Research Advancements in the Role of the Brain Dopaminergic System in General Anesthesia

Wei LUO, Chengdong YUAN, Mengnan HAO, Jie ZHANG, Yi ZHANG

Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (3) : 441-446.

PDF(569 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(569 KB)
Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (3) : 441-446. DOI: 10.3881/j.issn.1000-503X.16245
Review Articles

Research Advancements in the Role of the Brain Dopaminergic System in General Anesthesia

Author information +
History +

Abstract

General anesthesia is widely used in clinical practice,whereas the exact mechanism behind the general anesthetic-induced reversible loss of consciousness remains unclear.Recent studies have revealed a close relationship between the dopaminergic system and general anesthetic-induced loss of consciousness.This system,encompassing dopamine neurons,dopamine receptors,and related neural pathways,regulates functions such as movement,memory,arousal,and cognition.The dopaminergic neurons in the ventral periaqueductal gray and ventral tegmental area,along with D1 receptors,have been shown to facilitate emergence from anesthesia.However,the role of D2 receptors remains controversial.This review summarizes recent advancements in the role of the dopaminergic system in general anesthesia and the underlying mechanism,with the aim of clarifying the mechanism of general anesthesia and providing a theoretical basis for preventing delayed emergence from anesthesia.

Key words

dopaminergic system / general anesthesia / dopamine neuron / neural pathway / dopamine receptor

Cite this article

Download Citations
Wei LUO , Chengdong YUAN , Mengnan HAO , et al . Research Advancements in the Role of the Brain Dopaminergic System in General Anesthesia[J]. Acta Academiae Medicinae Sinicae. 2025, 47(3): 441-446 https://doi.org/10.3881/j.issn.1000-503X.16245

References

[1]
Moody OA, Zhang ER, Vincent KF, et al. The neural circuits underlying general anesthesia and sleep[J]. Anesth Analg, 2021, 132(5):1254-1264.DOI:10.1213/ANE.0000000000005361.
[2]
Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia[J]. Science, 2008, 322(5903):876-880.DOI:10.1126/science.1149213.
[3]
Hu JJ, Liu Y, Yao H, et al. Emergence of consciousness from anesthesia through ubiquitin degradation of KCC2 in the ventral posteromedial nucleus of the thalamus[J]. Nat Neurosci, 2023, 26(5):751-764.DOI:10.1038/s41593-023-01290-y.
[4]
Franks NP. General anaesthesia:from molecular targets to neuronal pathways of sleep and arousal[J]. Nat Rev Neurosci, 2008, 9(5):370-386.DOI:10.1038/nrn2372.
[5]
Hemmings HJ, Riegelhaupt PM, Kelz MB, et al. Towards a comprehensive understanding of anesthetic mechanisms of action:a decade of discovery[J]. Trends Pharmacol Sci, 2019, 40(7):464-481.DOI:10.1016/j.tips.2019.05.001.
[6]
Engelhard B, Finkelstein J, Cox J, et al. Specialized coding of sensory,motor and cognitive variables in VTA dopamine neurons[J]. Nature, 2019, 570(7762):509-513.DOI:10.1038/s41586-019-1261-9.
[7]
Wu M, Zhang X, Feng S, et al. Dopamine pathways mediating affective state transitions after sleep loss[J]. Neuron, 2024, 112(1):141-154.DOI:10.1016/j.neuron.2023.10.002.
[8]
Chinta SJ, Andersen JK. Dopaminergic neurons[J]. Int J Biochem Cell Biol, 2005, 37(5):942-946.DOI:10.1016/j.biocel.2004.09.009.
[9]
Islam K, Meli N, Blaess S. The development of the mesoprefrontal dopaminergic system in health and disease[J]. Front Neural Circuits, 2021,15:746582.DOI:10.3389/fncir.2021.746582.
[10]
Watanabe H, Dijkstra JM, Nagatsu T. Parkinson’s disease:cells succumbing to lifelong dopamine-related oxidative stress and other bioenergetic challenges[J]. Int J Mol Sci, 2024, 25(4):2009.DOI:10.3390/ijms25042009.
[11]
Gupta S, Bharatha A, Cohall D, et al. Aerobic exercise and endocannabinoids:a narrative review of stress regulation and brain reward systems[J]. Cureus, 2024, 16(3):e55468.DOI:10.7759/cureus.55468.
[12]
Tomaso CC, Johnson AB, Nelson TD. The effect of sleep deprivation and restriction on mood,emotion,and emotion regulation:three meta-analyses in one[J]. Sleep, 2021, 44(6):zsaa289.DOI:10.1093/sleep/zsaa289.
[13]
Grattan DR. 60 Years of neuroendocrinology:the hypothalamo-prolactin axis[J]. J Endocrinol, 2015, 226(2):T101-T122.DOI:10.1530/JOE-15-0213.
[14]
Di T, Wang Y, Zhang Y, et al. Dopaminergic afferents from midbrain to dorsolateral bed nucleus of stria terminalis inhibit release and expression of corticotropin-releasing hormone in paraventricular nucleus[J]. J Neurochem, 2020, 154(2):218-234.DOI:10.1111/jnc.14992.
[15]
Liu C, Zhou X, Zhu Q, et al. Dopamine neurons in the ventral periaqueductal gray modulate isoflurane anesthesia in rats[J]. CNS Neurosci Ther, 2020, 26(11):1121-1133.DOI:10.1111/cns.13447.
[16]
Li J, Yu T, Shi F, et al. Involvement of ventral periaqueductal gray dopaminergic neurons in propofol anesthesia[J]. Neurochem Res, 2018, 43(4):838-847.DOI:10.1007/s11064-018-2486-y.
[17]
Solt K, Van Dort CJ, Chemali JJ, et al. Electrical stimulation of the ventral tegmental area induces reanimation from general anesthesia[J]. Anesthesiology, 2014, 121(2):311-319.DOI:10.1097/ALN.0000000000000117.
[18]
Taylor NE, Van Dort CJ, Kenny JD, et al. Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia[J]. Proc Natl Acad Sci U S A, 2016, 113(45):12826-12831.DOI:10.1073/pnas.1614340113.
[19]
Qiu G, Wu Y, Yang Z, et al. Dexmedetomidine activation of dopamine neurons in the ventral tegmental area attenuates the depth of sedation in mice[J]. Anesthesiology, 2020, 133(2):377-392.DOI:10.1097/ALN.0000000000003347.
[20]
Zhou X, Wang Y, Zhang C, et al. The role of dopaminergic VTA neurons in general anesthesia[J]. PLoS One, 2015, 10(9):e0138187.DOI:10.1371/journal.pone.0138187.
[21]
Li J, Li H, Wang D, et al. Orexin activated emergence from isoflurane anaesthesia involves excitation of ventral tegmental area dopaminergic neurones in rats[J]. Br J Anaesth, 2019, 123(4):497-505.DOI:10.1016/j.bja.2019.07.005.
[22]
Beaulieu JM, Gainetdinov RR. The physiology,signaling,and pharmacology of dopamine receptors[J]. Pharmacol Rev, 2011, 63(1):182-217.DOI:10.1124/pr.110.002642.
[23]
Mishra A, Singh S, Shukla S. Physiological and functional basis of dopamine receptors and their role in neurogenesis:possible implication for Parkinson’s disease[J]. J Exp Neurosci, 2018,12:2083187275.DOI:10.1177/1179069518779829.
[24]
Dziedzicka-Wasylewska M, Polit A, Błasiak E, et al. G protein-coupled receptor dimerization-What next[J]. Int J Mol Sci, 2024, 25(6):3089.DOI:10.3390/ijms25063089.
[25]
Lu Y, Hatzipantelis CJ, Langmead CJ, et al. Molecular insights into orphan G protein-coupled receptors relevant to schizophrenia[J]. Br J Pharmacol, 2024, 181(14):2095-2113.DOI:10.1111/bph.16221.
[26]
Taylor NE, Chemali JJ, Brown EN, et al. Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia[J]. Anesthesiology, 2013, 118(1):30-39.DOI:10.1097/ALN.0b013e318278c896.
[27]
Zhang Y, Gui H, Hu L, et al. Dopamine D1 receptor in the NAc shell is involved in delayed emergence from isoflurane anesthesia in aged mice[J]. Brain Behav, 2021, 11(1):e01913.DOI:10.1002/brb3.1913.
[28]
Song Y, Chu R, Cao F, et al. Dopaminergic neurons in the ventral tegmental-prelimbic pathway promote the emergence of rats from sevoflurane anesthesia[J]. Neurosci Bull, 2022, 38(4):417-428.DOI:10.1007/s12264-021-00809-2.
[29]
Zhang Y, Gui H, Duan Z, et al. Dopamine D1 receptor in the nucleus accumbens modulates the emergence from propofol anesthesia in rat[J]. Neurochem Res, 2021, 46(6):1435-1446.DOI:10.1007/s11064-021-03284-3.
[30]
Bao WW, Xu W, Pan GJ, et al. Nucleus accumbens neurons expressing dopamine D1 receptors modulate states of consciousness in sevoflurane anesthesia[J]. Curr Biol, 2021, 31(9):1893-1902.DOI:10.1016/j.cub.2021.02.011.
[31]
Kato R, Zhang ER, Mallari OG, et al. D-amphetamine rapidly reverses dexmedetomidine-induced unconsciousness in rats[J]. Front Pharmacol, 2021,12:668285.DOI:10.3389/fphar.2021.668285.
[32]
Araki R, Hayashi K, Sawa T. Dopamine D2-receptor antagonist droperidol deepens sevoflurane anesthesia[J]. Anesthesiology, 2018, 128(4):754-763.DOI:10.1097/ALN.0000000000002046
[33]
Niu L, Hao M, Wang Y, et al. Dopamine D2-receptor neurons in nucleus accumbens regulate sevoflurane anesthesia in mice[J]. Front Mol Neurosci, 2023,16:1287160.DOI:10.3389/fnmol.2023.1287160.
[34]
Yang B, Ao Y, Liu Y, et al. Activation of dopamine signals in the olfactory tubercle facilitates emergence from isoflurane anesthesia in mice[J]. Neurochem Res, 2021, 46(6):1487-1501.DOI:10.1007/s11064-021-03291-4.
[35]
Rogobete AF, Sandesc D. General anesthesia as a multimodal individualized clinical concept[J]. Medicina (Kaunas), 2022, 58(7):956.DOI:10.3390/medicina58070956.
[36]
Dovonou A, Bolduc C, Soto LV, et al. Animal models of Parkinson’s disease:bridging the gap between disease hallmarks and research questions[J]. Transl Neurodegener, 2023, 12(1):36.DOI:10.1186/s40035-023-00368-8.
[37]
Noursadeghi E, Haghparast A. Modulatory role of intra-accumbal dopamine receptors in the restraint stress-induced antinociceptive responses[J]. Brain Res Bull, 2023, 195:172-179.DOI:10.1016/j.brainresbull.2023.03.003.
[38]
Wang J, Miao X, Sun Y, et al. Dopaminergic system in promoting recovery from general anesthesia[J]. Brain Sci, 2023, 13(4):538.DOI:10.3390/brainsci13040538.
[39]
Shu SY, Bao XM, Ning Q, et al. New component of the limbic system:marginal division of the neostriatum that links the limbic system to the basal nucleus of meynert[J]. J Neurosci Res, 2003, 71(5):751-757.DOI:10.1002/jnr.10518.
[40]
Li C, Li Y, Zhang W, et al. Dopaminergic projections from the hypothalamic A11 nucleus to the spinal trigeminal nucleus are involved in bidirectional migraine modulation[J]. Int J Mol Sci, 2023, 24(23):16876.DOI:10.3390/ijms242316876.
[41]
Gui H, Liu C, He H, et al. Dopaminergic projections from the ventral tegmental area to the nucleus accumbens modulate sevoflurane anesthesia in mice[J]. Front Cell Neurosci, 2021,15:671473.DOI:10.3389/fncel.2021.671473.
[42]
Guo J, Xu K, Yin JW, et al. Dopamine transporter in the ventral tegmental area modulates recovery from propofol anesthesia in rats[J]. J Chem Neuroanat, 2022,121:102083.DOI:10.1016/j.jchemneu.2022.102083.
[43]
Cao F, Guo Y, Guo S, et al. Prelimbic cortical pyramidal neurons to ventral tegmental area projections promotes arousal from sevoflurane anesthesia[J]. CNS Neurosci Ther, 2024, 30(3):e14675.DOI:10.1111/cns.14675.
[44]
Zhu Y, Wang K, Ma T, et al. Nucleus accumbens D1/D2 circuits control opioid withdrawal symptoms in mice[J]. J Clin Invest, 2023, 133(18):e163266.DOI:10.1172/JCI163266.
[45]
Zhang J, Peng Y, Liu C, et al. Dopamine D1-receptor-expressing pathway from the nucleus accumbens to ventral pallidum-mediated sevoflurane anesthesia in mice[J]. CNS Neurosci Ther, 2023, 29(11):3364-3377.DOI:10.1111/cns.14267.
[46]
Wang D, Guo Y, Li H, et al. Selective optogenetic activation of orexinergic terminals in the basal forebrain and locus coeruleus promotes emergence from isoflurane anaesthesia in rats[J]. Br J Anaesth, 2021, 126(1):279-292.DOI:10.1016/j.bja.2020.09.037.
[47]
Arrigoni E, Fuller PM. The sleep-promoting ventrolateral preoptic nucleus:what have we learned over the past 25 years[J]. Int J Mol Sci, 2022, 23(6):2905.DOI:10.3390/ijms23062905.
PDF(569 KB)

Accesses

Citation

Detail

Sections
Recommended

/