462.
[31]
Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles:a review[J]. Talanta, 2018, 184:537-556.DOI:10.1016/j.talanta.2018.02.088.
[32]
Norouzi H, Khoshgard K, Akbarzadeh F. In vitro outlook of gold nanoparticles in photo-thermal therapy:a literature review[J]. Lasers Med Sci, 2018, 33(4):917-926.DOI:10.1007/s10103-018-2467-z.
[33]
Haume K, Rosa S, Grellet S, et al. Gold nanoparticles for cancer radiotherapy:a review[J]. Cancer Nanotechnol, 2016, 7(1):8.DOI:10.1186/s12645-016-0021-x.
[34]
Cai HQ, Yang Y, Peng FH, et al. Gold nanoparticles-loaded anti-miR221 enhances antitumor effect of sorafenib in hepatocellular carcinoma cells[J]. Int J Med Sci, 2019, 16(12):1541-1548.DOI:10.7150/ijms.37427.
[35]
Benyettou F, Rezgui R, Ravaux F, et al. Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells[J]. J Mater Chem B, 2015, 3(36):7237-7245.DOI:10.1039/c5tb00994d.
[36]
Zhao SZ, Yu XJ, Qian YN, et al. Multifunctional magnetic iron oxide nanoparticles:an advanced platform for cancer theranostics[J]. Theranostics, 2020, 10(14):6278-6309.DOI:10.7150/thno.42564.
[37]
Tang SL, Bai MY, Wang JY, et al. Development and application of micro-polysaccharide drug carriers incorporating doxorubicin and superparamagnetic iron oxide for bimodality treatment of hepatocellular carcinoma[J]. Colloids Surf B Biointerfaces, 2017, 151:304-313.DOI:10.1016/j.colsurfb.2016.12.036.
[38]
Noureddine A, Maestas-Olguin A, Tang L, et al. Future of mesoporous silica nanoparticles in nanomedicine:protocol for reproducible synthesis,characterization,lipid coating,and loading of therapeutics (chemotherapeutic,proteins,siRNA and mRNA)[J]. ACS Nano, 2023, 17(17):16308-16325.DOI:10.1021/acsnano.3c07621.
[39]
Ji F, Sun H, Qin ZH, et al. Engineering polyzwitterion and polydopamine decorated doxorubicin-loaded mesoporous silica nanoparticles as a pH-sensitive drug delivery[J]. Polymers (Basel), 2018, 10(3):326.DOI:10.3390/polym10030326.
[40]
Yin F, Hu K, Chen YZ, et al. SiRNA delivery with PEGylated graphene oxide nanosheets for combined photothermal and genetherapy for pancreatic cancer[J]. Theranostics, 2017, 7(5):1133-1148.DOI:10.7150/thno.17841.
[41]
Barile L, Vassalli G. Exosomes:therapy delivery tools and biomarkers of diseases[J]. Pharmacol Ther, 2017, 174:63-78.DOI:10.1016/j.pharmthera.2017.02.020.
[42]
Chinnappan M, Srivastava A, Amreddy N, et al. Exosomes as drug delivery vehicle and contributor of resistance to anticancer drugs[J]. Cancer Lett, 2020, 486:18-28.DOI:10.1016/j.canlet.2020.05.004.
[43]
Liang LY, Zhao L, Wang Y, et al. Treatment for hepatocellular carcinoma is enhanced when norcantharidin is encapsulated in exosomes derived from bone marrow mesenchymal stem cells[J]. Mol Pharm, 2021, 18(3):1003-1013.DOI:10.1021/acs.molpharmaceut.0c00976.
[44]
Li HD, Yang C, Shi YJ, et al. Exosomes derived from siRNA against GRP78 modified bone-marrow-derived mesenchymal stem cells suppress sorafenib resistance in hepatocellular carcinoma[J]. J Nanobiotechnology, 2018, 16(1):103-115.DOI:10.1186/s12951-018-0429-z.
[45]
Mahati S, Fu XJ, Ma XX, et al. Delivery of miR-26a using an exosomes-based nanosystem inhibited proliferation of hepatocellular carcinoma[J]. Front Mol Biosci, 2021, 8:738219.DOI:10.3389/fmolb.2021.738219.
[46]
Li D, Yao SR, Zhou ZF, et al. Hyaluronan decoration of milk exosomes directs tumor-specific delivery of doxorubicin[J]. Carbohydr Res, 2020, 493:108032.DOI:10.1016/j.carres.2020.108032.
[47]
Perry JL, Reuter KG, Luft JC, et al. Mediating passive tumor accumulation through particle size,tumor type,and location[J]. Nano Lett, 2017, 17(5):2879-2886.DOI:10.1021/acs.nanolett.7b00021.
[48]
Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review[J]. J Control Release, 2000, 65(1-2):271-284.DOI:10.1016/s0168-3659(99)00248-5.
[49]
Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect[J]. Adv Drug Deliv Rev, 2011, 63(3):170-183.DOI:10.1016/j.addr.2010.10.008.
[50]
Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases[J]. Nat Rev Drug Discov, 2011, 10(6):417-427.DOI:10.1038/nrd3455.
[51]
Gabizon AA, La-Beck NM. Translational considerations in nanomedicine:the oncology perspective[J]. Adv Drug Deliv Rev, 2020, 158:140-157.DOI:10.1016/j.addr.2020.05.012.
[52]
Zhong YN, Meng FH, Deng C, et al. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy[J]. Biomacromolecules, 2014, 15(6):1955-1969.DOI:10.1021/bm5003009.
[53]
Li M, Zhang WY, Wang BR, et al. Ligand-based targeted therapy:a novel strategy for hepatocellular carcinoma[J]. Int J Nanomedicine, 2016, 11:5645-5669.DOI:10.2147/IJN.S115727.
[54]
Elnaggar MH, Abushouk AI, Hassan AHE, et al. Nanomedicine as a putative approach for active targeting of hepatocellular carcinoma[J]. Semin Cancer Biol, 2021, 69:91-99.DOI:10.1016/j.semcancer.2019.08.016.
[55]
Bakrania A, Zheng G, Bhat M. Nanomedicine in hepatocellular carcinoma:a new frontier in targeted cancer treatment[J]. Pharmaceutics, 2021, 14(1):41.DOI:10.3390/pharmaceutics14010041.
[56]
Pranatharthiharan S, Patel MD, Malshe VC, et al. Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma[J]. Drug Deliv, 2017, 24(1):20-29.DOI:10.1080/10717544.2016.1225856.
[57]
Feng S, Zhou J, Li Z, et al. Sorafenib encapsulated in nanocarrier functionalized with glypican-3 specific peptide for targeted therapy of hepatocellular carcinoma[J]. Colloids Surf B Biointerfaces, 2019, 184:110498.DOI:10.1016/j.colsurfb.2019.110498.
[58]
Vahab G, Meysam S, Alireza F, et al. Folate-targeted nanomicelles containing silibinin as an active drug delivery system for liver cancer therapy[J]. J Drug Deliv Sci Technol, 2021, 61:102157.DOI:10.1016/j.jddst.2020.102157.
PDF(1021 KB)

Accesses

Citation

Detail

Sections
Recommended

/