Oblique Lumbar Interbody Fusion Combined With 4-Screw Fixation for Treating Two-Level Degenerative Lumbar Diseases:A Finite Element Study

Ting GE, Baiwen HU, Jin XIAO, Qiaolin ZHANG, Xiaochuan WU, Dongdong XIA

Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (3) : 341-347.

PDF(2738 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2738 KB)
Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (3) : 341-347. DOI: 10.3881/j.issn.1000-503X.15878
Original Articles

Oblique Lumbar Interbody Fusion Combined With 4-Screw Fixation for Treating Two-Level Degenerative Lumbar Diseases:A Finite Element Study

Author information +
History +

Abstract

Objective to demonstrate the feasibility of oblique lumbar interbody fusion(OLIF)combined with 4-screw fixation for treating two-level lumbar degenerative diseases.Methods An intact finite element model of L3-S1(M0)was constructed and validated.Then,we constructed the M1 model By simulating OLIF surgery at L3/4 and L4/5 segments on the M0 model.by attachment of posterior 4-screw or 6-screw fixation To the M1 model,three 4-screw fixation models(M2-M4)and one 6-screw fixation model(M5)were established.the segmental and overall range of motion(ROM)and the peak von Mises stresses of superior endplate,cage,and posterior screw-rod were investigated Under each implanted condition.Results Under the motion modes of forward flexion,backward extension,bilateral(left and right)flexion,and left and right rotation,the L3/4 ROM of M2 model and L4/5 ROM of M3 model increased,while the L3/4 and L4/5 ROM of M4 and M5 models significantly decreased compared with those of M1 model.Under all motion modes,the L4 superior endplate in M2 model and the L5 superior endplate in M3 model showed the maximum peak von Mises stress,and the peak von Mises stresses of L4 and L5 superior endplates in M4 and M5 models were close.the L3/4 cage in M2 model and the L4/5 cage in M3 model showcased the largest peak von Mises stress,and the peak von Mises stresses of cages in M4 and M5 models were close.the peak stresses of internal fixation in M2-M5 models were close.Conclusion Four-screw fixation can replace 6-screw fixation in the OLIF surgery for treating two-level degenerative lumbar diseases。

Key words

oblique lumbar interbody fusion / finite element model / pedicle screw / 4-screw fixation / 6-screw fixation

Cite this article

Download Citations
Ting GE , Baiwen HU , Jin XIAO , et al . Oblique Lumbar Interbody Fusion Combined With 4-Screw Fixation for Treating Two-Level Degenerative Lumbar Diseases:A Finite Element Study[J]. Acta Academiae Medicinae Sinicae. 2024, 46(3): 341-347 https://doi.org/10.3881/j.issn.1000-503X.15878

References

[1]
Kim H, Chang BS, Chang SY. Pearls and pitfalls of oblique lateral interbody fusion:a comprehensive narrative review[J]. Neurospine, 2022, 19(1):163-176.DOI:10.14245/ns.2143236.618.
[2]
Wang WH, Xiao B, Wang HT, et al. Oblique lateral interbody fusion stand-alone vs. combined with percutaneous pedicle screw fixation in the treatment of discogenic low back pain[J]. Front Surg, 2022, 9:1013431.DOI:10.3389/fsurg.2022.1013431.
[3]
Ling QJ, Zhang HL, He EX, et al. Screws fixation for oblique lateral lumbar interbody fusion (OL-LIF):a finite element study[J]. Biomed Res Int, 2021, 2021:5542595.DOI:10.1155/2021/5542595.
[4]
Wang YG, Wang JJ, Tu S, et al. Biomechanical evaluation of an oblique lateral locking plate system for oblique lumbar interbody fusion:a finite element analysis[J]. World Neurosurg, 2022, 160:e126-e141.DOI:10.1016/j.wneu.2021.12.105.
[5]
Little JP, Izatt MT, Labrom RD, et al. An FE investigation simulating intra-operative corrective forces applied to correct scoliosis deformity[J]. Scoliosis, 2013, 8(1):9.DOI:10.1186/1748-7161-8-9.
[6]
Polikeit A, Ferguson SJ, Nolte LP, et al. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages:finite element analysis[J]. Eur Spine J, 2003, 12(4):413-420.DOI:10.1007/s00586-002-0505-8.
[7]
Pintar FA, Yoganandan N, Myers T, et al. Biomechanical properties of human lumbar spine ligaments[J]. J Biomech, 1992, 25(11):1351-1356.DOI:10.1016/0021-9290(92)90290-h.
[8]
Masni-Azian, Tanaka M, Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit:a finite element study[J]. Comput Biol Med, 2018, 98:26-38.DOI:10.1016/j.compbiomed.2018.05.010.
[9]
Yamamoto I, Panjabi MM, Crisco T, et al. Three-dimensional movements of the whole lumbar spine and lumbosacral joint[J]. Spine (Phila Pa 1976), 1989, 14(11):1256-1260.DOI:10.1097/00007632-198911000-00020.
[10]
Zhao L, Xie TH, Wang XD, et al. Clinical and radiological evaluation of cage subsidence following oblique lumbar interbody fusion combined with anterolateral fixation[J]. BMC Musculoskelet Disord, 2022, 23(1):214.DOI:10.1186/s12891-022-05165-4.
[11]
Chang SY, Nam YJ, Lee J, et al. Clinical significance of radiologic improvement following single-level oblique lateral interbody fusion with percutaneous pedicle screw fixation[J]. Orthopedics, 2020, 43(4):e283-e290.DOI:10.3928/01477447-20200521-02.
[12]
Wang BJ, Hua WB, Ke WC, et al. Biomechanical evaluation of transforaminal lumbar interbody fusion and oblique lumbar interbody fusion on the adjacent segment:a finite element analysis[J]. World Neurosurg, 2019, 126:e819-e824.DOI:10.1016/j.wneu.2019.02.164.
[13]
Zhang L, Li HM, Zhang RJ, et al. Biomechanical changes of adjacent and fixed segments through cortical bone trajectory screw fixation versus traditional trajectory screw fixation in the lumbar spine:a finite element analysis[J]. World Neurosurg, 2021, 151:e447-e456.DOI:10.1016/j.wneu.2021.04.061.
[14]
Lu T, Lu Y. Comparison of biomechanical performance among posterolateral fusion and transforaminal,extreme,and oblique lumbar interbody fusion:a finite element analysis[J]. World Neurosurg, 2019, 129:e890-e899.DOI:10.1016/j.wneu.2019.06.074.
[15]
Zhu GD, Hao YJ, Cai YC, et al. Comparing stand-alone oblique lumbar interbody fusion with posterior lumbar interbody fusion for revision of rostral adjacent segment disease:a STROBE-compliant study[J]. Medicine (Baltimore), 2018, 97(40):e12680.DOI:10.1097/MD.0000000000012680.
[16]
Aono H, Takenaka S, Tobimatsu H, et al. Adjacent-segment disease after L3-4 posterior lumbar interbody fusion:does L3-4 fusion have cranial adjacent-segment degeneration similar to that after L4-5 fusion[J]. J Neurosurg Spine, 2020, 33:455-460.DOI:10.3171/2020.3.SPINE20122.
[17]
Said E, Abdel-Wanis ME, Ameen M, et al. Posterolateral fusion versus posterior lumbar interbody fusion:a systematic review and meta-analysis of randomized controlled trials[J]. Global Spine J, 2022, 12(5):990-1002.DOI:10.1177/21925682211016426.
[18]
Peck JH, Kavlock KD, Showalter BL, et al. Mechanical performance of lumbar intervertebral body fusion devices:an analysis of data submitted to the Food and Drug Administration[J]. J Biomech, 2018, 78:87-93.DOI:10.1016/j.jbiomech.2018.07.022.
[19]
Wu JC, Yang DM, Han Y, et al. Application of dual-trajectory screws in revision surgery for lumbar adjacent segment disease:a finite element study[J]. J Orthop Surg Res, 2022, 17(1):427.DOI:10.1186/s13018-022-03317-9.
PDF(2738 KB)

Accesses

Citation

Detail

Sections
Recommended

/