Construction and Evaluation of a Risk Prediction Model for Septic Cardiomyopathy Based on MIMIC-Ⅳ Database

Bin XIONG, Yinzhou LIU, An ZHANG

Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (5) : 671-677.

PDF(986 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(986 KB)
Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (5) : 671-677. DOI: 10.3881/j.issn.1000-503X.16031
Original Articles

Construction and Evaluation of a Risk Prediction Model for Septic Cardiomyopathy Based on MIMIC-Ⅳ Database

Author information +
History +

Abstract

Objective to analyze the risk factors of septic cardiomyopathy(SC),and to construct and evaluate The risk prediction model of SC.Methods the clinical data of patients with sepsis were extracted from MIMIC-Ⅳdatabase and randomized into a training set and a validation set at a ratio of 7 to 3.According to the presence or absence of SC,the patients were assigned into SC and non-SC groups.the independent risk factors of SC were determined by univariate and multivariate Logistic regression analysis,and a risk prediction model and a nomogram were established.the area under the receiver operating characteristic curve(AUC),calibration curve,and decision curve analysis(DCA)were employed to evaluate the distinguishing degree,calibration,and clinical applicability of the model,respectively.results A total of 2628 sepsis patients were enrolled in this study,including 1865 patients in the training set and 763 patients in the validation set.there was no significant difference in the incidence of SC between the training set and the validation set(58.98%vs.62.25%,P=0.120).Except chronic obstructive pulmonary disease(P=0.015)and length of stay in intensive care unit(P=0.016),There was no significant difference in other clinical indicators between the two groups(all P>0.05).Logistic regression analysis showed that coronary heart disease(P=0.028),heart failure(P<0.001),increased neutrophil count(P=0.001),decreased lymphocyte count(P=0.036),increased creatine kinase isoenzyme(P<0.001),and increased blood urea nitrogen(P=0.042)were independent risk factors for SC.the AUC of the nomogram prediction model in the training set and validation set was 0.759(95%CI=0.732-0.785)and 0.765(95%CI=0.723-0.807),respectively.the established model showcased good fitting degrees in both data sets(training set:P=0.075;validation set:P=0.067).the DCA Results showed that the nomogram prediction model had good clinical applicability.Conclusion the nomogram prediction model based on basic diseases and clinical biochemical indicators can effectively predict the risk of SC occurrence。

Key words

MIMIC-Ⅳ database / sepsis / septic cardiomyopathy / prediction model

Cite this article

Download Citations
Bin XIONG , Yinzhou LIU , An ZHANG. Construction and Evaluation of a Risk Prediction Model for Septic Cardiomyopathy Based on MIMIC-Ⅳ Database[J]. Acta Academiae Medicinae Sinicae. 2024, 46(5): 671-677 https://doi.org/10.3881/j.issn.1000-503X.16031

References

[1]
Beesley SJ, Weber G, Sarge T, et al. Septic cardiomyopathy[J]. Crit Care Med, 2018, 46(4):625-634.DOI:10.1097/ccm.0000000000002851.
[2]
Gobatto AL, Besen BA, Azevedo LC. How can we estimate sepsis incidence and mortality[J]. Shock, 2017, 47(1S Suppl 1):6-11.DOI:10.1097/shk.0000000000000703.
[3]
Weng L, Xu Y, Yin P, et al. National incidence and mortality of hospitalized sepsis in China[J]. Crit Care, 2023, 27(1):84.DOI:10.1186/s13054-023-04385-x.
[4]
L’Heureux M, Sternberg M, Brath L, et al. Sepsis-induced cardiomyopathy:a comprehensive review[J]. Curr Cardiol Rep, 2020, 22(5):35.DOI:10.1007/s11886-020-01277-2.
[5]
Sato R, Nasu M. A review of sepsis-induced cardiomyopathy[J]. J Intensive Care, 2015, 3:48.DOI:10.1186/s40560-015-0112-5.
[6]
Ravikumar N, Sayed MA, Poonsuph CJ, et al. Septic cardiomyopathy:from basics to management choices[J]. Curr Probl Cardiol, 2021, 46(4):100767.DOI:10.1016/j.cpcardiol.2020.100767.
[7]
Wang J, Wang XT, Liu DW, et al. Induction and deduction in sepsis-induced cardiomyopathy:five typical categories[J]. Chin Med J (Engl), 2020, 133(18):2205-2211.DOI:10.1097/cm9.0000000000000929.
[8]
Lin H, Wang W, Lee M, et al. Current status of septic cardiomyopathy:basic science and clinical progress[J]. Front Pharmacol, 2020, 11:210.DOI:10.3389/fphar.2020.00210.
[9]
Hollenberg SM, Singer M. Pathophysiology of sepsis-induced cardiomyopathy[J]. Nat Rev Cardiol, 2021, 18(6):424-434.DOI:10.1038/s41569-020-00492-2.
[10]
Sevilla Berrios RA, O’Horo JC, Velagapudi V, et al. Correlation of left ventricular systolic dysfunction determined by low ejection fraction and 30-day mortality in patients with severe sepsis and septic shock:a systematic review and meta-analysis[J]. J Crit Care, 2014, 29(4):495-499.DOI:10.1016/j.jcrc.2014.03.007.
[11]
Johnson A, Bulgarelli L, Pollard T, et al. MIMIC-Ⅳ (version 2.0)[EB/OL].[2024-01-25]. https://physionet.org/content/mimiciv/2.0.
[12]
Khanna A, English SW, Wang XS, et al. Angiotensin Ⅱ for the treatment of vasodilatory shock[J]. N Engl J Med, 2017, 377(5):419-430.DOI:10.1056/NEJMoa1704154.
[13]
Kotani Y, Di Gioia A, Landoni G, et al. An updated “norepinephrine equivalent” score in intensive care as a marker of shock severity[J]. Crit Care, 2023, 27(1):29.DOI:10.1186/s13054-023-04322-y.
[14]
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315(8):801-810.DOI:10.1001/jama.2016.0287.
[15]
Jeong HS, Lee TH, Bang CH, et al. Risk factors and outcomes of sepsis-induced myocardial dysfunction and stress-induced cardiomyopathy in sepsis or septic shock:a comparative retrospective study[J]. Medicine (Baltimore), 2018, 97(13):e0263.DOI:10.1097/md.0000000000010263.
[16]
Wang Y, Zhai X, Zhu M, et al. Risk factors for postoperative sepsis-induced cardiomyopathy in patients undergoing general thoracic surgery:a single center experience[J]. J Thorac Dis, 2021, 13(4):2486-2494.DOI:10.21037/jtd-21-492.
[17]
王婵, 李博玲, 史晓娟, 等. 脓毒症心肌病发病率及相关危险因素分析[J]. 中华危重症医学杂志(电子版), 2022, 15(3):177-182.DOI:10.3877/cma.j.issn.1674-6880.2022.03.001.
[18]
甄军海, 李莉, 严静. 脓毒症心肌损伤生物标志物的研究进展[J]. 中华危重病急救医学, 2018, 30(7):699-702.DOI:10.3760/cma.j.issn.2095-4352.2018.07.017.
[19]
陈宇, 张西京. 早期诊断脓毒症心肌病的心肌标志物[J]. 中华重症医学电子杂志(网络版), 2020, 6(2):146-150.DOI:10.3877/cma.j.issn.2096-1537.2020.02.008.
[20]
Balachandran VP, Gonen M, Smith JJ, et al. Nomograms in oncology:more than meets the eye[J]. Lancet Oncol, 2015, 16(4):e173-e180.DOI:10.1016/s1470-2045(14)71116-7.
[21]
李玉婷, 李洪祥, 张东. 脓毒性心肌病的发病率及危险因素分析[J]. 中华急诊医学杂志, 2019, 28(7):836-840.DOI:10.3760/cma.j.issn.1671-0282.2019.07.006.
[22]
de Pablo R, Monserrat J, Prieto A, et al. Role of circulating lymphocytes in patients with sepsis[J]. Biomed Res Int, 2014, 2014:671087.DOI:10.1155/2014/671087.
[23]
Karabacak P, Toğay VA, Aşcı Çelik D. Lymphocyte DNA damage in sepsis and septic-shock intensive-care patients:damage is greater in non-intubated patients[J]. Mutat Res Genet Toxicol Environ Mutagen, 2022,879-880:503516.DOI:10.1016/j.mrgentox.2022.503516.
[24]
付晓颖, 刘斌, 刘枭, 等. 淋巴细胞计数、白细胞介素-6、白细胞介素-10联合检测在脓毒症早期筛查中的效能[J]. 中国医药导报, 2023, 20(14):123-127.DOI:10.20047/j.issn1673-7210.2023.14.26.
[25]
Tang Y, Wu J, Tian Y, et al. Predictive value of peripheral lymphocyte subsets for the disease progression in patients with sepsis[J]. Int Immunopharmacol, 2023, 117:109922.DOI:10.1016/j.intimp.2023.109922.
[26]
Pei F, Yao RQ, Ren C, et al. Expert consensus on the monitoring and treatment of sepsis-induced immunosuppression[J]. Mil Med Res, 2022, 9(1):74.DOI:10.1186/s40779-022-00430-y.
PDF(986 KB)

Accesses

Citation

Detail

Sections
Recommended

/