Research Advances in the Association Between Alzheimer's Disease and Double-Stranded RNA-Dependent Protein Kinase

Yi GONG, Xingyang XIAO, Yousheng HU, Yiwei XIE, Zhihui WU

Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (3) : 425-434.

PDF(6912 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6912 KB)
Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (3) : 425-434. DOI: 10.3881/j.issn.1000-503X.15792
Review Articles

Research Advances in the Association Between Alzheimer's Disease and Double-Stranded RNA-Dependent Protein Kinase

Author information +
History +

Abstract

Alzheimer's disease(AD)is a severe threat to human health and one of the three major causes of human death.Double-stranded RNA-dependent protein kinase(PKR)is an interferon-induced protein kinase involved in innate immunity.in the occurrence and development of AD,PKR is upregulated and continuously activated.On the one hand,the activation of PKR triggers an integrated stress response in brain cells.On the other hand,it indirectly upregulates the expression ofβ-site amyloid precursor protein cleaving enzyme 1 and facilitates the accumulation of amyloid-βprotein(Aβ),which could activate PKR activator to further activate PKR,thus forming a sustained accumulation cycle of Aβ.in addition,PKR can promote Tau phosphorylation,thereby reducing microtubule stability in nerve cells.Inflammation in brain tissue,neurotoxicity resulted from Aβaccumulation,and disruption of microtubule stability led to the progression of AD and the declines of memory and cognitive function.Therefore,PKR is a key molecule in the development and progression of AD.Effective PKR detection can aid in the diagnosis and prediction of AD progression and provide opportunities for clinical treatment.the inhibitors targeting PKR are expected to control the activity of PKR,thereby controlling the progression of AD.Therefore,PKR could be a target for the development of therapeutic drugs for AD。

Key words

Alzheimer's disease / double-stranded RNA-dependent protein kinase / amyloid-beta / Tau

Cite this article

Download Citations
Yi GONG , Xingyang XIAO , Yousheng HU , et al . Research Advances in the Association Between Alzheimer's Disease and Double-Stranded RNA-Dependent Protein Kinase[J]. Acta Academiae Medicinae Sinicae. 2024, 46(3): 425-434 https://doi.org/10.3881/j.issn.1000-503X.15792

References

[1]
Petersen RC, Lopez O, Armstrong MJ, et al. Practice guideline update summary:mild cognitive impairment:report of the Guideline Development,Dissemination,and Implementation Subcommittee of the American Academy of Neurology[J]. Neurology, 2018, 90(3):126-135.DOI:10.1212/wnl.0000000000004826.
[2]
Alzheimer's Association. 2023 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2023, 19(4):1598-1695.DOI:10.1002/alz.13016.
[3]
Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention,intervention,and care:2020 report of the Lancet Commission[J]. Lancet (London,England), 2020, 396(10248):413-446.DOI:10.1016/s0140-6736(20)30367-6.
[4]
Kapasi A, Leurgans SE, Arvanitakis Z, et al. Abeta (Amyloid Beta) and Tau tangle pathology modifies the association between small vessel disease and cortical microinfarcts[J]. Stroke, 2021, 52(3):1012-1021.DOI:10.1161/STROKEAHA.120.031073.
[5]
Behl T, Kaur I, Fratila O, et al. Exploring the potential of therapeutic agents targeted towards mitigating the events associated with Amyloid-β cascade in Alzheimer's disease[J]. Int J Mol Sci, 2020, 21(20):7473.DOI:10.3390/ijms21207443.
[6]
Cline EN, Bicca MA, Viola KL, et al. The amyloid-β oligomer hypothesis:beginning of the third decade[J]. J Alzheimers Dis, 2018, 64(s1):S567-S610.DOI:10.3233/jad-179941.
[7]
Hamano T, Enomoto S, Shirafuji N, et al. Autophagy and Tau protein[J]. Int J Mol Sci, 2021, 22(14):7574.DOI:10.3390/ijms22147475.
[8]
Otero-Garcia M, Mahajani SU, Wakhloo D, et al. Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer's disease[J]. Neuron, 2022, 110(18):2929-2948.e8.DOI:10.1016/j.neuron.2022.06.021.
[9]
Huang F, Wang M, Liu R, et al. CDT2-controlled cell cycle reentry regulates the pathogenesis of Alzheimer's disease[J]. Alzheimers Dement, 2019, 15(2):217-231.DOI:10.1016/j.jalz.2018.08.013.
[10]
Wang Q, Xie C. Microglia activation linking amyloid-β drive tau spatial propagation in Alzheimer's disease[J]. Front Neurosci, 2022, 16:951128.DOI:10.3389/fnins.2022.951128.
[11]
Ittner A, Ittner LM. Dendritic Tau in Alzheimer's disease[J]. Neuron, 2018, 99(1):13-27.DOI:10.1016/j.neuron.2018.06.003.
[12]
Chukwurah E, Farabaugh KT, Guan BJ, et al. A tale of two proteins:PACT and PKR and their roles in inflammation[J]. FEBS J, 2021, 288(22):6365-6391.DOI:10.1111/febs.15691.
[13]
Lee S, Jee HY, Lee YG, et al. PKR-Mediated phosphorylation of eIF2a and CHK1 is associated with doxorubicin-mediated apoptosis in hCC1143 triple-negative breast cancer cells[J]. Int J Mol Sci, 2022, 23(24):15872.DOI:10.3390/ijms232415872.
[14]
Zhang J, Zhang X, Li L, et al. Activation of double-stranded RNA-activated protein kinase in the dorsal root ganglia and spinal dorsal horn regulates neuropathic pain following peripheral nerve injury in rats[J]. Neurotherapeutics, 2022, 19(4):1381-1400.DOI:10.1007/s13311-022-01255-2.
[15]
Lu W, Tang S, Li A, et al. The role of PKC/PKR in aging,Alzheimer's disease,and perioperative neurocognitive disorders[J]. Front Aging Neurosci, 2022, 14:973068.DOI:10.3389/fnagi.2022.973068.
[16]
Upadhyay A, Chhangani D, Rao NR, et al. Amyloid fibril proteomics of AD brains reveals modifiers of aggregation and toxicity[J]. Mol Neurodegener, 2023, 18(1):61.DOI:10.1186/s13024-023-00654-z.
[17]
Futamura A, Hieda S, Mori Y, et al. Toxic Amyloid-β42 conformer may accelerate the onset of Alzheimer's disease in the preclinical stage[J]. J Alzheimers Dis, 2021, 80(2):639-646.DOI:10.3233/jad-201407.
[18]
Tible M, Mouton Liger F, Schmitt J, et al. PKR knockout in the 5xFAD model of Alzheimer's disease reveals beneficial effects on spatial memory and brain lesions[J]. Aging cell, 2019, 18(3):e12887.DOI:10.1111/acel.12887.
[19]
Hasan U, Singh SK. The Astrocyte-Neuron Interface:An overview on molecular and cellular dynamics controlling formation and maintenance of the tripartite synapse[J]. Methods Mol Biol, 2019, 1938:3-18.DOI:10.1007/978-1-4939-9068-9_1.
[20]
Ikegami A, Haruwaka K, Wake H. Microglia:lifelong modulator of neural circuits[J]. Neuropathology, 2019, 39(3):173-180.DOI:10.1111/neup.12560.
[21]
Konishi H, Kiyama H, Ueno M. Dual functions of microglia in the formation and refinement of neural circuits during development[J]. Int J Dev Neurosci, 2019, 77:18-25.DOI:10.1016/j.ijdevneu.2018.09.009.
[22]
Olsen M, Aguilar X, Sehlin D, et al. Astroglial responses to amyloid-beta progression in a mouse model of Alzheimer's disease[J]. Mol Imaging Biol, 2018, 20(4):605-614.DOI:10.1007/s11307-017-1153-z.
[23]
Litwiniuk A, Juszczak GR, Stankiewicz AM, et al. The role of glial autophagy in Alzheimer's disease[J]. Mol Psychiatry, 2023, 28(11):4528-4539.DOI:10.1038/s41380-023-02242-5.
[24]
Liu Q, Contreras A, Afaq MS, et al. Intensity-dependent gamma electrical stimulation regulates microglial activation,reduces beta-amyloid load,and facilitates memory in a mouse model of Alzheimer's disease[J]. Cell Biosci, 2023, 13(1):138.DOI:10.1186/s13578-023-01085-5.
[25]
Zhang Y, Jia J. Betaine Mitigates Amyloid-β-Associated neuroinflammation by suppressing the NLRP3 and NF-κB signaling pathways in microglial cells[J]. J Alzheimers Dis, 2023, 94(s1):S9-S19.DOI:10.3233/jad-230064.
[26]
Liu W, Chen S, Rao X, et al. The inflammatory gene PYCARD of the entorhinal cortex as an early diagnostic target for Alzheimer's disease[J]. Biomedicines, 2023, 11(1):194.DOI:10.3390/biomedicines11010194.
[27]
Španić E, Langer Horvat L, Ilić K, et al. NLRP1 inflammasome activation in the hippocampal formation in Alzheimer's disease:correlation with neuropathological changes and unbiasedly estimated neuronal loss[J]. Cells, 2022,11(14):2223.DOI:10.3390/cells11142223.
[28]
Bouteiller JC, Mergenthal AR, Hu E, et al. Pathogenic processes underlying Alzheimer's disease:modeling the effects of Amyloid beta on synaptic transmission[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 2019:1956-1959.DOI:10.1109/embc.2019.8857871.
[29]
Castellani RJ, PLASCENCIA-VILLA G, Perry G. The amyloid cascade and Alzheimer's disease therapeutics:theory versus observation[J]. Lab Invest, 2019, 99(7):958-970.DOI:10.1038/s41374-019-0231-z.
[30]
Ratan Y, Rajput A, Maleysm S, et al. An insight into cellular and molecular mechanisms underlying the pathogenesis of neurodegeneration in Alzheimer's disease[J]. Biomedicines, 2023, 11(5):1398.DOI:10.3390/biomedicines11051398.
[31]
Bond S, Lopez-Lloreda C, Gannon PJ, et al. The integrated stress response and phosphorylated eukaryotic initiation factor 2α in neurodegeneration[J]. J Neuropathol Exp Neurol, 2020, 79(2):123-143.DOI:10.1093/jnen/nlz129.
[32]
Qiao H, Jiang T, Mu P, et al. Cell fate determined by the activation balance between PKR and SPHK1[J]. Cell Death Differ, 2021, 28(1):401-418.DOI:10.1038/s41418-020-00608-8.
[33]
Hugon J, Paquet C. The PKR/P38/RIPK1 signaling pathway as a therapeutic target in Alzheimer's disease[J]. Int J Mol Sci, 2021, 22(6):3136.DOI:10.3390/ijms22063136.
[34]
Chiarini A, Armato U, Hu P, et al. Danger-Sensing/Patten recognition receptors and neuroinflammation in Alzheimer's disease[J]. Int J Mol Sci, 2020, 21(23):9036.DOI:10.3390/ijms21239036.
[35]
刘松杨, 程楠, 徐陈陈, 等. 肝豆汤改良方调控PKR/eIF2α通路改善Wilson病模型TX小鼠突触功能障碍的机制研究[J]. 安徽中医药大学学报, 2021, 40(6):75-81.DOI:10.3969/j.issn.2095-7246.2021.06.017.
[36]
Zhang J S, Zhou SF, Wang Q, et al. Gastrodin suppresses BACE1 expression under oxidative stress condition via inhibition of the PKR/eIF2α pathway in Alzheimer's disease[J]. Neuroscience, 2016, 325:1-9.DOI:10.1016/j.neuroscience.2016.03.024.
[37]
Ries M, Sastre M. Mechanisms of Aβ clearance and degradation by glial cells[J]. Front Aging Neurosci, 2016, 8:160.DOI:10.3389/fnagi.2016.00160.
[38]
Khandelwal PJ, Herman AM, Moussa CE. Inflammation in the early stages of neurodegenerative pathology[J]. J Neuroimmunol, 2011, 238(1-2):1-11.DOI:10.1016/j.jneuroim.2011.07.002.
[39]
Deng Z, Dong Y, Zhou X, et al. Pharmacological modulation of autophagy for Alzheimer's disease therapy:opportunities and obstacles[J]. Acta Pharm Sin B, 2022, 12(4):1688-1706.DOI:10.1016/j.apsb.2021.12.009.
[40]
Suresh S, Larson J, Jenrow KA. Chronic neuroinflammation impairs waste clearance in the rat brain[J]. Front Neuroanat, 2022, 16:1013808.DOI:10.3389/fnana.2022.1013808.
[41]
Doroszkiewicz J, Mroczko P, Kulczyńska-Przybik A. Inflammation in the CNS:understanding various aspects of the pathogenesis of Alzheimer's disease[J]. Curr Alzheimer Res, 2022, 19(1):16-31.DOI:10.2174/1567205018666211202143935.
[42]
Lopez-Grancha M, Bernardelli P, Moindrot N, et al. A novel selective PKR inhibitor restores cognitive deficits and neurodegeneration in Alzheimer disease experimental models[J]. J Pharmacol Exp Ther, 2021, 378(3):262-275.DOI:10.1124/jpet.121.000590.
[43]
邓嘉强, 井秀娜, 林淡钰, 等. 利福平通过抑制蛋白激酶R活化调节鱼藤酮诱导的小胶质细胞炎症而发挥神经保护作用[J]. 岭南急诊医学杂志, 2021, 26(2):121-124.DOI:10.3969/j.issn.1671-301X.2021.02.004.
[44]
Rice HC, de Malmazet D, Schreurs A, et al. Secreted amyloid-β precursor protein functions as a GABA(B)R1a ligand to modulate synaptic transmission[J]. Science, 2019, 363(6423):eaao4827.DOI:10.1126/science.aao4827.
[45]
Mañucat-Tan NB, Saadipour K, Wang YJ, et al. Cellular trafficking of amyloid precursor protein in amyloidogenesis physiological and pathological significance[J]. Mol Neurobiol, 2019, 56(2):812-830.DOI:10.1007/s12035-018-1106-9.
[46]
Ma C, Hong F, Yang S. Amyloidosis in Alzheimer's disease:pathogeny,etiology,and related therapeutic directions[J]. Molecules, 2022, 27(4):1210.DOI:10.3390/molecules27041210.
[47]
Glenner GG, Wong CW. Alzheimer's disease:initial report of the purification and characterization of a novel cerebrovascular amyloid protein[J]. Biochem Biophys Res Commun, 1984, 120(3):885-890.DOI:10.1016/s0006-291x(84)80190-4.
[48]
Yakupova EI, Bobyleva LG, Shumeyko SA, et al. Amyloids:the history of toxicity and functionality[J]. Biology, 2021, 10(5):394.DOI:10.3390/biology10050394.
[49]
Guix FX, Sartório CL, Ill-Raga G. BACE1 translation:at the crossroads between Alzheimer's disease neurodegeneration and memory consolidation[J]. J Alzheimers Dis Rep, 2019, 3(1):113-148.DOI:10.3233/adr-180089.
[50]
Syeda T, Cannon JR. Environmental exposures and the etiopathogenesis of Alzheimer's disease:the potential role of BACE1 as a critical neurotoxic target[J]. J Biochem Mol Toxicol, 2021, 35(4):e22694.DOI:10.1002/jbt.22694.
[51]
Volloch V, Rits-Volloch S. The amyloid cascade hypothesis 2.0 for Alzheimer's disease and aging-associated cognitive decline:from molecular basis to effective therapy[J]. Int J Mol Sci, 2023, 24(15):12246.DOI:10.3390/ijms241512246.
[52]
Gourmaud S, Mouton-Liger F, Abadie C, et al. Dual kinase inhibition affords extended in vitro neuroprotection in Amyloid-β toxicity[J]. J Alzheimers Dis, 2016, 54(4):1659-1670.DOI:10.3233/jad-160509.
[53]
Lourenco MV, Clarke JR, Frozza RL, et al. TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer's β-amyloid oligomers in mice and monkeys[J]. Cell Metab, 2013, 18(6):831-843.DOI:10.1016/j.cmet.2013.11.002.
[54]
Chan AWS, Cho IK, Li CX, et al. Cerebral Aβ deposition in an Aβ-precursor protein-transgenic rhesus monkey[J]. Aging Brain, 2022, 2:100044.DOI:10.1016/j.nbas.2022.100044.
[55]
Mouton-Liger F, Rebillat AS, Gourmaud S, et al. PKR downregulation prevents neurodegeneration and β-amyloid production in a thiamine-deficient model[J]. Cell Death Dis, 2015, 6(1):e1594.DOI:10.1038/cddis.2014.552.
[56]
Carret-Rebillat AS, Pace C, GourmauDS, et al. Neuroinflammation and Aβ accumulation linked to systemic inflammation are decreased by genetic PKR down-regulation[J]. Sci Rep, 2015, 5:8489.DOI:10.1038/srep08489.
[57]
Paquet C, Mouton-Liger F, Meurs EF, et al. The PKR activator PACT is induced by Aβ:involvement in Alzheimer's disease[J]. Brain Pathol, 2012, 22(2):219-229.DOI:10.1111/j.1750-3639.2011.00520.x.
[58]
Chen Y, Yu Y. Tau and neuroinflammation in Alzheimer's disease:interplay mechanisms and clinical translation[J]. J Neuroinflammation, 2023, 20(1):165.DOI:10.1186/s12974-023-02853-3.
[59]
el Mammeri N, Duan P, Dregni AJ, et al. Amyloid fibril structures of tau:conformational plasticity of the second microtubule-binding repeat[J]. Sci Adv, 2023, 9(28):eadh4731.DOI:10.1126/sciadv.adh4731.
[60]
Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease[J]. Nat Rev Neurol, 2018, 14(7):399-415.DOI:10.1038/s41582-018-0013-z.
[61]
Dejanovic B, Huntley MA, de Mazière A, et al. Changes in the synaptic proteome in tauopathy and rescue of Tau-induced synapse loss by c1q antibodies[J]. Neuron, 2018, 100(6):1322-1336.e7.DOI:10.1016/j.neuron.2018.10.014.
[62]
Reimer L, Betzer C, Kofoed RH, et al. PKR kinase directly regulates tau expression and Alzheimer's disease-related tau phosphorylation[J]. Brain Pathol, 2021, 31(1):103-119.DOI:10.1111/bpa.12883.
[63]
Dubbelman MA, Mimmack KJ, Sprague EH, et al. Regional cerebral tau predicts decline in everyday functioning across the Alzheimer's disease spectrum[J]. Alzheimers Res Ther, 2023, 15(1):120.DOI:10.1186/s13195-023-01267-w.
[64]
Moradi Majd R, Mayeli M, Rahmani F. Pathogenesis and promising therapeutics of Alzheimer disease through eIF2α pathway and correspondent kinases[J]. Metab Brain Dis, 2020, 35(8):1241-1250.DOI:10.1007/s11011-020-00600-8.
[65]
Drummond E, Pires G, Macmurray C, et al. Phosphorylated tau interactome in the human Alzheimer's disease brain[J]. Brain, 2020, 143(9):2803-2817.DOI:10.1093/brain/awaa223.
[66]
Turab Naqvi AA, Hasan GM, Hassan MI. Targeting Tau hyperphosphorylation via kinase inhibition:strategy to address Alzheimer's disease[J]. Curr Top Med Chem, 2020, 20(12):1059-1073.DOI:10.2174/1568026620666200106125910.
[67]
Amin J, Paquet C, Baker A, et al. Effect of amyloid-β (Aβ) immunization on hyperphosphorylated tau:a potential role for glycogen synthase kinase (GSK)-3β[J]. Neuropathol Appl Neurobiol, 2015, 41(4):445-457.DOI:10.1111/nan.12205.
[68]
生晓娜, 李潇潇, 张晓炜, 等. 阿尔茨海默病患者淋巴细胞中双链RNA-依赖的蛋白激酶水平与认知障碍的相关性[J]. 中风与神经疾病杂志, 2017, 34(8):692-695.DOI:10.19845/j.cnki.zfysjjbzz.2017.08.005.
[69]
Monllor P, Giraldo E, Badia MC, et al. Serum levels of clusterin,PKR,and RAGE correlate with amyloid burden in Alzheimer's disease[J]. J Alzheimers Dis, 2021, 80(3):1067-1077.DOI:10.3233/jad-201443.
[70]
Dumurgier J, Mouton-Liger F, Lapalus P, et al. Cerebrospinal fluid PKR level predicts cognitive decline in Alzheimer's disease[J]. PLoS One, 2013, 8(1):e53587.DOI:10.1371/journal.pone.0053587.
[71]
Paquet C, Dumurgier J, Hugon J. Pro-apoptotic kinase levels in cerebrospinal fluid as potential future biomarkers in Alzheimer's disease[J]. Front Neurol, 2015, 6:168.DOI:10.3389/fneur.2015.00168.
[72]
Zeng Y, Wang L, Zhou Y, et al. NMDA receptor antagonists engender neuroprotection against gp120-induced cognitive dysfunction in rats through modulation of PKR activation,oxidative stress,ER stress and IRE1α signal pathway[J]. Eur J Neurosci, 2022, 56(2):3806-3824.DOI:10.1111/ejn.15688.
[73]
Egan MF, Kost J, Voss T, et al. Randomized trial of verubecestat for prodromal Alzheimer's disease[J]. N Engl J Med, 2019, 380(15):1408-1420.DOI:10.1056/NEJMoa1812840.
[74]
Egan MF, Kost J, Tariot PN, et al. Randomized trial of verubecestat for mild-to-moderate Alzheimer's disease[J]. N Engl J Med, 2018, 378(18):1691-1703.DOI:10.1056/NEJMoa1706441.
PDF(6912 KB)

Accesses

Citation

Detail

Sections
Recommended

/