Lysine Succinylation:A New Perspective in the Treatment of Cardiovascular Diseases

Yang MENG, Yuyang MA, Mingcong CHEN, Yang ZHANG, Mingyi ZHAO

Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (3) : 435-443.

PDF(1028 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1028 KB)
Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (3) : 435-443. DOI: 10.3881/j.issn.1000-503X.15944
Review Articles

Lysine Succinylation:A New Perspective in the Treatment of Cardiovascular Diseases

Author information +
History +

Abstract

With the continuous development of identification technologies such as mass spectrometry,omics,and antibody technology,post-translational modification(PTM)has demonstrated increasing potential in medical research.PTM as a novel chemical modification method provides new perspectives for the research on diseases.succinylation as a novel modification has aroused the interest of more and more researchers.the available studies about succinylation mainly focus on a desuccinylase named sirtuin 5.this enzyme plays a key role in modification and has been preliminarily explored in cardiovascular studies.this paper summarizes the influencing factors and regulatory roles of succinylation and the links between succinylation and other PTMs and reviews the research progress of PTMs in the cardiovascular field,aiming to deepen the understanding about the role of This modification and give new insights to the research in This field。

Key words

protein succinylation / cardiovascular disease / post-translational modification / epigenetics

Cite this article

Download Citations
Yang MENG , Yuyang MA , Mingcong CHEN , et al . Lysine Succinylation:A New Perspective in the Treatment of Cardiovascular Diseases[J]. Acta Academiae Medicinae Sinicae. 2024, 46(3): 435-443 https://doi.org/10.3881/j.issn.1000-503X.15944

References

[1]
Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors,1990-2019:update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76(25):2982-3021.DOI:10.1016/j.jacc.2020.11.010.
[2]
Balakumar P, Maung UK, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus[J]. Pharmacol Res, 2016, 113(Pt A):600-609.DOI:10.1016/j.phrs.2016.09.040.
[3]
van den Boogert MAW, Larsen LE, Ali L, et al. N-glycosylation defects in humans lower low-density lipoprotein cholesterol through increased low-density lipoprotein receptor expression[J]. Circulation, 2019, 140(4):280-292.DOI:10.1161/CIRCULATIONAHA.118.036484.
[4]
Jagavelu K, Tietge UJ, Gaestel M, et al. Systemic deficiency of the map kinase-activated protein kinase 2 reduces atherosclerosis in hypercholesterolemic mice[J]. Circ Res, 2007, 101(11):1104-1112.DOI:10.1161/CIRCRESAHA.107.156075.
[5]
Hermann J, Schurgers L, Jankowski V. Identification and characterization of post-translational modifications:Clinical implications[J]. Mol Aspects Med, 2022, 86:101066.DOI:10.1016/j.mam.2022.101066.
[6]
Gao J, Shao K, Chen X, et al. The involvement of post-translational modifications in cardiovascular pathologies:focus on sumoylation,neddylation,succinylation,and prenylation[J]. J Mol Cell Cardiol, 2020, 138:49-58.DOI:10.1016/j.yjmcc.2019.11.146.
[7]
Ramazi S, Zahiri J. Posttranslational modifications in proteins:resources,tools and prediction methods[J]. Database (Oxford), 2021, 2021:baab012.DOI:10.1093/database/baab012.
[8]
Stastna M, Van Eyk JE. Posttranslational modifications of lysine and evolving role in heart pathologies-recent developments[J]. Proteomics, 2015, 15(5-6):1164-1180.DOI:10.1002/pmic.201400312.
[9]
Striebel F, Imkamp F, Ozcelik D, et al. Pupylation as a signal for proteasomal degradation in bacteria[J]. Biochim Biophys Acta, 2014, 1843(1):103-113.DOI:10.1016/j.bbamcr.2013.03.022.
[10]
王志鹏, 程农壹, 梁妍钰, 等. 蛋白质中新型赖氨酸翻译后修饰的结构简介[J]. 大学化学, 2017, 32(12):41-47.DOI:10.3866/PKU.DXHX201708002.
[11]
Zhang Z, Tan M, Xie Z, et al. Identification of lysine succinylation as a new post-translational modification[J]. Nat Chem Biol, 2011, 7(1):58-63.DOI:10.1038/nchembio.495.
[12]
Xie Z, Dai J, Dai L, et al. Lysine succinylation and lysine malonylation in histones[J]. Mol Cell Proteomics, 2012, 11(5):100-107.DOI:10.1074/mcp.M111.015875.
[13]
Sreedhar A, Wiese EK, Hitosugi T. Enzymatic and metabolic regulation of lysine succinylation[J]. Genes Dis, 2020, 7(2):166-171.DOI:10.1016/j.gendis.2019.09.011.
[14]
Sabari BR, Zhang D, Allis CD, Zhao Y. Metabolic regulation of gene expression through histone acylations[J]. Nat Rev Mol Cell Biol, 2017, 18(2):90-101.DOI:10.1038/nrm.2016.140.
[15]
Wagner GR, Payne RM. Widespread and enzyme-independent nepsilon-acetylation and nepsilon-succinylation of proteins in the chemical conditions of the mitochondrial matrix[J]. J Biol Chem, 2013, 288(40):29036-29045.DOI:10.1074/jbc.M113.486753.
[16]
Wagner GR, Bhatt DP, O’Connell TM, et al. A class of reactive acyl-coa species reveals the non-enzymatic origins of protein acylation[J]. Cell Metab, 2017, 25(4):823-837.e8.DOI:10.1016/j.cmet.2017.03.006.
[17]
Kurmi K, Hitosugi S, Wiese EK, et al. Carnitine palmitoyltransferase 1a has a lysine succinyltransferase activity[J]. Cell Rep, 2018, 22(6):1365-1373.DOI:10.1016/j.celrep.2018.01.030.
[18]
Gibson GE, Xu H, Chen HL, et al. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines[J]. J Neurochem, 2015, 134(1):86-96.DOI:10.1111/jnc.13096.
[19]
Hansen GE, Gibson GE. The alpha-ketoglutarate dehydrogenase complex as a hub of plasticity in neurodegeneration and regeneration[J]. Int J Mol Sci, 2022, 23(20).DOI:10.3390/ijms232012403.
[20]
Wang Y, Guo YR, Liu K, et al. Kat2a coupled with the alpha-kgdh complex acts as a histone h3 succinyltransferase[J]. Nature, 2017, 552(7684):273-277.DOI:10.1038/nature25003.
[21]
Yang G, Yuan Y, Yuan H, et al. Histone acetyltransferase 1 is a succinyltransferase for histones and non-histones and promotes tumorigenesis[J]. EMBO Rep, 2021, 22(2):e50967.DOI:10.15252/embr.202050967.
[22]
Sun L, Yao Z, Guo Z, et al. Comprehensive analysis of the lysine acetylome in aeromonas hydrophila reveals cross-talk between lysine acetylation and succinylation in luxs[J]. Emerg Microbes Infect, 2019, 8(1):1229-1239.DOI:10.1080/22221751.2019.1656549.
[23]
Colak G, Xie Z, Zhu AY, et al. Identification of lysine succinylation substrates and the succinylation regulatory enzyme cobb in escherichia coli[J]. Mol Cell Proteomics, 2013, 12(12):3509-3520.DOI:10.1074/mcp.M113.031567.
[24]
Du J, Zhou Y, Su X, et al. Sirt5 is a nad-dependent protein lysine demalonylase and desuccinylase[J]. Science, 2011, 334(6057):806-809.DOI:10.1126/science.1207861.
[25]
Rardin MJ, He W, Nishida Y, et al. Sirt5 regulates the mitochondrial lysine succinylome and metabolic networks[J]. Cell Metab, 2013, 18(6):920-933.DOI:10.1016/j.cmet.2013.11.013.
[26]
Park J, Chen Y, Tishkoff DX, et al. Sirt5-mediated lysine desuccinylation impacts diverse metabolic pathways[J]. Mol Cell, 2013, 50(6):919-930.DOI:10.1016/j.molcel.2013.06.001.
[27]
Li L, Shi L, Yang S, et al. Sirt7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability[J]. Nat Commun, 2016, 7:12235.DOI:10.1038/ncomms12235.
[28]
Li J, Lu L, Liu L, et al. Hdac1/2/3 are major histone desuccinylases critical for promoter desuccinylation[J]. Cell Discov, 2023, 9(1):85.DOI:10.1038/s41421-023-00573-9.
[29]
Dong YN, Mesaros C, Xu P, et al. Frataxin controls ketone body metabolism through regulation of oxct1[J]. PNAS Nexus, 2022, 1(3):pgac142.DOI:10.1093/pnasnexus/pgac142.
[30]
Chen XF, Chen X, Tang X. Short-chain fatty acid,acylation and cardiovascular diseases[J]. Clin Sci (Lond), 2020, 134(6):657-676.DOI:10.1042/CS20200128.
[31]
Chinopoulos C. The mystery of extramitochondrial proteins lysine succinylation[J]. Int J Mol Sci, 2021, 22(11):6085.DOI:10.3390/ijms22116085.
[32]
Burch JS, Marcero JR, Maschek JA, et al. Glutamine via alpha-ketoglutarate dehydrogenase provides succinyl-coa for heme synthesis during erythropoiesis[J]. Blood, 2018, 132(10):987-998.DOI:10.1182/blood-2018-01-829036.
[33]
Sadhukhan S, Liu X, Ryu D, et al. Metabolomics-assisted proteomics identifies succinylation and sirt5 as important regulators of cardiac function[J]. Proc Natl Acad Sci USA, 2016, 113(16):4320-4325.DOI:10.1073/pnas.1519858113.
[34]
Zhou L, Wang F, Sun R, et al. Sirt5 promotes idh2 desuccinylation and g6pd deglutarylation to enhance cellular antioxidant defense[J]. EMBO Rep, 2016, 17(6):811-822.DOI:10.15252/embr.201541643.
[35]
Chen H, Xu H, Potash S, et al. Mild metabolic perturbations alter succinylation of mitochondrial proteins[J]. J Neurosci Res, 2017, 95(11):2244-2252.DOI:10.1002/jnr.24103.
[36]
Chen XF, Tian MX, Sun RQ, et al. Sirt5 inhibits peroxisomal acox1 to prevent oxidative damage and is downregulated in liver cancer[J]. EMBO Rep, 2018, 19(5):e45124.DOI:10.15252/embr.201745124.
[37]
Fukushima A, Alrob OA, Zhang L, et al. Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart[J]. Am J Physiol Heart Circ Physiol, 2016, 311(2):H347-H363.DOI:10.1152/ajpheart.00900.2015.
[38]
Torres-Perez JV, Irfan J, Febrianto MR, et al. Histone post-translational modifications as potential therapeutic targets for pain management[J]. Trends Pharmacol Sci, 2021, 42(11):897-911.DOI:10.1016/j.tips.2021.08.002.
[39]
Pineiro M, Hernandez F, Palacian E. Succinylation of histone amino groups facilitates transcription of nucleosomal cores[J]. Biochim Biophys Acta, 1992, 1129(2):183-187.DOI:10.1016/0167-4781(92)90485-i.
[40]
Smestad J, Erber L, Chen Y, et al. Chromatin succinylation correlates with active gene expression and is perturbed by defective tca cycle metabolism[J]. iScience, 2018, 2:63-75.DOI:10.1016/j.isci.2018.03.012.
[41]
Liu J, Shangguan Y, Tang D, et al. Histone succinylation and its function on the nucleosome[J]. J Cell Mol Med, 2021, 25(15):7101-7109.DOI:10.1111/jcmm.16676.
[42]
Xu HD, Wang LN, Wen PP, et al. Site-specific systematic analysis of lysine modification crosstalk[J]. Proteomics, 2018, 18(9):e1700292.DOI:10.1002/pmic.201700292.
[43]
Ali HR, Assiri MA, Harris PS, et al. Quantifying competition among mitochondrial protein acylation events induced by ethanol metabolism[J]. J Proteome Res, 2019, 18(4):1513-1531.DOI:10.1021/acs.jproteome.8b00800.
[44]
Nishida Y, Rardin MJ, Carrico C, et al. Sirt5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target[J]. Mol Cell, 2015, 59(2):321-332.DOI:10.1016/j.molcel.2015.05.022.
[45]
Zhou B, Xiao M, Hu H, et al. Cardioprotective role of sirt5 in response to acute ischemia through a novel liver-cardiac crosstalk mechanism[J]. Front Cell Dev Biol, 2021, 9:687559.DOI:10.3389/fcell.2021.687559.
[46]
Takada S, Maekawa S, Furihata T, et al. Succinyl-coa-based energy metabolism dysfunction in chronic heart failure[J]. Proc Natl Acad Sci USA, 2022, 119(41):e2203628119.DOI:10.1073/pnas.2203628119.
[47]
Wang Y, Zhou H, Wu J, et al. Mg53 alleviates hypoxia/reoxygenation-induced cardiomyocyte injury by succinylation and ubiquitination modification[J]. Clin Exp Hypertens, 2023, 45(1):2271196.DOI:10.1080/10641963.2023.2271196.
[48]
Boylston JA, Sun J, Chen Y, et al. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury[J]. J Mol Cell Cardiol, 2015, 88:73-81.DOI:10.1016/j.yjmcc.2015.09.005.
[49]
Ali HR, Michel CR, Lin YH, et al. Defining decreased protein succinylation of failing human cardiac myofibrils in ischemic cardiomyopathy[J]. J Mol Cell Cardiol, 2020, 138:304-317.DOI:10.1016/j.yjmcc.2019.11.159.
[50]
Hershberger KA, Abraham DM, Martin AS, et al. Sirtuin 5 is required for mouse survival in response to cardiac pressure overload[J]. J Biol Chem, 2017, 292(48):19767-19781.DOI:10.1074/jbc.M117.809897.
[51]
Cheng X, Wang K, Zhao Y, et al. Research progress on post-translational modification of proteins and cardiovascular diseases[J]. Cell Death Discov, 2023, 9(1):275.DOI:10.1038/s41420-023-01560-5.
[52]
Hershberger KA, Abraham DM, Liu J, et al. Ablation of sirtuin5 in the postnatal mouse heart results in protein succinylation and normal survival in response to chronic pressure overload[J]. J Biol Chem, 2018, 293(27):10630-10645.DOI:10.1074/jbc.RA118.002187.
[53]
Bai F, Ma Y, Liu Q. Succinylation as a novel mode of energy metabolism regulation during atrial fibrillation[J]. Med Hypotheses, 2018, 121:54-55.DOI:10.1016/j.mehy.2018.09.018.
[54]
Bai F, Tu T, Qin F, et al. Quantitative proteomics of changes in succinylated proteins expression profiling in left appendages tissue from valvular heart disease patients with atrial fibrillation[J]. Clin Chim Acta, 2019, 495:345-354.DOI:10.1016/j.cca.2019.05.002.
[55]
Gyongyosi M, Winkler J, Ramos I, et al. Myocardial fibrosis:biomedical research from bench to bedside[J]. Eur J Heart Fail, 2017, 19(2):177-191.DOI:10.1002/ejhf.696.
[56]
Chang X, Zhang T, Wang J, et al. Sirt5-related desuccinylation modification contributes to quercetin-induced protection against heart failure and high-glucose-prompted cardiomyocytes injured through regulation of mitochondrial quality surveillance[J]. Oxid Med Cell Longev, 2021, 2021:5876841.DOI:10.1155/2021/5876841.
[57]
Chakraborty A, Li Y, Zhang C, et al. Programmed cell death in aortic aneurysm and dissection:a potential therapeutic target[J]. J Mol Cell Cardiol, 2022, 163:67-80.DOI:10.1016/j.yjmcc.2021.09.010.
[58]
Nienaber CA, Clough RE, Sakalihasan N, et al. Aortic dissection[J]. Nat Rev Dis Primers, 2016, 2:16053.DOI:10.1038/nrdp.2016.53.
[59]
Zhang H, Zhang Y, Wang H, et al. Global proteomic analysis reveals lysine succinylation contributes to the pathogenesis of aortic aneurysm and dissection[J]. J Proteomics, 2023, 280:104889.DOI:10.1016/j.jprot.2023.104889.
[60]
Zhang Y, Zhang H, Wang H, et al. Tandem mass tag-based quantitative proteomic analysis identification of succinylation related proteins in pathogenesis of thoracic aortic aneurysm and aortic dissection[J]. Peer J, 2023, 11:e15258.DOI:10.7717/peerj.15258.
PDF(1028 KB)

Accesses

Citation

Detail

Sections
Recommended

/