Research Progress in the Role of the Ventral Tegmental Area-Medial Prefrontal Cortex Neural Circuit in the Regulation of Arousal

Mengnan HAO, Xiaoli LIANG, Yi ZHANG

Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (3) : 402-408.

PDF(860 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(860 KB)
Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (3) : 402-408. DOI: 10.3881/j.issn.1000-503X.15693
Review Articles

Research Progress in the Role of the Ventral Tegmental Area-Medial Prefrontal Cortex Neural Circuit in the Regulation of Arousal

Author information +
History +

Abstract

There are mutual neural projections between the ventral tegmental area(VTA)and the medial prefrontal cortex(mPFC),which form a circuit.Recent studies have shown that This circuit is vital in regulating arousal from sleep and general anesthesia.this paper introduces the anatomical structures of VTA and mPFC and the roles of various neurons and projection pathways in the regulation of arousal,aiming to provide new ideas for further research on the mechanism of arousal from sleep and general anesthesia。

Key words

ventral tegmental area / medial prefrontal cortex / neural circuit / arousal

Cite this article

Download Citations
Mengnan HAO , Xiaoli LIANG , Yi ZHANG. Research Progress in the Role of the Ventral Tegmental Area-Medial Prefrontal Cortex Neural Circuit in the Regulation of Arousal[J]. Acta Academiae Medicinae Sinicae. 2024, 46(3): 402-408 https://doi.org/10.3881/j.issn.1000-503X.15693

References

[1]
Galaj E, Ranaldi R. Neurobiology of reward-related learning[J]. Neurosci Biobehav Rev, 2021, 124:224-234.DOI:10.1016/j.neubiorev.2021.02.007.
[2]
Douma EH, de Kloet ER. Stress-induced plasticity and functioning of ventral tegmental dopamine neurons[J]. Neurosci Biobehav Rev, 2020, 108:48-77.DOI:10.1016/j.neubiorev.2019.10.015.
[3]
Bimpisidis Z, Wallén-Mackenzie Å. Neurocircuitry of reward and addiction:potential impact of dopamine-glutamate co-release as future target in substance use disorder[J]. J Clin Med, 2019, 8(11):1887.DOI:10.3390/jcm8111887.
[4]
Venner A, Todd WD, Fraigne J, et al. Newly identified sleep-wake and circadian circuits as potential therapeutic targets[J]. Sleep, 2019, 42(5):zsz023.DOI:10.1093/sleep/zsz023.
[5]
Chen YH, Wu JL, Hu NY, et al. Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear[J]. J Clin Invest, 2021, 131(14):e145692.DOI:10.1172/JCI145692.
[6]
Gallo FT, Zanoni Saad MB, Silva A, et al. Dopamine modulates adaptive forgetting in medial prefrontal cortex[J]. J Neurosci, 2022, 42(34):6620-6636.DOI:10.1523/JNEUROSCI.0740-21.2022.
[7]
Howland JG, Ito R, Lapish CC, et al. The rodent medial prefrontal cortex and associated circuits in orchestrating adaptive behavior under variable demands[J]. Neurosci Biobehav Rev, 2022, 135:104569.DOI:10.1016/j.neubiorev.2022.104569.
[8]
Visser E, Matos MR, Mitrić MM, et al. Extinction of cocaine memory depends on a feed-forward inhibition circuit within the medial prefrontal cortex[J]. Biol Psychiatry, 2022, 91(12):1029-1038.DOI:10.1016/j.biopsych.2021.08.008.
[9]
Huang WC, Zucca A, Levy J, et al. Social behavior is modulated by valence-encoding mPFC-amygdala sub-circuitry[J]. Cell Rep, 2020, 32(2):107899.DOI:10.1016/j.celrep.2020.107899.
[10]
Trutti AC, Mulder MJ, Hommel B, et al. Functional neuroanatomical review of the ventral tegmental area[J]. Neuroimage, 2019, 191:258-268.DOI:10.1016/j.neuroimage.2019.01.062.
[11]
Derdeyn P, Hui M, Macchia D, et al. Uncovering the connectivity logic of the ventral tegmental area[J]. Front Neural Circuits, 2022, 15:799688.DOI:10.3389/fncir.2021.799688.
[12]
Preuss TM, Wise SP. Evolution of prefrontal cortex[J]. Neuropsychopharmacology, 2022, 47(1):3-19.DOI:10.1038/s41386-021-01076-5.
[13]
Carlén M. What constitutes the prefrontal cortex[J]. Science, 2017, 358(6362):478-482.DOI:10.1126/science.aan8868.
[14]
Uylings HB, Groenewegen HJ, Kolb B. Do rats have a prefrontal cortex[J]. Behav Brain Res, 2003, 146(1-2):3-17.DOI:10.1016/j.bbr.2003.09.028.
[15]
Kabanova A, Pabst M, Lorkowski M, et al. Function and developmental origin of a mesocortical inhibitory circuit[J]. Nat Neurosci, 2015, 18(6):872-882.DOI:10.1038/nn.4020.
[16]
Beier K. Modified viral-genetic mapping reveals local and global connectivity relationships of ventral tegmental area dopamine cells[J]. Elife, 2022, 11:e76886.DOI:10.7554/eLife.76886.
[17]
Beier KT, Gao XJ, Xie S, et al. Topological organization of ventral tegmental area connectivity revealed by viral-genetic dissection of input-output relations[J]. Cell Rep, 2019, 26(1):159-167.e6.DOI:10.1016/j.celrep.2018.12.040.
[18]
Babiczky Á, Matyas F. Molecular characteristics and laminar distribution of prefrontal neurons projecting to the mesolimbic system[J]. Elife, 2022, 11:e78813.DOI:10.7554/eLife.78813.
[19]
Morales M, Margolis EB. Ventral tegmental area:cellular heterogeneity,connectivity and behaviour[J]. Nat Rev Neurosci, 2017, 18(2):73-85.DOI:10.1038/nrn.2016.165.
[20]
Taximaimaiti R, Luo X, Wang XP. Pharmacological and non-pharmacological treatments of sleep disorders in parkinson's disease[J]. Curr Neuropharmacol, 2021, 19(12):2233-2249.DOI:10.2174/1570159X19666210517115706.
[21]
Eban-Rothschild A, Rothschild G, Giardino WJ, et al. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors[J]. Nat Neurosci, 2016, 19(10):1356-1366.DOI:10.1038/nn.4377.
[22]
Oishi Y, Suzuki Y, Takahashi K, et al. Activation of ventral tegmental area dopamine neurons produces wakefulness through dopamine D2-like receptors in mice[J]. Brain Struct Funct, 2017, 222(6):2907-2915.DOI:10.1007/s00429-017-1365-7.
[23]
Cai J, Tong Q. Anatomy and function of ventral tegmental area glutamate neurons[J]. Front Neural Circuits, 2022, 16:867053.DOI:10.3389/fncir.2022.867053.
[24]
Yu X, Li W, Ma Y, et al. GABA and glutamate neurons in the VTA regulate sleep and wakefulness[J]. Nat Neurosci, 2019, 22(1):106-119.DOI:10.1038/s41593-018-0288-9.
[25]
Chowdhury S, Matsubara T, Miyazaki T, et al. GABA neurons in the ventral tegmental area regulate non-rapid eye movement sleep in mice[J]. Elife, 2019, 8:e44928.DOI:10.7554/eLife.44928.
[26]
Eban-Rothschild A, Borniger JC, Rothschild G, et al. Arousal state-dependent alterations in VTA-GABAergic neuronal activity[J]. eNeuro, 2020, 7(2): ENEURO.0356-19.2020.DOI:10.1523/ENEURO.0356-19.2020.
[27]
Bian T, Meng W, Qiu M, et al. Noninvasive ultrasound stimulation of ventral tegmental area induces reanimation from general anaesthesia in mice[J]. Research (Wash D C), 2021, 2021:2674692.DOI:10.34133/2021/2674692.
[28]
Gui H, Liu C, He H, et al. Dopaminergic projections from the ventral tegmental area to the nucleus accumbens modulate sevoflurane anesthesia in mice[J]. Front Cell Neurosci, 2021, 15:671473.DOI:10.3389/fncel.2021.671473.
[29]
Li J, Li H, Wang D, et al. Orexin activated emergence from isoflurane anaesthesia involves excitation of ventral tegmental area dopaminergic neurones in rats[J]. Br J Anaesth, 2019, 123(4):497-505.DOI:10.1016/j.bja.2019.07.005.
[30]
Guo J, Xu K, Yin JW, et al. Dopamine transporter in the ventral tegmental area modulates recovery from propofol anesthesia in rats[J]. J Chem Neuroanat, 2022, 121:102083.DOI:10.1016/j.jchemneu.2022.102083.
[31]
Yin L, Li L, Deng J, et al. Optogenetic/chemogenetic activation of GABAergic neurons in the ventral tegmental area facilitates general anesthesia via projections to the lateral hypothalamus in mice[J]. Front Neural Circuits, 2019, 13:73.DOI:10.3389/fncir.2019.00073.
[32]
Kim YG, Kim SE, Lee J, et al. Neuromodulation using transcranial focused ultrasound on the bilateral medial prefrontal cortex[J]. J Clin Med, 2022, 11(13):3809.DOI:10.3390/jcm11133809.
[33]
Thibaut A, Wannez S, Donneau AF, et al. Controlled clinical trial of repeated prefrontal tDCS in patients with chronic minimally conscious state[J]. Brain Inj, 2017, 31(4):466-474.DOI:10.1080/02699052.2016.1274776.
[34]
Jang SH, Seo YS, Lee SJ. Increased thalamocortical connectivity to the medial prefrontal cortex with recovery of impaired consciousness in a stroke patient:a case report[J]. Medicine (Baltimore), 2020, 99(18):e19937.DOI:10.1097/MD.0000000000019937.
[35]
Gabbott PL, Rolls ET. Increased neuronal firing in resting and sleep in areas of the macaque medial prefrontal cortex[J]. Eur J Neurosci, 2013, 37(11):1737-1746.DOI:10.1111/ejn.12171.
[36]
Gómez LJ, Dooley JC, Blumberg MS. Activity in developing prefrontal cortex is shaped by sleep and sensory experience[J]. Elife, 2023, 12:e82103.DOI:10.7554/eLife.82103.
[37]
Koenigs M, Holliday J, Solomon J, et al. Left dorsomedial frontal brain damage is associated with insomnia[J]. J Neurosci, 2010, 30(47):16041-16043.DOI:10.1523/JNEUROSCI.3745-10.2010.
[38]
Chang CH, Chen MC, Qiu MH, et al. Ventromedial prefrontal cortex regulates depressive-like behavior and rapid eye movement sleep in the rat[J]. Neuropharmacology, 2014, 86:125-132.DOI:10.1016/j.neuropharm.2014.07.005.
[39]
Lou T, Ma J, Wang Z, et al. Hyper-activation of mPFC underlies specific traumatic stress-induced sleep-wake EEG disturbances[J]. Front Neurosci, 2020, 14:883.DOI:10.3389/fnins.2020.00883.
[40]
Shao Z, Xu Y, Chen L, et al. Dysfunction of the NAc-mPFC circuit in insomnia disorder[J]. Neuroimage Clin, 2020, 28:102474.DOI:10.1016/j.nicl.2020.102474.
[41]
Gretenkord S, Rees A, Whittington MA, et al. Dorsal vs.ventral differences in fast up-state-associated oscillations in the medial prefrontal cortex of the urethane-anesthetized rat[J]. J Neurophysiol, 2017, 117(3):1126-1142.DOI:10.1152/jn.00762.2016.
[42]
Liu X, Lauer KK, Douglas Ward B, et al. Propofol attenuates low-frequency fluctuations of resting-state fMRI BOLD signal in the anterior frontal cortex upon loss of consciousness[J]. Neuroimage, 2017, 147:295-301.DOI:10.1016/j.neuroimage.2016.12.043.
[43]
Jiang J, Jiao Y, Gao P, et al. Propofol differentially induces unconsciousness and respiratory depression through distinct interactions between GABAA receptor and GABAergic neuron in corresponding nuclei[J]. Acta Biochim Biophys Sin (Shanghai), 2021, 53(8):1076-1087.DOI:10.1093/abbs/gmab084.
[44]
Huels ER, Groenhout T, Fields CW, et al. Inactivation of prefrontal cortex delays emergence from sevoflurane anesthesia[J]. Front Syst Neurosci, 2021, 15:690717.DOI:10.3389/fnsys.2021.690717.
[45]
Parkar A, Fedrigon DC, Alam F, et al. Carbachol and nicotine in prefrontal cortex have differential effects on sleep-wake states[J]. Front Neurosci, 2020, 14:567849.DOI:10.3389/fnins.2020.567849.
[46]
Pal D, Dean JG, Liu T, et al. Differential role of prefrontal and parietal cortices in controlling level of consciousness[J]. Curr Biol, 2018, 28(13):2145-2152.e5.DOI:10.1016/j.cub.2018.05.025.
[47]
Wang L, Zhang W, Wu Y, et al. Cholinergic-induced specific oscillations in the medial prefrontal cortex to reverse propofol anesthesia[J]. Front Neurosci, 2021, 15:664410.DOI:10.3389/fnins.2021.664410.
[48]
Dean JG, Fields CW, Brito MA, et al. Inactivation of prefrontal cortex attenuates behavioral arousal induced by stimulation of basal forebrain during sevoflurane anesthesia[J]. Anesth Analg, 2022, 134(6):1140-1152.DOI:10.1213/ANE.0000000000006011.
[49]
Radnikow G, Feldmeyer D. Layer-and Cell type-specific modulation of excitatory neuronal activity in the neocortex[J]. Front Neuroanat, 2018, 12:1.DOI:10.3389/fnana.2018.00001.
[50]
Song Y, Chu R, Cao F, et al. Dopaminergic neurons in the ventral tegmental-prelimbic pathway promote the emergence of rats from sevoflurane anesthesia[J]. Neurosci Bull, 2022, 38(4):417-428.DOI:10.1007/s12264-021-00809-2.
[51]
Park K, Clare K, Volkow ND, et al. Cocaine's effects on the reactivity of the medial prefrontal cortex to ventral tegmental area stimulation:optical imaging study in mice[J]. Addiction, 2022, 117(8):2242-2253.DOI:10.1111/add.15869.
[52]
Huang S, Zhang Z, Gambeta E, et al. Dopamine inputs from the ventral tegmental area into the medial prefrontal cortex modulate neuropathic pain-associated behaviors in mice[J]. Cell Rep, 2020, 31(12):107812.DOI:10.1016/j.celrep.2020.107812.
[53]
Sotoyama H, Inaba H, Iwakura Y, et al. The dual role of dopamine in the modulation of information processing in the prefrontal cortex underlying social behavior[J]. FASEB J, 2022, 36(2):e22160.DOI:10.1096/fj.202101637R.
[54]
Lak A, Okun M, Moss MM, et al. Dopaminergic and prefrontal basis of learning from sensory confidence and reward value[J]. Neuron, 2020, 105(4):700-711.e6.DOI:10.1016/j.neuron.2019.11.018.
[55]
Jacobs DS, Allen MC, Park J, et al. Learning of probabilistic punishment as a model of anxiety produces changes in action but not punisher encoding in the dmPFC and VTA[J]. Elife, 2022, 11:e78912.DOI:10.7554/eLife.78912.
[56]
Gretenkord S, Olthof BMJ, Stylianou M, et al. Electrical stimulation of the ventral tegmental area evokes sleep-like state transitions under urethane anaesthesia in the rat medial prefrontal cortex via dopamine D1-like receptors[J]. Eur J Neurosci, 2020, 52(2):2915-2930.DOI:10.1111/ejn.14665.
[57]
Kalló I, Omrani A, Meye FJ, et al. Characterization of orexin input to dopamine neurons of the ventral tegmental area projecting to the medial prefrontal cortex and shell of nucleus accumbens[J]. Brain Struct Funct, 2022, 227(3):1083-1098.DOI:10.1007/s00429-021-02449-8.
[58]
An S, Sun H, Wu M, et al. Medial septum glutamatergic neurons control wakefulness through a septo-hypothalamic circuit[J]. Curr Biol, 2021, 31(7):1379-1392.e4.DOI:10.1016/j.cub.2021.01.019.
[59]
Kroeger D, Thundercliffe J, Phung A, et al. Glutamatergic pedunculopontine tegmental neurons control wakefulness and locomotion via distinct axonal projections[J]. Sleep, 2022, 45(12):zsac242.DOI:10.1093/sleep/zsac242.
[60]
Teng S, Zhen F, Wang L, et al. Control of non-REM sleep by ventrolateral medulla glutamatergic neurons projecting to the preoptic area[J]. Nat Commun, 2022, 13(1):4748.DOI:10.1038/s41467-022-32461-3.
[61]
Liu C, Liu J, Zhou L, et al. Lateral habenula glutamatergic neurons modulate isoflurane anesthesia in mice[J]. Front Mol Neurosci, 2021, 14:628996.DOI:10.3389/fnmol.2021.628996.
[62]
Yin J, Qin J, Lin Z, et al. Glutamatergic neurons in the paraventricular hypothalamic nucleus regulate isoflurane anesthesia in mice[J]. FASEB J, 2023, 37(3):e22762.DOI:10.1096/fj.202200974RR.
[63]
Yamaguchi T, Wang HL, Li X, et al. Mesocorticolimbic glutamatergic pathway[J]. J Neurosci, 2011, 31(23):8476-8490.DOI:10.1523/JNEUROSCI.1598-11.2011.
[64]
Hui M, Beier KT. Defining the interconnectivity of the medial prefrontal cortex and ventral midbrain[J]. Front Mol Neurosci, 2022, 15:971349.DOI:10.3389/fnmol.2022.971349.
[65]
Breton-Provencher V, Sur M. Active control of arousal by a locus coeruleus GABAergic circuit[J]. Nat Neurosci, 2019, 22(2):218-228.DOI:10.1038/s41593-018-0305-z.
[66]
Zhong H, Xu H, Li X, et al. A role of prefrontal cortico-hypothalamic projections in wake promotion[J]. Cereb Cortex, 2023, 33(6):3026-3042.DOI:10.1093/cercor/bhac258.
[67]
Yang L, Chen M, Ma Q, et al. Morphine selectively disinhibits glutamatergic input from mPFC onto dopamine neurons of VTA,inducing reward[J]. Neuropharmacology, 2020, 176:108217.DOI:10.1016/j.neuropharm.2020.108217.
[68]
Cao F, Guo Y, Guo S, et al. Prelimbic cortical pyramidal neurons to ventral tegmental area projections promotes arousal from sevoflurane anesthesia[J]. CNS Neurosci Ther, 2024, 30(3):e14675.DOI:10.1111/cns.14675.
PDF(860 KB)

Accesses

Citation

Detail

Sections
Recommended

/