Construction and Evaluation of a Prognostic Risk Prediction Model of Pancreatic Ductal Adenocarcinoma Based on Immune-Related Genes

Yu ZHANG, Ruiping REN, Peng WAN, Xiaolan HE

Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (3) : 354-360.

PDF(1886 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1886 KB)
Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (3) : 354-360. DOI: 10.3881/j.issn.1000-503X.15736
Original Articles

Construction and Evaluation of a Prognostic Risk Prediction Model of Pancreatic Ductal Adenocarcinoma Based on Immune-Related Genes

Author information +
History +

Abstract

Objective to construct a risk prediction model by integrating The molecular subtypes of pancreatic ductal adenocarcinoma(PDAC)and immune-related genes.Methods with GSE71729 data set(n=145)as the training set,the differentially expressed genes and differential immune-related genes between the squamous and non-squamous subtypes of PDAC were integrated to construct a regulatory network,on the basis of which five immune marker genes regulating the squamous subtype were screened out.an integrated immune score(IIS)model was constructed based on patient survival information and immune marker genes to predict the clinical prognosis of PDAC patients,and its predictive performance was tested With 5 validation sets(n=758).Results PDAC patients were assigned into high risk and low risk groups according to the IIS.in both training and validation sets,the overall survival of patients in the high risk group was shorter than that in the low risk group(both P<0.001).the multivariable Cox regression showed that IIS was An independent prognostic factor for PDAC(HR=2.16,95%CI=1.50-3.10,P<0.001).Conclusion IIS can be used for risk stratification of PDAC patients and may become a potential prognostic marker for PDAC。

Key words

pancreatic ductal adenocarcinoma / immune-related gene / prognosis

Cite this article

Download Citations
Yu ZHANG , Ruiping REN , Peng WAN , et al. Construction and Evaluation of a Prognostic Risk Prediction Model of Pancreatic Ductal Adenocarcinoma Based on Immune-Related Genes[J]. Acta Academiae Medicinae Sinicae. 2024, 46(3): 354-360 https://doi.org/10.3881/j.issn.1000-503X.15736

References

[1]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424.DOI:10.3322/caac.21492.
[2]
冯程程, 许传志, 何杰宇, 等. 1990-2019年中国20-84岁人群胰腺癌发病趋势分析[J]. 中华肿瘤防治杂志, 2022, 29(18):1323-1329.DOI:10.16073/j.cnki.cjcpt.2022.18.04.
[3]
DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics,2019[J]. CA Cancer J Clin, 2019, 69(6):438-451.DOI:10.3322/caac.21583.
[4]
Springfeld C, Ferrone CR, Katz MHG, et al. Neoadjuvant therapy for pancreatic cancer[J]. Nat Rev Clin Oncol, 2023, 20(5):318-337.DOI:10.1038/s41571-023-00746-1.
[5]
Lo W, Zureikat A. Neoadjuvant therapy in pancreatic cancer:a review and update on recent trials[J]. Curr Opin Gastroenterol, 2022, 38(5):521-531.DOI:10.1097/MOG.0000000000000874.
[6]
Chen H, Yu Y, Zhou L, et al. Cuproptosis-related LncRNAs signature as biomarker of prognosis and immune infiltration in pancreatic cancer[J]. Front Genet, 2023, 14:1049454.DOI:10.3389/fgene.2023.1049454.
[7]
Zhang S, Yang J, Wu H, et al. Establishment of a 7-gene prognostic signature based on oxidative stress genes for predicting chemotherapy resistance in pancreatic cancer[J]. Front Pharmacol, 2023, 14:1091378.DOI:10.3389/fphar.2023.1091378.
[8]
Chen K, Wang Q, Liu X, et al. Single cell RNA-seq identifies immune-related prognostic model and key signature-SPP1 in pancreatic ductal adenocarcinoma[J]. Genes, 2022, 13(10):1760.DOI:10.3390/genes13101760.
[9]
Collisson EA, Bailey P, Chang DK, et al. Molecular subtypes of pancreatic cancer[J]. Nat Rev Microbiol, 2019, 16(4):207-220.DOI:10.1038/s41575-019-0109-y.
[10]
Giordano M, Cacciato Insilla A, Campani D. Molecular subtypes of pancreatic ductal adenocarcinoma[M]//Esposito I,Karamitopoulou-Diamantis E.Pathology of the pancreas. Cham: Springer International Publishing, 2022:136-140.DOI:10.1007/978-3-319-28845-1_5533-1.
[11]
Falcomatà C, Bärthel S, Schneider G, et al. Context-specific determinants of the immunosuppressive tumor microenvironment in pancreatic cancer[J]. Cancer Discov, 2023, 13(2):278-297.DOI:10.1158/2159-8290.CD-22-0876.
[12]
Sherman MH, Beatty GL. Tumor microenvironment in pancreatic cancer pathogenesis and therapeutic resistance[J]. Annu Rev Pathol, 2023, 18:123-148.DOI:10.1146/annurev-pathmechdis-031621-024600.
[13]
Davis S, Meltzer PS. GEOquery:a bridge between the Gene Expression Omnibus (GEO) and BioConductor[J]. Bioinformatics, 2007, 23(14):1846-1847.DOI:10.1093/bioinformatics/btm254.
[14]
Colaprico A, Silva TC, Olsen C, et al. TCGAbiolinks:an R/Bioconductor package for integrative analysis of TCGA data[J]. Nucleic Acids Res, 2016, 44(8):e71.DOI:10.1093/nar/gkv1507.
[15]
Rashid NU, Peng XL, Jin C, et al. Purity independent subtyping of tumors (PurIST),a clinically robust,single-sample classifier for tumor subtyping in pancreatic cancer[J]. Clin Cancer Res, 2020, 26(1):82-92.DOI:10.1158/1078-0432.CCR-19-1467.
[16]
Bhattacharya S, Andorf S, Gomes L, et al. ImmPort:disseminating data to the public for the future of immunology[J]. Immunol Res, 2014, 58:234-239.DOI:10.1007/s12026-014-8516-1.
[17]
Fletcher MNC, Castro MAA, Wang X, et al. Master regulators of FGFR2 signalling and breast cancer risk[J]. Nat Commun, 2013, 4(1):2464.DOI:10.1038/ncomms3464.
[18]
Wang X, Terfve C, Rose JC, et al. HTSanalyzeR:an R/Bioconductor package for integrated network analysis of high-throughput screens[J]. Bioinformatics, 2011, 27(6):879-880.DOI:10.1093/bioinformatics/btr028.
[19]
Ritchie ME, Phipson B, Wu DI, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7):e47-e47.DOI:10.1093/nar/gkv007.
[20]
Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine[J]. N Engl J Med, 2013, 369(18):1691-1703.DOI:10.1056/NEJMoa1304369.
[21]
Aroldi F, Zaniboni A. Immunotherapy for pancreatic cancer:present and future[J]. Immunotherapy, 2017, 9(7):607-616.DOI:10.2217/imt-2016-0142.
[22]
Mahajan UM, Langhoff E, Goni E, et al. Immune cell and stromal signature associated with progression-free survival of patients with resected pancreatic ductal adenocarcinoma[J]. Gastroenterology, 2018, 155(5):1625-1639.e2.DOI:10.1053/j.gastro.2018.08.009.
[23]
Ai C, Zhang J, Lian S, et al. FOXM1 functions collaboratively with PLAU to promote gastric cancer progression[J]. J Cancer, 2020, 11(4):788.DOI:10.7150/jca.37323.
[24]
Liu X, Xu Q, Li Z, et al. Integrated analysis identifies AQP9 correlates with immune infiltration and acts as a prognosticator in multiple cancers[J]. Sci Rep, 2020, 10(1):20795.DOI:10.1038/s41598-020-77657-z.
[25]
Baumgart E, Cohen MS, Neto BS, et al. Identification and prognostic significance of an epithelial-mesenchymal transition expression profile in human bladder tumors[J]. Clin Cancer Res, 2007, 13(6):1685-1694.DOI:10.1158/1078-0432.CCR-06-2330.
[26]
Chen H, Xu C, Liu Z. S100 protein family in human cancer[J]. Am J Cancer Res, 2014, 4(2):89-115.
[27]
Wolf S, Haase-Kohn C, Pietzsch J. S100A2 in cancerogenesis:a friend or a foe[J]. Amino acids, 2011, 41:849-861.DOI:10.1007/s00726-010-0623-2.
[28]
Li C, Chen Q, Zhou Y, et al. S100A2 promotes glycolysis and proliferation via GLUT1 regulation in colorectal cancer[J]. FASEB J, 2020, 34(10):13333-13344.DOI:10.1096/fj.202000555R.
[29]
Ma YJ, Hein E, Munthe-Fog L, et al. Soluble collectin-12 (CL-12) is a pattern recognition molecule initiating complement activation via the alternative pathway[J]. J Immunol, 2015, 195(7):3365-3373.DOI:10.4049/jimmunol.1500493.
[30]
Elola MT, Capurro MI, Barrio MM, et al. Lewis x antigen mediates adhesion of human breast carcinoma cells to activated endothelium.Possible involvement of the endothelial scavenger receptor C-type lectin[J]. Breast Cancer Res Treat, 2007, 101:161-174.DOI:10.1007/s10549-006-9286-9.
PDF(1886 KB)

Accesses

Citation

Detail

Sections
Recommended

/