Research Progress of Autonomic Nerve Regulation in the Treatment of Myocardial Infarction

Shanshan LI, Mengting XIONG, Miaomiao GUO

Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (2) : 309-313.

PDF(624 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(624 KB)
Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (2) : 309-313. DOI: 10.3881/j.issn.1000-503X.16150
Review Articles

Research Progress of Autonomic Nerve Regulation in the Treatment of Myocardial Infarction

Author information +
History +

Abstract

The autonomic nervous system imbalance caused by the overactivation of the sympathetic nerve and the weakened activity of the parasympathetic nerve is closely related to the occurrence and development of myocardial infarction.Autonomic nerve regulation is a new therapeutic approach aiming at inhibiting sympathetic activity and increasing parasympathetic activity.It encompasses magnetic nerve stimulation,optogenetic neuromodulation,and microinjection of botulinum toxin,which could promote the rebalance of the autonomic nervous system,thereby curbing the deterioration of the cardiac function and reducing the occurrence of ventricular arrhythmias after myocardial infarction.This paper reviews the anatomical basis,mechanisms of action,and research advances in intervention strategies of the autonomic nervous system in myocardial infarction.

Key words

autonomic nerve / myocardial infarction / ventricular arrhythmia / vagus nerve

Cite this article

Download Citations
Shanshan LI , Mengting XIONG , Miaomiao GUO. Research Progress of Autonomic Nerve Regulation in the Treatment of Myocardial Infarction[J]. Acta Academiae Medicinae Sinicae. 2025, 47(2): 309-313 https://doi.org/10.3881/j.issn.1000-503X.16150

References

[1]
Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2023 update:a report from the American Heart Association[J]. Circulation, 2023, 147(8):e93-e621.DOI:10.1161/CIR.0000000000001123.
[2]
Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS Guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death:a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society[J]. Circulation, 2018, 138(13):e272-e391.DOI:10.1161/CIR.0000000000000549.
[3]
Goldberger JJ, Arora R, Buckley U, et al. Autonomic nervous system dysfunction:JACC focus seminar[J]. J Am Coll Cardiol, 2019, 73(10):1189-1206.DOI:10.1016/j.jacc.2018.12.064.
[4]
Salavatian S, Hoang JD, Yamaguchi N, et al. Myocardial infarction reduces cardiac nociceptive neurotransmission through the vagal ganglia[J]. JCI Insight, 2022, 7(4):e155747.DOI:10.1172/jci.insight.155747.
[5]
Zhang S, Wang M, Jiao L, et al. Ultrasound-guided injection of botulinum toxin type a blocks cardiac sympathetic ganglion to improve cardiac remodeling in a large animal model of chronic myocardial infarction[J]. Heart Rhythm, 2022, 19(12):2095-2104.DOI:10.1016/j.hrthm.2022.08.002.
[6]
Yu L, Zhou L, Cao G, et al. Optogenetic modulation of cardiac sympathetic nerve activity to prevent ventricular arrhythmias[J]. J Am Coll Cardiol, 2017, 70(22):2778-2790.DOI:10.1016/j.jacc.2017.09.1107.
[7]
Bao S, Lu Y, Zhang J, et al. Rapid improvement of heart repair in rats after myocardial infarction by precise magnetic stimulation on the vagus nerve with an injectable magnetic hydrogel[J]. Nanoscale, 2023, 15(7):3532-3541.DOI:10.1039/d2nr05073k.
[8]
Shen MJ. The cardiac autonomic nervous system:an introduction[J]. Herzschrittmacherther Elektrophysiol, 2021, 32(3):295-301.DOI:10.1007/s00399-021-00776-1.
[9]
Giannino G, Braia V, Griffith BC, et al. The intrinsic cardiac nervous system:from pathophysiology to therapeutic implications[J]. Biology(Basel), 2024, 13(2):105.DOI:10.3390/biology13020105.
[10]
Zhou S, Jung BC, Tan AY, et al. Spontaneous stellate ganglion nerve activity and ventricular arrhythmia in a canine model of sudden death[J]. Heart Rhythm, 2008, 5(1):131-139.DOI:10.1016/j.hrthm.2007.09.007.
[11]
Vaseghi M, Lux RL, Mahajan A, et al. Sympathetic stimulation increases dispersion of repolarization in humans with myocardial infarction[J]. Am J Physiol Heart Circ Physiol, 2012, 302(9):H1838-H1846.DOI:10.1152/ajpheart.01106.2011.
[12]
Zheng M, Chen S, Zeng Z, et al. Targeted ablation of the left middle cervical ganglion prevents ventricular arrhythmias and cardiac injury induced by AMI[J]. Basic Res Cardiol, 2024, 119(1):57-74.DOI:10.1007/s00395-023-01026-w.
[13]
Wang Y, Liu Z, Zhou W, et al. Mast cell stabilizer,an anti-allergic drug,reduces ventricular arrhythmia risk via modulation of neuroimmune interaction[J]. Basic Res Cardiol, 2024, 119(1):75-91.DOI:10.1007/s00395-023-01024-y.
[14]
Ye J, Xiao R, Wang X, et al. Effects and mechanism of renal denervation on ventricular arrhythmia after acute myocardial infarction in rats[J]. BMC Cardiovasc Disord, 2022, 22(1):544.DOI:10.1186/s12872-022-02980-4.
[15]
La Rovere MT, Bigger JJ, Marcus FI, et al. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction.ATRAMI(autonomic tone and reflexes after myocardial infarction)investigators[J]. Lancet, 1998, 351(9101):478-484.DOI:10.1016/s0140-6736(97)11144-8.
[16]
Kolettis TM, Kontonika M, Lekkas P, et al. Autonomic responses during acute myocardial infarction in the rat model:implications for arrhythmogenesis[J]. J Basic Clin Physiol Pharmacol, 2018, 29(4):339-345.DOI:10.1515/jbcpp-2017-0202.
[17]
Hadaya J, Dajani AH, Cha S, et al. Vagal nerve stimulation reduces ventricular arrhythmias and mitigates adverse neural cardiac remodeling post-myocardial infarction[J]. JACC Basic Transl Sci, 2023, 8(9):1100-1118.DOI:10.1016/j.jacbts.2023.03.025.
[18]
Yu L, Huang B, Po SS, et al. Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction:a proof-of-concept study[J]. JACC Cardiovasc Interv, 2017, 10(15):1511-1520.DOI:10.1016/j.jcin.2017.04.036.
[19]
Chen B, Cui M, Wang Y, et al. Recent advances in cellular optogenetics for photomedicine[J]. Adv Drug Deliv Rev, 2022,188:114457.DOI:10.1016/j.addr.2022.114457.
[20]
Wengrowski AM, Wang X, Tapa S, et al. Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function[J]. Cardiovasc Res, 2015, 105(2):143-150.DOI:10.1093/cvr/cvu258.
[21]
Zhou L, Zhang Y, Cao G, et al. Wireless self-powered optogenetic system for long-term cardiac neuromodulation to improve post-MI cardiac remodeling and malignant arrhythmia[J]. Adv Sci(Weinh), 2023, 10(9):e2205551.DOI:10.1002/advs.202205551.
[22]
Wu CY, Fan CH, Chiu NH, et al. Targeted delivery of engineered auditory sensing protein for ultrasound neuromodulation in the brain[J]. Theranostics, 2020, 10(8):3546-3561.DOI:10.7150/thno.39786.
[23]
Landhuis E. Ultrasound for the brain[J]. Nature, 2017, 551(7679):257-259.DOI:10.1038/d41586-017-05479-7.
[24]
Wang S, Li B, Li X, et al. Low-intensity ultrasound modulation may prevent myocardial infarction-induced sympathetic neural activation and ventricular arrhythmia[J]. J Cardiovasc Pharmacol, 2020, 75(5):432-438.DOI:10.1097/FJC.0000000000000810.
[25]
Xiang C, Cheng Y, Yu X, et al. Low-intensity focused ultrasound modulation of the paraventricular nucleus to prevent myocardial infarction-induced ventricular arrhythmia[J]. Heart Rhythm, 2024, 21(3):340-348.DOI:10.1016/j.hrthm.2023.11.026.
[26]
Zhong S, Cai Q, Zhong L, et al. Low-intensity focused ultrasound ameliorates ischemic heart failure related to the cholinergic anti-inflammatory pathway[J]. J Ultrasound Med, 2023, 42(2):463-475.DOI:10.1002/jum.16140.
[27]
Park JH, Kim R, Na SH, et al. Effect of botulinum toxin in stellate ganglion for craniofacial hyperhidrosis:a case report[J]. J Int Med Res, 2021, 49(3):675902155.DOI:10.1177/03000605211004213.
[28]
陈华强, 王钧, 孟冠南, 等. 局部肉毒素微注射调控左侧星状神经节活性防治心肌梗死后室性心律失常[J]. 中华心律失常学杂志, 2021, 25(4):311-316.DOI:10.3760/cma.j.cn.113859-20210520-00117.
[29]
Yu L, Dyer JW, Scherlag BJ, et al. The use of low-level electromagnetic fields to suppress atrial fibrillation[J]. Heart Rhythm, 2015, 12(4):809-817.DOI:10.1016/j.hrthm.2014.12.022.
[30]
Barbato E, Azizi M, Schmieder RE, et al. Renal denervation in the management of hypertension in adults.A clinical consensus statement of the ESC council on hypertension and the European Association of Percutaneous Cardiovascular Interventions(EAPCI)[J]. Eur Heart J, 2023, 44(15):1313-1330.DOI:10.1093/eurheartj/ehad054.
[31]
Chen H, Wang R, Li Q, et al. Immediate renal denervation after acute myocardial infarction mitigates the progression of heart failure via the modulation of IL-33/ST2 signaling[J]. Front Cardiovasc Med, 2021,8:746934.DOI:10.3389/fcvm.2021.746934.
[32]
Gao JQ, Xu YL, Ye J, et al. Effects of renal denervation on cardiac function after percutaneous coronary intervention in patients with acute myocardial infarction[J]. Heliyon, 2023, 9(7):e17591.DOI:10.1016/j.heliyon.2023.e17591.
[33]
Abumandour M, Hanafy BG, Morsy K, et al. Cervicothoracic sympathetic system in the dog:new insights by the gross morphological description of each ganglion with its branches on each side[J]. Folia Morphol(Warsz), 2022, 81(1):20-30.DOI:10.5603/FM.a2021.0009.
PDF(624 KB)

Accesses

Citation

Detail

Sections
Recommended

/