MRI-Based Assessment of Hepatic Iron Overload and Steatosis in Patients Undergoing Hemodialysis:Current Status,Challenges,and Perspectives

Hu LIU, Hongwei ZHAO

Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (3) : 449-457.

PDF(885 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(885 KB)
Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (3) : 449-457. DOI: 10.3881/j.issn.1000-503X.16066
Review Articles

MRI-Based Assessment of Hepatic Iron Overload and Steatosis in Patients Undergoing Hemodialysis:Current Status,Challenges,and Perspectives

Author information +
History +

Abstract

Long-term treatment of anemia involving frequent blood transfusions and intravenous iron administration increases the risks of hepatic iron overload and steatosis in the patients undergoing hemodialysis.Pathological accumulation of iron damages hepatocytes,not only elevating the risks of progressive hepatic fibrosis and cirrhosis but also potentially accelerating the process of hepatic steatosis.iron overload and steatosis may interact with each other,exacerbating liver damage and ultimately leading to further deterioration of hepatic fibrosis and cirrhosis.MRI characterized by non-invasiveness and high repeatability,enables the simultaneous quantitative assessment of hepatic iron and fat content,providing crucial information for early diagnosis and intervention of liver diseases.in recent years,researchers have achieved significant advances in the application of MRI in the diagnosis and treatment of liver diseases.MRI can accurately reflect the extent of hepatic iron overload and steatosis in patients and predict the risk of liver diseases.This article reviews the latest advances,challenges,and perspectives in the application of MRI in assessing hepatic iron overload and steatosis in the patients undergoing hemodialysis,aiming to offer valuable references for clinical practice。

Key words

hemodialysis / hepatic iron overload / hepatic steatosis / MRI / quantitative assessment

Cite this article

Download Citations
Hu LIU , Hongwei ZHAO. MRI-Based Assessment of Hepatic Iron Overload and Steatosis in Patients Undergoing Hemodialysis:Current Status,Challenges,and Perspectives[J]. Acta Academiae Medicinae Sinicae. 2024, 46(3): 449-457 https://doi.org/10.3881/j.issn.1000-503X.16066

References

[1]
GBD Chronic Kidney Disease Collaboration. and national burden of chronic kidney disease,1990-2017:a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2020, 395(10225):709-733.DOI:10.1016/S0140-6736(20)30045-3.
[2]
《中国围透析期慢性肾脏病管理规范》专家组. 中国围透析期慢性肾脏病管理规范[J]. 中华肾脏病杂志, 2021, 37(8):690-704.DOI:10.3760/cma.j.cn441217-20210322-00104.
[3]
中国医师协会肾脏内科医师分会血液透析滤过质控指南工作组. 血液透析滤过质量控制临床实践指南[J]. 中华医学杂志, 2024, 104(8):571-593.DOI:10.3760/cma.j.cn112137-20231212-01361.
[4]
中国医师协会肾脏内科医师分会肾性贫血指南工作组. 中国肾性贫血诊治临床实践指南[J]. 中华医学杂志, 2021, 101(20):1463-1502.DOI:10.3760/cma.j.cn112137-20210201-00309.
[5]
Wong WK, Chan WK, Ganapathy SS, et al. Metabolic dysfunction-associated fatty liver disease (MAFLD) and advanced liver fibrosis among hemodialysis patients in a multiethnic urban population in Malaysia[J]. Semin Dial, 2023, 36(2):107-116.DOI:10.1111/sdi.13117.
[6]
Rostoker G, Loridon C, Griuncelli M, et al. Liver iron load influences hepatic pat fraction in end-stage renal disease patients on dialysis:a proof of concept study[J]. EBioMedicine, 2019, 39:461-471.DOI:10.1016/j.ebiom.2018.11.020.
[7]
Sargent JA, Acchiardo SR. Iron requirements in hemodialysis[J]. Blood Purif, 2004, 22(1):112-123.DOI:10.1159/000074931.
[8]
Canavese C, Bergamo D, Ciccone G, et al. Validation of serum ferritin values by magnetic susceptometry in predicting iron overload in dialysis patients[J]. Kidney Int, 2004, 65(3):1091-1098.DOI:10.1111/j.1523-1755.2004.00480.x.
[9]
Ghoti H, Rachmilewitz EA, Simon-Lopez R, et al. Evidence for tissue iron overload in long-term hemodialysis patients and the impact of withdrawing parenteral iron[J]. Eur J Haematol, 2012, 89(1):87-93.DOI:10.1111/j.1600-0609.2012.01783.x.
[10]
Delibas D, Evrimler S, Ercan K, et al. Iron overload in hemodialysis patients:comparison of serum iron parameters with T2* MRI sequence[J]. J Clin Ultrasound, 2023, 52(2):124-130.DOI:10.1002/jcu.23608.
[11]
Rostoker G. When should iron supplementation in dialysis patients be avoided,minimized or withdrawn[J]. Semin Dial, 2019, 32(1):22-29.DOI:10.1111/sdi.12732.
[12]
Del Vecchio L, Longhi S, Locatelli F. Safety concerns about intravenous iron therapy in patients with chronic kidney disease[J]. Clin Kidney J, 2016, 9(2):260-267.DOI:10.1093/ckj/sfv142.
[13]
Li X, Cole SR, Kshirsagar AV, et al. Safety of dynamic intravenous iron administration strategies in hemodialysis patients[J]. Clin J Am Soc Nephrol, 2019, 14(5):728-737.DOI:10.2215/CJN.03970318.
[14]
Low G, Ferguson C, Locas S, et al. Multiparametric MR assessment of liver fat,iron,and fibrosis:a concise overview of the liver “triple screen”[J]. Abdom Radiol (NY), 2023, 48(6):2060-2073.DOI:10.1007/s00261-023-03887-0.
[15]
Mazé J, Vesselle G, Herpe G, et al. Evaluation of hepatic iron concentration heterogeneities using the MRI R2* mapping method[J]. Eur J Radiol, 2019, 116:47-54.DOI:10.1016/j.ejrad.2018.02.011.
[16]
Rose C, Vandevenne P, Bourgeois E, et al. Liver iron content assessment by routine and simple magnetic resonance imaging procedure in highly transfused patients[J]. Eur J Haematol, 2006, 77(2):145-149.DOI:10.1111/j.0902-4441.2006.t01-1-EJH2571.x.
[17]
Gandon Y, Olivie D, Guyader D, et al. Non-invasive assessment of hepatic iron stores by MRI[J]. Lancet, 2004, 363(9406):357-362.DOI:10.1016/S0140-6736(04)15436-6.
[18]
Alustiza JM, Artetxe J, Castiella A, et al. MR quantification of hepatic iron concentration[J]. Radiology, 2004, 230(2):479-484.DOI:10.1148/radiol.2302020820.
[19]
Reeder SB, Yokoo T, Franca M, et al. Quantification of liver iron overload with MRI:review and guidelines from the ESGAR and SAR[J]. Radiology, 2023, 307(1):e221856.DOI:10.1148/radiol.221856.
[20]
St Pierre TG, Clark PR, Chua-anusorn W, et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance[J]. Blood, 2005, 105(2):855-861.DOI:10.1182/blood-2004-01-0177.
[21]
Craft ML, Edwards M, Jain TP, et al. R2 and R2* MRI assessment of liver iron content in an undifferentiated diagnostic population with hyperferritinaemia,and impact on clinical decision making[J]. Eur J Radiol, 2021, 135:109473.DOI:10.1016/j.ejrad.2020.109473.
[22]
Hernando D, Levin YS, Sirlin CB, et al. Quantification of liver iron with MRI:state of the art and remaining challenges[J]. J Magn Reson Imaging, 2014, 40(5):1003-1021.DOI:10.1002/jmri.24584.
[23]
Sirlin CB, Reeder SB. Magnetic resonance imaging quantification of liver iron[J]. Magn Reson Imaging Clin N Am, 2010, 18(3):359-381, ix.DOI:10.1016/j.mric.2010.08.014.
[24]
Hernando D, Kramer JH, Reeder SB. Multipeak fat-corrected complex R2* relaxometry:theory,optimization,and clinical validation[J]. Magn Reson Med, 2013, 70(5):1319-1331.DOI:10.1002/mrm.24593.
[25]
Krafft AJ, Loeffler RB, Song R, et al. Quantitative ultrashort echo time imaging for assessment of massive iron overload at 1.5 and 3 Tesla[J]. Magn Reson Med, 2017, 78(5):1839-1851.DOI:10.1002/mrm.26592.
[26]
Doyle EK, Toy K, Valdez B, et al. Ultra-short echo time images quantify high liver iron[J]. Magn Reson Med, 2018, 79(3):1579-1585.DOI:10.1002/mrm.26791.
[27]
Hernando D, Kuhn JP, Mensel B, et al. R2* estimation using “in-phase” echoes in the presence of fat:the effects of complex spectrum of fat[J]. J Magn Reson Imaging, 2013, 37(3):717-726.DOI:10.1002/jmri.23851.
[28]
Zhan C, Olsen S, Zhang HC, et al. Detection of hepatic steatosis and iron content at 3 Tesla:comparison of two-point Dixon,quantitative multi-echo Dixon,and MR spectroscopy[J]. Abdom Radiol (NY), 2019, 44(9):3040-3048.DOI:10.1007/s00261-019-02118-9.
[29]
Henninger B, Zoller H, Kannengiesser S, et al. 3D multiecho Dixon for the evaluation of hepatic iron and fat in a clinical setting[J]. J Magn Reson Imaging, 2017, 46(3):793-800.DOI:10.1002/jmri.25630.
[30]
Hernando D, Cook RJ, Qazi N, et al. Complex confounder-corrected R2* mapping for liver iron quantification with MRI[J]. Eur Radiol, 2021, 31(1):264-275.DOI:10.1007/s00330-020-07123-x.
[31]
Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients[J]. Blood, 2005, 106(4):1460-1465.DOI:10.1182/blood-2004-10-3982.
[32]
d’Assignies G, Paisant A, Bardou-Jacquet E, et al. Non-invasive measurement of liver iron concentration using 3-Tesla magnetic resonance imaging:validation against biopsy[J]. Eur Radiol, 2018, 28(5):2022-2030.DOI:10.1007/s00330-017-5106-3.
[33]
Garbowski MW, Carpenter JP, Smith G, et al. Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan[J]. J Cardiovasc Magn Reson, 2014, 16(1):40.DOI:10.1186/1532-429X-16-40.
[34]
Sharma SD, Hernando D, Horng DE, et al. Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload[J]. Magn Reson Med, 2015, 74(3):673-683.DOI:10.1002/mrm.25448.
[35]
Li J, Lin H, Liu T, et al. Quantitative susceptibility mapping (QSM) minimizes interference from cellular pathology in R2* estimation of liver iron concentration[J]. J Magn Reson Imaging, 2018, 48(4):1069-1079.DOI:10.1002/jmri.26019.
[36]
Lin H, Wei H, He N, et al. Quantitative susceptibility mapping in combination with water-fat separation for simultaneous liver iron and fat fraction quantification[J]. Eur Radiol, 2018, 28(8):3494-3504.DOI:10.1007/s00330-017-5263-4.
[37]
Madihi Y, Tavakoli R, Riahinezhad M, et al. Prevalence of nonalcoholic fatty liver disease in children with renal failure underwent treatment with dialysis[J]. Int J Prev Med, 2022, 13:35.DOI:10.4103/ijpvm.ijpvm_410_21.
[38]
Choe AR, Ryu DR, Kim HY, et al. Noninvasive indices for predicting nonalcoholic fatty liver disease in patients with chronic kidney disease[J]. BMC Nephrol, 2020, 21(1):50.DOI:10.1186/s12882-020-01718-8.
[39]
Behairy MA, Sherief AF, Hussein HA. Prevalence of non-alcoholic fatty liver disease among patients with non-diabetic chronic kidney disease detected by transient elastography[J]. Int Urol Nephrol, 2021, 53(12):2593-2601.DOI:10.1007/s11255-021-02815-9.
[40]
Kanbay M, Bulbul MC, Copur S, et al. Therapeutic implications of shared mechanisms in non-alcoholic fatty liver disease and chronic kidney disease[J]. J Nephrol, 2021, 34(3):649-659.DOI:10.1007/s40620-020-00751-y.
[41]
Singal AK, Hasanin M, Kaif M, et al. Nonalcoholic steatohepatitis is the most rapidly growing indication for simultaneous liver kidney transplantation in the United States[J]. Transplantation, 2016, 100(3):607-612.DOI:10.1097/TP.0000000000000945.
[42]
European Association for the Study of the Liver EASL,European Association for the Study of Diabetes EASD, European Association for the Study of Obesity (EASO). EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease[J]. J Hepatol, 2016, 64(6):1388-1402.DOI:10.1016/j.jhep.2015.11.004.
[43]
Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease:practice guideline by the American association for the study of liver diseases,American college of gastroenterology,and the American gastroenterological association[J]. Hepatology, 2012, 55(6):2005-2023.DOI:10.1002/hep.25762.
[44]
Reeder SB, Cruite I, Hamilton G, et al. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy[J]. J Magn Reson Imaging, 2011, 34(4):729-749.DOI:10.1002/jmri.22775.
[45]
Cassidy FH, Yokoo T, Aganovic L, et al. Fatty liver disease:MR imaging techniques for the detection and quantification of liver steatosis[J]. Radiographics, 2009, 29(1):231-260.DOI:10.1148/rg.291075123.
[46]
Bohte AE, van Werven JR, Bipat S, et al. The diagnostic accuracy of US,CT,MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy:a meta-analysis[J]. Eur Radiol, 2011, 21(1):87-97.DOI:10.1007/s00330-010-1905-5.
[47]
Meisamy S, Hines CD, Hamilton G, et al. Quantification of hepatic steatosis with T1-independent,T2-corrected MR imaging with spectral modeling of fat:blinded comparison with MR spectroscopy[J]. Radiology, 2011, 258(3):767-775.DOI:10.1148/radiol.10100708.
[48]
Yokoo T, Serai SD, Pirasteh A, et al. Linearity,bias, and precision of hepatic proton density fat fraction measurements by using MR imaging:a meta-analysis[J]. Radiology, 2018, 286(2):486-498.DOI:10.1148/radiol.2017170550.
[49]
Kuhn JP, Hernando D, Munoz del Rio A, et al. Effect of multipeak spectral modeling of fat for liver iron and fat quantification:correlation of biopsy with MR imaging results[J]. Radiology, 2012, 265(1):133-142.DOI:10.1148/radiol.12112520.
[50]
Campo CA, Hernando D, Schubert T, et al. Standardized approach for ROI-based measurements of proton density fat fraction and R2* in the liver[J]. Am J Roentgenol, 2017, 209(3):592-603.DOI:10.2214/AJR.17.17812.
[51]
Colgan TJ, Zhao R, Roberts NT, et al. Limits of fat quantification in the presence of iron overload[J]. J Magn Reson Imaging, 2021, 54(4):1166-1174.DOI:10.1002/jmri.27611.
[52]
Bashir MR, Wolfson T, Gamst AC, et al. Hepatic R2* is more strongly associated with proton density fat fraction than histologic liver iron scores in patients with nonalcoholic fatty liver disease[J]. J Magn Reson Imaging, 2019, 49(5):1456-1466.DOI:10.1002/jmri.26312.
[53]
Jafari R, Hectors SJ, Koehne de González AK, et al. Integrated quantitative susceptibility and R2* mapping for evaluation of liver fibrosis:an ex vivo feasibility study[J]. NMR Biomed, 2021, 34(1):e4412.DOI:10.1002/nbm.4412.
[54]
Hu F, Yang R, Huang Z, et al. 3D multi-echo dixon technique for simultaneous assessment of liver steatosis and iron overload in patients with chronic liver diseases:a feasibility study[J]. Quant Imaging Med Surg, 2019, 9(6):1014-1024.DOI:10.21037/qims.2019.05.20.
[55]
Hong CW, Wolfson T, Sy EZ, et al. Optimization of region-of-interest sampling strategies for hepatic MRI proton density fat fraction quantification[J]. J Magn Reson Imaging, 2018, 47(4):988-994.DOI:10.1002/jmri.25843.
[56]
Martí-Aguado D, Jiménez-Pastor A, Alberich-Bayarri Á, et al. Automated whole-liver MRI segmentation to assess steatosis and iron quantification in chronic liver disease[J]. Radiology, 2022, 302(2):345-354.DOI:10.1148/radiol.2021211027.
[57]
Wang K, Mamidipalli A, Retson T, et al. Automated CT and MRI liver segmentation and biometry using a generalized convolutional neural network[J]. Radiol Artif Intell, 2019, 1(2):180022.DOI:10.1148/ryai.2019180022.
[58]
Jimenez-Pastor A, Alberich-Bayarri A, Lopez-Gonzalez R, et al. Precise whole liver automatic segmentation and quantification of PDFF and R2* on MR images[J]. Eur Radiol, 2021, 31(10):7876-7887.DOI:10.1007/s00330-021-07838-5.
[59]
Wang K, Cunha GM, Hasenstab K, et al. Deep learning for inference of hepatic proton density fat fraction from T1-weighted in-phase and opposed-phase MRI:retrospective analysis of population-based trial data[J]. Am J Roentgenol, 2023, 221(5):620-631.DOI:10.2214/ajr.23.29607.
[60]
Meneses JP, Arrieta C, Della Maggiora G, et al. Liver PDFF estimation using a multi-decoder water-fat separation neural network with a reduced number of echoes[J]. Eur Radiol, 2023, 33(9):6557-6568.DOI:10.1007/s00330-023-09576-2.
[61]
Gilligan LA, Dillman JR, Tkach JA, et al. Comparison of navigator-gated and breath-held image acquisition techniques for multi-echo quantitative dixon imaging of the liver in children and young adults[J]. Abdom Radiol (NY), 2019, 44(6):2172-2181.DOI:10.1007/s00261-019-01960-1.
[62]
Armstrong T, Zhong X, Shih SF, et al. Free-breathing 3D stack-of-radial MRI quantification of liver fat and R2* in adults with fatty liver disease[J]. Magn Reson Imaging, 2022, 85:141-152.DOI:10.1016/j.mri.2021.10.016.
[63]
Eskreis-Winkler S, Corrias G, Monti S, et al. IDEAL-IQ in an oncologic population:meeting the challenge of concomitant liver fat and liver iron[J]. Cancer Imaging, 2018, 18(1):51.DOI:10.1186/s40644-018-0167-3.
[64]
Roberts NT, Hernando D, Panagiotopoulos N, et al. Addressing concomitant gradient phase errors in time-interleaved chemical shift-encoded MRI fat fraction and R2* mapping with a pass-specific phase fitting method[J]. Magn Reson Med, 2022, 87(6):2826-2838.DOI:10.1002/mrm.29175.
PDF(885 KB)

Accesses

Citation

Detail

Sections
Recommended

/