Construction of a Disulfidptosis-Related Prediction Model for Acute Myocardial Infarction Based on Transcriptome Data

Qiurong TANG, Yang FENG, Yao ZHAO, Yunfei BIAN

Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (3) : 354-365.

PDF(7123 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(7123 KB)
Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (3) : 354-365. DOI: 10.3881/j.issn.1000-503X.16057
Original Articles

Construction of a Disulfidptosis-Related Prediction Model for Acute Myocardial Infarction Based on Transcriptome Data

Author information +
History +

Abstract

Objective To identify disulfidptosis-related gene(DRG)in acute myocardial infarction(AMI)by bioinformatics,analyze the molecular pattern of DRGs in AMI,and construct a DRGs-related prediction model.Methods AMI-related datasets were downloaded from the Gene Expression Omnibus database,and DRGs with differential expression were screened in AMI.CIBERSORT method was used to analyze the immune infiltration.Based on the differentially expressed DRGs,the AMI patients were classified into distinct subtypes via consensus clustering,followed by immune infiltration analysis,differential expression analysis,gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis,and gene set variation analysis.Weighted gene co-expression network analysis(WGCNA)was then performed to construct subtype-associated modules and identify hub genes.Finally,least absolute shrinkage and selection operator,random forest,and support vector machine-recursive feature elimination were used to screen feature genes to construct a DRGs-related prediction model.The model’s diagnostic efficacy was evaluated by nomogram and receiver operating characteristic(ROC)curve analysis,followed by external validation.Results Nine differentially expressed DRGs were identified between AMI patients and controls.Based on the expression levels of these nine DRGs,AMI patients were divided into two DRGs subtypes,C1 and C2.Increased infiltration of monocytes,M0 macrophages,and neutrophils was observed in AMI patients and C1 subtype(all P<0.05),indicating a close correlation between DRGs and immune cells.There were 257 differentially expressed genes between the C1 and C2 subtypes,which were related to biological processes such as myeloid leukocyte activation and positive regulation of cytokines.Fcγ receptor-mediated phagocytosis and NOD-like receptor signaling pathway activity were enhanced in C1 subtype.WGCNA analysis suggested that the brown module exhibited the strongest correlation with DRG subtypes(r=0.67),from which 23 differentially expressed genes were identified.The feature genes screened by three machine learning methods were interpolated to obtain a DRGs-related prediction model consisting of three genes(AQP9,F5 and PYGL).Nomogram and ROC curves(AUCtrain=0.891,AUCtest=0.840)showed good diagnostic efficacy.Conclusions DRGs were closely related to the occurrence and progression of AMI.The DRGs-related prediction model consisting of AQP9,F5 and PYGL may provide targets for the diagnosis and personalized treatment of AMI.

Key words

acute myocardial infarction / disulfidptosis / consensus clustering / immune infiltration / bioinformatics analysis

Cite this article

Download Citations
Qiurong TANG , Yang FENG , Yao ZHAO , et al. Construction of a Disulfidptosis-Related Prediction Model for Acute Myocardial Infarction Based on Transcriptome Data[J]. Acta Academiae Medicinae Sinicae. 2025, 47(3): 354-365 https://doi.org/10.3881/j.issn.1000-503X.16057

References

[1]
Ramachandra C, Hernandez-Resendiz S, Crespo-Avilan GE, et al. Mitochondria in acute myocardial infarction and cardioprotection[J]. EBioMedicine, 2020,57:102884.DOI:10.1016/j.ebiom.2020.102884.
[2]
Frantz S, Hundertmark MJ, Schulz-Menger J, et al. Left ventricular remodelling post-myocardial infarction:pathophysiology,imaging,and novel therapies[J]. Eur Heart J, 2022, 43(27):2549-2561.DOI:10.1093/eurheartj/ehac223.
[3]
Damluji AA, van Diepen S, Katz JN, et al. Mechanical complications of acute myocardial infarction:a scientific statement from the American Heart Association[J]. Circulation, 2021, 144(2):e16-e35.DOI:10.1161/CIR.0000000000000985.
[4]
Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2023 update:a report from the American Heart Association[J]. Circulation, 2023, 147(8):e93-e621.DOI:10.1161/CIR.0000000000001123.
[5]
Davidson SM, Adameová A, Barile L, et al. Mitochondrial and mitochondrial-independent pathways of myocardial cell death during ischaemia and reperfusion injury[J]. J Cell Mol Med, 2020, 24(7):3795-3806.DOI:10.1111/jcmm.15127.
[6]
Lichý M, Szobi A, Hrdlička J, et al. Programmed cell death in the left and right ventricle of the late phase of post-infarction heart failure[J]. Int J Mol Sci, 2020, 21(20):7782.DOI:10.3390/ijms21207782.
[7]
Liu X, Nie L, Zhang Y, et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis[J]. Nat Cell Biol, 2023, 25(3):404-414.DOI:10.1038/s41556-023-01091-2.
[8]
van der Velden J, Merkus D, Klarenbeek BR, et al. Alterations in myofilament function contribute to left ventricular dysfunction in pigs early after myocardial infarction[J]. Circ Res, 2004, 95(11):e85-e95.DOI:10.1161/01.RES.0000149531.02904.09.
[9]
Ali H, Braga L, Giacca M. Cardiac regeneration and remodelling of the cardiomyocyte cytoarchitecture[J]. FEBS J, 2020, 287(3):417-438.DOI:10.1111/febs.15146.
[10]
Wu X, Reboll MR, Korf-Klingebiel M, et al. Angiogenesis after acute myocardial infarction[J]. Cardiovasc Res, 2021, 117(5):1257-1273.DOI:10.1093/cvr/cvaa287.
[11]
Liu X, Zhuang L, Gan B. Disulfidptosis:disulfide stress-induced cell death[J]. Trends Cell Biol, 2024, 34(4):327-337.DOI:10.1016/j.tcb.2023.07.009.
[12]
Zheng PF, Zou QC, Chen LZ, et al. Identifying patterns of immune related cells and genes in the peripheral blood of acute myocardial infarction patients using a small cohort[J]. J Transl Med, 2022, 20(1):321.DOI:10.1186/s12967-022-03517-1.
[13]
Zhu X, Yin T, Zhang T, et al. Identification of immune-related genes in patients with acute myocardial infarction using machine learning methods[J]. J Inflamm Res, 2022, 15:3305-3321.DOI:10.2147/JIR.S360498.
[14]
Peet C, Ivetic A, Bromage DI, et al. Cardiac monocytes and macrophages after myocardial infarction[J]. Cardiovasc Res, 2020, 116(6):1101-1112.DOI:10.1093/cvr/cvz336.
[15]
Sun K, Li YY, Jin J. A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair[J]. Signal Transduct Target Ther, 2021, 6(1):79.DOI:10.1038/s41392-020-00455-6.
[16]
Anzai A, Ko S, Fukuda K. Immune and inflammatory networks in myocardial infarction:current research and its potential implications for the clinic[J]. Int J Mol Sci, 2022, 23(9):5214.DOI:10.3390/ijms23095214.
[17]
Zhang Q, Wang L, Wang S, et al. Signaling pathways and targeted therapy for myocardial infarction[J]. Signal Transduct Target Ther, 2022, 7(1):78.DOI:10.1038/s41392-022-00925-z.
[18]
Handelman GS, Kok HK, Chandra RV, et al. eDoctor:machine learning and the future of medicine[J]. J Intern Med, 2018, 284(6):603-619.DOI:10.1111/joim.12822.
[19]
Ren N, Wang M. microRNA-212-induced protection of the heart against myocardial infarction occurs via the interplay between AQP9 and PI3K/Akt signaling pathway[J]. Exp Cell Res, 2018, 370(2):531-541.DOI:10.1016/j.yexcr.2018.07.018.
[20]
Huang X, Yu X, Li H, et al. Regulation mechanism of aquaporin 9 gene on inflammatory response and cardiac function in rats with myocardial infarction through extracellular signal-regulated kinase1/2 pathway[J]. Heart Vessels, 2019, 34(12):2041-2051.DOI:10.1007/s00380-019-01452-8.
[21]
Zhang L, Liu Y, Wang K, et al. Integration of machine learning to identify diagnostic genes in leukocytes for acute myocardial infarction patients[J]. J Transl Med, 2023, 21(1):761.DOI:10.1186/s12967-023-04573-x.
[22]
Chen J, Yu L, Zhang S, et al. Network analysis-based approach for exploring the potential diagnostic biomarkers of acute myocardial infarction[J]. Front Physiol, 2016,7:615.DOI:10.3389/fphys.2016.00615.
[23]
Mannucci PM, Asselta R, Duga S, et al. The association of factor V Leiden with myocardial infarction is replicated in 1880 patients with premature disease[J]. J Thromb Haemost, 2010, 8(10):2116-2121.DOI:10.1111/j.1538-7836.2010.03982.x.
[24]
Ji Q, Li H, Cai Z, et al. PYGL-mediated glucose metabolism reprogramming promotes EMT phenotype and metastasis of pancreatic cancer[J]. Int J Biol Sci, 2023, 19(6):1894-1909.DOI:10.7150/ijbs.76756.
[25]
Dai Y, Wang Z, Quan M, et al. Asiatic acid protests against myocardial ischemia/reperfusion injury via modulation of glycometabolism in rat cardiomyocyte[J]. Drug Des Devel Ther, 2018, 12:3573-3582.DOI:10.2147/DDDT.S175116.
PDF(7123 KB)

Accesses

Citation

Detail

Sections
Recommended

/