Skeletal Muscle Stem Cells and the Microenvironment Regulation in Sarcopenia:A Review

Tian GAO, Yong ZHANG, Dan ZHANG, Ping ZENG

Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (6) : 958-964.

PDF(693 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(693 KB)
Acta Academiae Medicinae Sinicae ›› 2024, Vol. 46 ›› Issue (6) : 958-964. DOI: 10.3881/j.issn.1000-503X.16114
Review Articles

Skeletal Muscle Stem Cells and the Microenvironment Regulation in Sarcopenia:A Review

Author information +
History +

Abstract

Sarcopenia is an age-related degenerative skeletal muscle disorder characterized by the loss of skeletal muscle mass and function during aging.Sarcopenia can impair the elderly’s ability to perform daily activities and is associated with high risks of falls,fractures,and hospitalization.It seriously affects the quality of life of the elderly and becomes one of the major health problems in the aging society.Skeletal muscle stem cells,also known as muscle satellite cells,play a key role in supporting muscle regeneration and homeostasis maintenance.Studies have suggested that muscle satellite cell functions are tightly regulated by microenvironment signals in the skeletal muscle.Of note,skeletal muscle fibers,serving as an immediate niche of muscle satellite cells,regulate their activation,proliferation,and self-renewal.This article reviews the research progress in the regulatory roles of skeletal muscle stem cells and their microenvironment in sarcopenia during aging,providing theoretical support for potential treatment of sarcopenia via modifying skeletal muscle microenvironment and regulating muscle satellite cell functions.

Key words

sarcopenia / skeletal muscle stem cell / muscle satellite cell / microenvironment

Cite this article

Download Citations
Tian GAO , Yong ZHANG , Dan ZHANG , et al. Skeletal Muscle Stem Cells and the Microenvironment Regulation in Sarcopenia:A Review[J]. Acta Academiae Medicinae Sinicae. 2024, 46(6): 958-964 https://doi.org/10.3881/j.issn.1000-503X.16114

References

[1]
Dodds RM, Granic A, Davies K, et al. Prevalence and incidence of sarcopenia in the very old:findings from the Newcastle 85+ Study[J]. J Cachexia Sarcopenia Muscle, 2017, 8(2):229-237.DOI:10.1002/jcsm.12157.
[2]
Cai Y, Song W, Li J, et al. The landscape of aging[J]. Sci China Life Sci, 2022, 65(12):2354-2454.DOI:10.1007/s11427-022-2161-3.
[3]
Chakkalakal JV, Jones KM, Basson MA, et al. The aged niche disrupts muscle stem cell quiescence[J]. Nature, 2012, 490(7420):355-360.DOI:10.1038/nature11438.
[4]
Dodds R, Sayer AA. Sarcopenia and frailty:new challenges for clinical practice[J]. Clin Med (Lond), 2016, 16(5):455-458.DOI:10.7861/clinmedicine.16-5-455.
[5]
Dennison EM, Sayer AA, Cooper C. Epidemiology of sarcopenia and insight into possible therapeutic targets[J]. Nat Rev Rheumatol, 2017, 13(6):340-347.DOI:10.1038/nrrheum.2017.60.
[6]
Werdyani S, Aitken D, Gao Z, et al. Metabolomic signatures for the longitudinal reduction of muscle strength over 10 years[J]. Skelet Muscle, 2022, 12(1):4.DOI:10.1186/s13395-022-00286-9.
[7]
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia:European consensus on definition and diagnosis:report of the European Working Group on sarcopenia in older people[J]. Age Ageing, 2010, 39(4):412-423.DOI:10.1093/ageing/afq034.
[8]
Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project:rationale,study description,conference recommendations,and final estimates[J]. J Gerontol A Biol Sci Med Sci, 2014, 69(5):547-558.DOI:10.1093/gerona/glu010.
[9]
Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia:consensus report of the Asian Working Group for sarcopenia[J]. J Am Med Dir Assoc, 2014, 15(2):95-101.DOI:10.1016/j.jamda.2013.11.025.
[10]
Patel HP, Syddall HE, Jameson K, et al. Prevalence of sarcopenia in community-dwelling older people in the UK using the European Working Group on Sarcopenia in Older People (EWGSOP) definition:findings from the Hertfordshire Cohort Study (HCS)[J]. Age Ageing, 2013, 42(3):378-384.DOI:10.1093/ageing/afs197.
[11]
Brown JC, Harhay MO, Harhay MN. Sarcopenia and mortality among a population-based sample of community-dwelling older adults[J]. J Cachexia Sarcopenia Muscle, 2016, 7(3):290-298.DOI:10.1002/jcsm.12073.
[12]
Kim H, Hirano H, Edahiro A, et al. Sarcopenia:prevalence and associated factors based on different suggested definitions in community-dwelling older adults[J]. Geriatr Gerontol Int, 2016, 16(Suppl 1):110-122.DOI:10.1111/ggi.12723.
[13]
Cereda E, Pisati R, Rondanelli M, et al. Whey protein,leucine- and vitamin-D-enriched oral nutritional supplementation for the treatment of sarcopenia[J]. Nutrients, 2022, 14(7):1524.DOI:10.3390/nu14071524.
[14]
Storer TW, Basaria S, Traustadottir T, et al. Effects of testosterone supplementation for 3 years on muscle performance and physical function in older men[J]. J Clin Endocrinol Metab, 2017, 102(2):583-593.DOI:10.1210/jc.2016-2771.
[15]
Xu Z, Fu T, Guo Q, et al. Disuse-associated loss of the protease LONP1 in muscle impairs mitochondrial function and causes reduced skeletal muscle mass and strength[J]. Nat Commun, 2022, 13(1):894.DOI:10.1038/s41467-022-28557-5.
[16]
Masiero E, Agatea L, Mammucari C, et al. Autophagy is required to maintain muscle mass[J]. Cell Metab, 2009, 10(6):507-515.DOI:10.1016/j.cmet.2009.10.008.
[17]
Lyu AK, Zhu SY, Chen JL, et al. Inhibition of TLR9 attenuates skeletal muscle fibrosis in aged sarcopenic mice via the p53/SIRT1 pathway[J]. Exp Gerontol, 2019, 122:25-33.DOI:10.1016/j.exger.2019.04.008.
[18]
Verdijk LB, Snijders T, Drost M, et al. Satellite cells in human skeletal muscle;from birth to old age[J]. Age (Dordr), 2014, 36(2):545-547.DOI:10.1007/s11357-013-9583-2.
[19]
Shang GK, Han L, Wang ZH, et al. Sarcopenia is attenuated by TRB3 knockout in aging mice via the alleviation of atrophy and fibrosis of skeletal muscles[J]. J Cachexia Sarcopenia Muscle, 2020, 11(4):1104-1120.DOI:10.1002/jcsm.12560.
[20]
Cochet C, Belloni G, Buondonno I, et al. The role of nutrition in the treatment of sarcopenia in old patients:from restoration of mitochondrial activity to improvement of muscle performance,a systematic review[J]. Nutrients, 2023, 15(17):3703.DOI:10.3390/nu15173703.
[21]
Lim HS, Kim TH, Kang HJ, et al. Effect of a 12-week multi-exercise community program on muscle strength and lipid profile in elderly women[J]. Nutrients, 2024, 16(6):813.DOI:10.3390/nu16060813.
[22]
Kim TN, Choi KM.Sarcopenia:definition,epidemiology,and pathophysiology[J]. J Bone Metab, 2013, 20(1):1-10.DOI:10.11005/jbm.2013.20.1.1.
[23]
Hirani V, Naganathan V, Cumming RG, et al. Associations between frailty and serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D concentrations in older Australian men:the concord health and ageing in men project[J]. J Gerontol A Biol Sci Med Sci, 2013, 68(9):1112-1121.DOI:10.1093/gerona/glt059.
[24]
Jacob I, Johnson MI, Jones G, et al. Age-related differences of vastus lateralis muscle morphology,contractile properties,upper body grip strength and lower extremity functional capability in healthy adults aged 18 to 70 years[J]. BMC Geriatr, 2022, 22(1):538.DOI:10.1186/s12877-022-03183-4.
[25]
Yang JH, Hayano M, Griffin PT, et al. Loss of epigenetic information as a cause of mammalian aging[J]. Cell, 2024, 187(5):1312-1313.DOI:10.1016/j.cell.2024.01.049.
[26]
Lopez-Otin C, Blasco MA, Partridge L, et al. Hallmarks of aging:an expanding universe[J]. Cell, 2023, 186(2):243-278.DOI:10.1016/j.cell.2022.11.001.
[27]
Mauro A. Satellite cell of skeletal muscle fibers[J]. J Biophys Biochem Cytol, 1961, 9(2):493-495.DOI:10.1083/jcb.9.2.493.
[28]
Alway SE, Myers MJ, Mohamed JS. Regulation of satellite cell function in sarcopenia[J]. Front Aging Neurosci, 2014(6): 246.DOI:10.3389/fnagi.2014.00246.
[29]
Schultz E, Gibson MC, Champion T. Satellite cells are mitotically quiescent in mature mouse muscle:an EM and radioautographic study[J]. J Exp Zool, 1978, 206(3):451-456.DOI:10.1002/jez.1402060314.
[30]
Collins CA, Olsen I, Zammit PS, et al. Stem cell function,self-renewal,and behavioral heterogeneity of cells from the adult muscle satellite cell niche[J]. Cell, 2005, 122(2):289-301.DOI:10.1016/j.cell.2005.05.010.
[31]
Sousa-Victor P, Gutarra S, Garcia-Prat L, et al. Geriatric muscle stem cells switch reversible quiescence into senescence[J]. Nature, 2014, 506(7488):316-321.DOI:10.1038/nature13013.
[32]
Bernet JD, Doles JD, Hall JK, et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice[J]. Nat Med, 2014, 20(3):265-271.DOI:10.1038/nm.3465.
[33]
Haramizu S, Ota N, Hase T, et al. Catechins suppress muscle inflammation and hasten performance recovery after exercise[J]. Med Sci Sports Exerc, 2013, 45(9):1694-1702.DOI:10.1249/MSS.0b013e31828de99f.
[34]
Liu L, Charville GW, Cheung TH, et al. Impaired Notch signaling leads to a decrease in p53 activity and mitotic catastrophe in aged muscle stem cells[J]. Cell Stem Cell, 2018, 23(4):544-556.e4.DOI:10.1016/j.stem.2018.08.019.
[35]
Brack AS, Bildsoe H, Hughes SM. Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy[J]. J Cell Sci, 2005, 118(20):4813-4821.DOI:10.1242/jcs.02602.
[36]
李虎, 韩婉虹, 朱大海, 等. 骨骼肌成体干细胞不对称分裂与骨骼肌疾病[J]. 中国细胞生物学学报, 2022, 44(8):1555-1560.DOI:10.11844/cjcb.2022.08.0011.
[37]
Sousa-Victor P, Garcia-Prat L, Munoz-Canoves P. Control of satellite cell function in muscle regeneration and its disruption in ageing[J]. Nat Rev Mol Cell Biol, 2022, 23(3):204-226.DOI:10.1038/s41580-021-00421-2.
[38]
Lukjanenko L, Karaz S, Stuelsatz P, et al. Aging disrupts muscle stem cell function by impairing matricellular WISP1 secretion from fibro-adipogenic progenitors[J]. Cell Stem Cell, 2019, 24(3):433-446.e7.DOI:10.1016/j.stem.2018.12.014.
[39]
van der Meer SF, Jaspers RT, Jones DA, et al. Time-course of changes in the myonuclear domain during denervation in young-adult and old rat gastrocnemius muscle[J]. Muscle Nerve, 2011, 43(2):212-222.DOI:10.1002/mus.21822.
[40]
Fuchs E, Blau HM. Tissue stem cells:architects of their niches[J]. Cell Stem Cell, 2020, 27(4):532-556.DOI:10.1016/j.stem.2020.09.011.
[41]
Hong X, Campanario S, Ramirez-Pardo I, et al. Stem cell aging in the skeletal muscle:the importance of communication[J]. Ageing Res Rev, 2022(73): 101528.DOI:10.1016/j.arr.2021.101528.
[42]
Tobin SW, Alibhai FJ, Wlodarek L, et al. Delineating the relationship between immune system aging and myogenesis in muscle repair[J]. Aging Cell, 2021, 20(2):e13312.DOI:10.1111/acel.13312.
[43]
Tidball JG. Regulation of muscle growth and regeneration by the immune system[J]. Nat Rev Immunol, 2017, 17(3):165-178.DOI:10.1038/nri.2016.150.
[44]
Wang Y, Wehling-Henricks M, Welc SS, et al. Aging of the immune system causes reductions in muscle stem cell populations,promotes their shift to a fibrogenic phenotype,and modulates sarcopenia[J]. FASEB J, 2019, 33(1):1415-1427.DOI:10.1096/fj.201800973R.
[45]
Wang Y, Welc SS, Wehling-Henricks M, et al. Myeloid cell-derived tumor necrosis factor-alpha promotes sarcopenia and regulates muscle cell fusion with aging muscle fibers[J]. Aging Cell, 2018, 17(6):e12828.DOI:10.1111/acel.12828.
[46]
Oh J, Sinha I, Tan KY, et al. Age-associated NF-kappaB signaling in myofibers alters the satellite cell niche and re-strains muscle stem cell function[J]. Aging (Albany NY), 2016, 8(11):2871-2896.DOI:10.18632/aging.101098.
[47]
Blanc RS, Kallenbach JG, Bachman JF, et al. Inhibition of inflammatory CCR2 signaling promotes aged muscle regeneration and strength recovery after injury[J]. Nat Commun, 2020, 11(1):4167.DOI:10.1038/s41467-020-17620-8.
[48]
Madaro L, Passafaro M, Sala D, et al. Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis[J]. Nat Cell Biol, 2018, 20(8):917-927.DOI:10.1038/s41556-018-0151-y.
[49]
Wosczyna MN, Konishi CT, Perez Carbajal EE, et al. Mesenchymal stromal cells are required for regeneration and homeostatic maintenance of skeletal muscle[J]. Cell Rep, 2019, 27(7):2029-2035.e5.DOI:10.1016/j.celrep.2019.04.074.
[50]
Shang M, Cappellesso F, Amorim R, et al. Macrophage-derived glutamine boosts satellite cells and muscle regeneration[J]. Nature, 2020, 587(7835):626-631.DOI:10.1038/s41586-020-2857-9.
[51]
Kuswanto W, Burzyn D, Panduro M, et al. Poor repair of skeletal muscle in aging mice reflects a defect in local,interleukin-33-dependent accumulation of regulatory T cells[J]. Immunity, 2016, 44(2):355-367.DOI:10.1016/j.immuni.2016.01.009.
[52]
Egerman MA, Cadena SM, Gilbert JA, et al. GDF11 increases with age and inhibits skeletal muscle regeneration[J]. Cell Metab, 2015, 22(1):164-174.DOI:10.1016/j.cmet.2015.05.010.
[53]
Rozo M, Li L, Fan CM. Targeting beta1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice[J]. Nat Med, 2016, 22(8):889-896.DOI:10.1038/nm.4116.
[54]
Li H, Chen Q, Li C, et al. Muscle-secreted granulocyte colony-stimulating factor functions as metabolic niche factor ameliorating loss of muscle stem cells in aged mice[J]. EMBO J, 2019, 38(24):e102154.DOI:10.15252/embj.2019102154.
PDF(693 KB)

Accesses

Citation

Detail

Sections
Recommended

/