Effect of Afzelin on 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis in Mice

Zhijun GENG, Lixia YIN, Minzhu NIU, Jingjing YANG, Xiaofeng ZHANG, Jing LI

Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (2) : 207-218.

PDF(15245 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(15245 KB)
Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (2) : 207-218. DOI: 10.3881/j.issn.1000-503X.16122
Original Articles

Effect of Afzelin on 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis in Mice

Author information +
History +

Abstract

Objective To investigate the role and mechanism of afzelin(AFZ)in treating Crohn’s disease-like colitis.Methods A mouse model of 2,4,6-trinitrobenzene sulfonic acid-induced colitis was established to assess the effect of AFZ on experimental colitis in vivo.A Caco-2 cell model of tumor necrosis factor(TNF)-α-induced inflammation was established to evaluate the effects of AFZ on the intestinal barrier function,intestinal epithelial cell apoptosis,and mitochondrial function in vitro.The animal and cell experiments were performed to validate the regulatory role of the adenosine monophosphate-activated protein kinase(AMPK)/silent information regulater 1(SIRT1)/peroxisome proliferator-activated receptor gamma coactivator(PGC)-1α pathway in the treatment of colitis with AFZ.Results AFZ reduced the disease activity index(P=0.003),weight loss(P<0.001),colon shortening(P<0.001),inflammation score(P=0.002),pro-inflammatory cytokine release(interleukin-6:P<0.001;TNF-α:P=0.010),and intestinal barrier permeability(fluorescein isothiocyanate dextran 4:P<0.001;intestinal-type fatty acid-binding protein:P=0.013).Meanwhile,AFZ increased the colonic transepithelial electric resistance(P=0.001),reduced bacterial translocation(P<0.001),and promoted the localization and up-regulated the expression of tight junction proteins [zonula occluden-1(P=0.005) and Claudin-1(P=0.024)].AFZ exerted a protective effect on the Caco-2 cells exposed to TNF-α in terms of intestinal epithelial cell permeability(P=0.017),transepithelial electric resistance(P=0.014),and tight junction protein[zonula occluden-1(P=0.014) and Claudin-1(P=0.006)] localization and expression.Furthermore,the cell and animal experiments confirmed that AFZ reduced the percentage of apoptosis(P<0.001,P=0.013)and the expression of cleaved-caspase 3(P=0.028,P=0.004)and Bax(P=0.004,P=0.020),and upregulated the Bcl2(P=0.020,P=0.006)level in intestinal epithelial cells.Additionally,AFZ increased the number of mitochondria,mitochondrial membrane potential,and copy number of mitochondrial DNA(P=0.007)in intestinal epithelial cells,while enhancing the activities of mitochondrial respiratory chain complex Ⅰ(P=0.005)and complex Ⅳ(P=0.001).The activation of the AMPK/SIRT1/PGC-1α pathway was involved in the protective effects of AFZ on mitochondrial function and apoptosis in intestinal epithelial cells.Conclusion AFZ alleviates mitochondrial dysfunction and apoptosis in intestinal epithelial cells by activating the AMPK/SIRT1/PGC-1α pathway,thereby ameliorating intestinal barrier dysfunction and experimental colitis.

Key words

Crohn’s disease / afzelin / intestinal barrier function / mitochondrial function

Cite this article

Download Citations
Zhijun GENG , Lixia YIN , Minzhu NIU , et al . Effect of Afzelin on 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis in Mice[J]. Acta Academiae Medicinae Sinicae. 2025, 47(2): 207-218 https://doi.org/10.3881/j.issn.1000-503X.16122

References

[1]
Torres J, Mehandru S, Colombel JF, et al. Crohn’s disease[J]. Lancet, 2017, 389(10080):1741-1755.DOI:10.1016/S0140-6736(16)31711-1.
[2]
Parian AM, Obi M, Fleshner P, et al. Management of perianal Crohn’s disease[J]. Am J Gastroenterol, 2023, 118(8):1323-1331.DOI:10.14309/ajg.0000000000002326.
[3]
Leibovitzh H, Lee SH, Xue M, et al. Altered gut microbiome composition and function are associated with gut barrier dysfunction in healthy relatives of patients with Crohn’s disease[J]. Gastroenterology, 2022, 163(5):1364-1376.e10.DOI:10.1053/j.gastro.2022.07.004.
[4]
Zhang J, Cen L, Zhang X, et al. MPST deficiency promotes intestinal epithelial cell apoptosis and aggravates inflammatory bowel disease via AKT[J]. Redox Biol, 2022,56:102469.DOI:10.1016/j.redox.2022.102469.
[5]
Chen J, Ruan X, Sun Y, et al. Multi-omic insight into the molecular networks of mitochondrial dysfunction in the pathogenesis of inflammatory bowel disease[J]. EBioMedicine, 2024,99:104934.DOI:10.1016/j.ebiom.2023.104934.
[6]
Ray K. Mitochondrial dysfunction in Crohn’s disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(5):260.DOI:10.1038/s41575-020-0291-y.
[7]
Diantini A, Subarnas A, Lestari K, et al. Kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii Korth.inhibits MCF-7 breast cancer cell proliferation through activation of the caspase cascade pathway[J]. Oncol Lett, 2012, 3(5):1069-1072.DOI:10.3892/ol.2012.596.
[8]
Lee SB, Kang JW, Kim SJ, et al. Afzelin ameliorates D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure by modulating mitochondrial quality control and dynamics[J]. Br J Pharmacol, 2017, 174(2):195-209.DOI:10.1111/bph.13669.
[9]
Sun Y, Guo D, Yue S, et al. Afzelin protects against doxorubicin-induced cardiotoxicity by promoting the AMPKα/SIRT1 signaling pathway[J]. Toxicol Appl Pharmacol, 2023,477:116687.DOI:10.1016/j.taap.2023.116687.
[10]
Zuo L, Geng Z, Song X, et al. Browning of mesenteric white adipose tissue in Crohn’s disease:a new pathological change and therapeutic target[J]. J Crohns Colitis, 2023, 17(8):1179-1192.DOI:10.1093/ecco-jcc/jjad046.
[11]
Zhang Y, Fan Y, Hu H, et al. ZHX2 emerges as a negative regulator of mitochondrial oxidative phosphorylation during acute liver injury[J]. Nat Commun, 2023, 14(1):7527.DOI:10.1038/s41467-023-43439-0.
[12]
Yang WJ, Han FH, Gu YP, et al. TGR5 agonist inhibits intestinal epithelial cell apoptosis via cAMP/PKA/c-FLIP/JNK signaling pathway and ameliorates dextran sulfate sodium-induced ulcerative colitis[J]. Acta Pharmacol Sin, 2023, 44(8):1649-1664.DOI:10.1038/s41401-023-01081-y.
[13]
Zhang J, Li J, Liu Y, et al. Effect of resveratrol on skeletal slow-twitch muscle fiber expression via AMPK/PGC-1α signaling pathway in bovine myotubes[J]. Meat Sci, 2023,204:109287.DOI:10.1016/j.meatsci.2023.109287.
[14]
Huang L, Qian W, Xu Y, et al. Mesenteric adipose tissue contributes to intestinal fibrosis in Crohn’s disease through the ATX-LPA axis[J]. J Crohns Colitis, 2022, 16(7):1124-1139.DOI:10.1093/ecco-jcc/jjac017.
[15]
Shi YJ, Sheng WJ, Xue MT, et al. Effect of morroniside on the transcriptome profiles of rat in injured spinal cords[J]. Gene, 2022,823:146338.DOI:10.1016/j.gene.2022.146338.
[16]
Zuo L, Li Y, Wang H, et al. Cigarette smoking is associated with intestinal barrier dysfunction in the small intestine but not in the large intestine of mice[J]. J Crohns Colitis, 2014, 8(12):1710-1722.DOI:10.1016/j.crohns.2014.08.008.
[17]
Wang X, Ni J, You Y, et al. SNX10-mediated LPS sensing causes intestinal barrier dysfunction via a caspase-5-dependent signaling cascade[J]. EMBO J, 2021, 40(24):e108080.DOI:10.15252/embj.2021108080.
[18]
Schmitt H, Billmeier U, Dieterich W, et al. Expansion of IL-23 receptor bearing TNFR2+T cells is associated with molecular resistance to anti-TNF therapy in Crohn’s disease[J]. Gut, 2019, 68(5):814-828.DOI:10.1136/gutjnl-2017-315671.
[19]
Li Q, Li J, Yin L, et al. Sophoricoside improved Crohn’s disease-like colitis by inhibiting intestinal epithelial cell apoptosis through PI3K/AKT signaling[J]. Int Immunopharmacol, 2024,131:111886.DOI:10.1016/j.intimp.2024.111886.
[20]
Özsoy M, Stummer N, Zimmermann FA, et al. Role of energy metabolism and mitochondrial function in inflammatory bowel disease[J]. Inflamm Bowel Dis, 2022, 28(9):1443-1450.DOI:10.1093/ibd/izac024.
[21]
Ning Z, Li Y, Liu D, et al. Tetrahydroxystilbene glucoside delayed senile symptoms in old mice via regulation of the AMPK/SIRT1/PGC-1α signaling cascade[J]. Gerontology, 2018, 64(5):457-465.DOI:10.1159/000487360.
[22]
Xu W, Yan J, Ocak U, et al. Melanocortin 1 receptor attenuates early brain injury following subarachnoid hemorrhage by controlling mitochondrial metabolism via AMPK/SIRT1/PGC-1α pathway in rats[J]. Theranostics, 2021, 11(2):522-539.DOI:10.7150/thno.49426.
[23]
Zhang W, Chen R, Xu K, et al. Protective effect of Xinmai’an tablets via mediation of the AMPK/SIRT1/PGC-1α signaling pathway on myocardial ischemia-reperfusion injury in rats[J]. Phytomedicine, 2023,120:155034.DOI:10.1016/j.phymed.2023.155034.
[24]
Yuan Y, Wang F, Liu X, et al. The role of AMPK signaling in ulcerative colitis[J]. Drug Des Devel Ther, 2023, 17:3855-3875.DOI:10.2147/DDDT.S442154.
[25]
Han J, Li W, Shi G, et al. Atractylenolide Ⅲ improves mitochondrial function and protects against ulcerative colitis by activating AMPK/SIRT1/PGC-1α[J]. Mediators Inflamm, 2022,2022:9129984.DOI:10.1155/2022/9129984.
PDF(15245 KB)

Accesses

Citation

Detail

Sections
Recommended

/