Advances in Influencing Mechanisms and Therapeutic Effects of Bacteriophages on Cancer

Yuyang XIAO, Yuyang MA, Yibo ZHANG, Cheng CHEN, Yang MENG, Mingyi ZHAO

Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (3) : 470-477.

PDF(809 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(809 KB)
Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (3) : 470-477. DOI: 10.3881/j.issn.1000-503X.16282
Review Articles

Advances in Influencing Mechanisms and Therapeutic Effects of Bacteriophages on Cancer

Author information +
History +

Abstract

Cancer brings about an enormous threat to human health,making the exploration of its mechanisms and therapeutic strategies a current focal point and challenge in research.Bacteriophages are integral components of the human microbiome,and studies have shown their influences on tumor growth and metastasis and their pivotal role in cancer treatment.This article elucidates the mechanisms by which bacteriophages impact the occurrence and development of cancer from their interactions with cancer cells,effects on bacteria,and influence on the immune system.Additionally,it explores bacteriophage-based strategies in cancer treatment and their potential in this field.This article aims to bring new thoughts and insights to the research in this field.

Key words

bacteriophage / cancer / bacteriophage-bacterium interaction / bacteriophage therapy

Cite this article

Download Citations
Yuyang XIAO , Yuyang MA , Yibo ZHANG , et al . Advances in Influencing Mechanisms and Therapeutic Effects of Bacteriophages on Cancer[J]. Acta Academiae Medicinae Sinicae. 2025, 47(3): 470-477 https://doi.org/10.3881/j.issn.1000-503X.16282

References

[1]
Yin W, Wang J, Jiang L, et al. Cancer and stem cells[J]. Exp Biol Med (Maywood), 2021, 246(16):1791-1801.DOI:10.1177/15353702211005390.
[2]
Kaur R, Bhardwaj A, Gupta S. Cancer treatment therapies:traditional to modern approaches to combat cancers[J]. Mol Biol Rep, 2023, 50(11):9663-9676.DOI:10.1007/s11033-023-08809-3.
[3]
Petrov G, Dymova M, Richter V. Bacteriophage-mediated cancer gene therapy[J]. Int J Mol Sci, 2022, 23(22):14245.DOI:10.3390/ijms232214245.
[4]
Kantoch M, Mordarski M. Binding of bacterial viruses by tumor cells in vitro[J]. Postepy Hig Med Dosw, 1958, 12(2):191-192.
[5]
Saw PE, Song EW. Phage display screening of therapeutic peptide for cancer targeting and therapy[J]. Protein Cell, 2019, 10(11):787-807.DOI:10.1007/s13238-019-0639-7.
[6]
El-Sayed A, Aleya L, Kamel M. Microbiota’s role in health and diseases[J]. Environ Sci Pollut Res Int, 2021, 28(28):36967-36983.DOI:10.1007/s11356-021-14593-z.
[7]
Wang Q. Building personalized cancer therapeutics through multi-omics assays and bacteriophage-eukaryotic cell interactions[J]. Int J Mol Sci, 2021, 22(18):9712.DOI:10.3390/ijms22189712.
[8]
Geier MR, Merril CR. Lambda phage transcription in human fibroblasts[J]. Virology, 1972, 47(3):638-643.DOI:10.1016/0042-6822(72)90553-3.
[9]
Kabwe M, Dashper S, Bachrach G, et al. Bacteriophage manipulation of the microbiome associated with tumour microenvironments-can this improve cancer therapeutic response[J]. FEMS Microbiol Rev, 2021, 45(5):fuab017.DOI:10.1093/femsre/fuab017.
[10]
Dabrowska K, Opolski A, Wietrzyk J, et al. Antitumor activity of bacteriophages in murine experimental cancer models caused possibly by inhibition of beta3 integrin signaling pathway[J]. Acta Virol, 2004, 48(4):241-248.
[11]
Gorski A, Dabrowska K, Switala-Jeleń K, et al. New insights into the possible role of bacteriophages in host defense and disease[J]. Med Immunol, 2003, 2(1):2.DOI:10.1186/1476-9433-2-2.
[12]
Wen S, Hou Y, Fu L, et al. Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3-p38 MAPK signalling[J]. Cancer Lett, 2019, 442:320-332.DOI:10.1016/j.canlet.2018.10.015.
[13]
Su X, Esser AK, Amend SR, et al. Antagonizing integrin β3 increases immunosuppression in cancer[J]. Cancer Res, 2016, 76(12):3484-3495.DOI:10.1158/0008-5472.Can-15-2663.
[14]
Dabrowska K, Opolski A, Wietrzyk J, et al. Anticancer activity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumour models[J]. Anticancer Res, 2004, 24(6):3991-3995.
[15]
Lehti TA, Pajunen MI, Skog MS, et al. Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells[J]. Nat Commun, 2017, 8(1):1915.DOI:10.1038/s41467-017-02057-3.
[16]
Monteiro R, Pires DP, Costa AR, et al. Phage therapy:going temperate[J]. Trends Microbiol, 2019, 27(4):368-378.DOI:10.1016/j.tim.2018.10.008.
[17]
Kimchi O, Meir Y, Wingreen NS. Lytic and temperate phage naturally coexist in a dynamic population model[J]. ISME J, 2024, 18(1):wrae093.DOI:10.1093/ismejo/wrae093.
[18]
Kirsch JM, Brzozowski RS, Faith D, et al. Bacteriophage-bacteria interactions in the gut:from invertebrates to mammals[J]. Annu Rev Virol, 2021, 8(1):95-113.DOI:10.1146/annurev-virology-091919-101238.
[19]
Wahida A, Tang F, Barr JJ. Rethinking phage-bacteria-eukaryotic relationships and their influence on human health[J]. Cell Host Microbe, 2021, 29(5):681-688.DOI:10.1016/j.chom.2021.02.007.
[20]
Wang Y, Fan H, Tong Y. Unveil the Secret of the Bacteria and Phage Arms Race[J]. Int J Mol Sci, 2023, 24(5).DOI:10.3390/ijms24054363.
[21]
Laliani G, Ghasemian Sorboni S, Lari R, et al. Bacteria and cancer:different sides of the same coin[J]. Life Sci, 2020,246:117398.DOI:10.1016/j.lfs.2020.117398.
[22]
Senchukova MA. Helicobacter pylori and gastric cancer progression[J]. Curr Microbiol, 2022, 79(12):383.DOI:10.1007/s00284-022-03089-9.
[23]
Salvatori S, Marafini I, Laudisi F, et al. Helicobacter pylori and gastric cancer:pathogenetic mechanisms[J]. Int J Mol Sci, 2023, 24(3):2895.DOI:10.3390/ijms24032895.
[24]
Samaras V, Rafailidis PI, Mourtzoukou EG, et al. Chronic bacterial and parasitic infections and cancer:a review[J]. J Infect Dev Ctries, 2010, 4(5):267-281.DOI:10.3855/jidc.819.
[25]
Qin Y, Chen Y, Chen J, et al. The relationship between previous pulmonary tuberculosis and risk of lung cancer in the future[J]. Infect Agent Cancer, 2022, 17(1):20.DOI:10.1186/s13027-022-00434-2.
[26]
Ai D, Pan H, Li X, et al. Identifying gut microbiota associated with colorectal cancer using a zero-inflated lognormal model[J]. Front Microbiol, 2019,10:826.DOI:10.3389/fmicb.2019.00826.
[27]
Bala K, Husain I, Sharma A. Arginine deaminase from Pseudomonas aeruginosa PS2:purification,biochemical characterization and in-vitro evaluation of anticancer activity[J]. 3 Biotech, 2020, 10(5):226.DOI:10.1007/s13205-020-02212-6.
[28]
Abdelaziz AA, Kamer AMA, Al-Monofy KB, et al. Pseudomonas aeruginosa’s greenish-blue pigment pyocyanin:its production and biological activities[J]. Microb Cell Fact, 2023, 22(1):110.DOI:10.1186/s12934-023-02122-1.
[29]
Hetz C, Bono MR, Barros LF, et al. Microcin E492,a channel-forming bacteriocin from Klebsiella pneumoniae,induces apoptosis in some human cell lines[J]. Proc Natl Acad Sci U S A, 2002, 99(5):2696-2701.DOI:10.1073/pnas.052709699.
[30]
Xu H, Luo H, Zhang J, et al. Therapeutic potential of Clostridium butyricum anticancer effects in colorectal cancer[J]. Gut Microbes, 2023, 15(1):2186114.DOI:10.1080/19490976.2023.2186114.
[31]
Jazeela K, Chakraborty A, Karunasagar I, et al. Nontyphoidal Salmonella:a potential anticancer agent[J]. J Appl Microbiol, 2020, 128(1):2-14.DOI:10.1111/jam.14297.
[32]
Gutiérrez B, Domingo-Calap P. Phage therapy in gastrointestinal diseases[J]. Microorganisms, 2020, 8(9):1420.DOI:10.3390/microorganisms8091420.
[33]
Shuwen H, Kefeng D. Intestinal phages interact with bacteria and are involved in human diseases[J]. Gut Microbes, 2022, 14(1):2113717.DOI:10.1080/19490976.2022.2113717.
[34]
Nakatsu G, Zhou H, Wu WKK, et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes[J]. Gastroenterology, 2018, 155(2):529-541,e5.DOI:10.1053/j.gastro.2018.04.018.
[35]
Li S, Liu J, Zheng X, et al. Tumorigenic bacteria in colorectal cancer:mechanisms and treatments[J]. Cancer Biol Med, 2021, 19(2):147-162.DOI:10.20892/j.issn.2095-3941.2020.0651.
[36]
Hannigan GD, Duhaime MB, Ruffin MTT, et al. Diagnostic potential and interactive dynamics of the colorectal cancer virome[J]. mBio, 2018, 9(6):e02248-18.DOI:10.1128/mBio.02248-18.
[37]
Rui R, Zhou L, He S. Cancer immunotherapies:advances and bottlenecks[J]. Front Immunol, 2023,14:1212476.DOI:10.3389/fimmu.2023.1212476.
[38]
Van Belleghem JD, Dᶏbrowska K, Vaneechoutt M, et al. Interactions between bacteriophage,bacteria,and the mammalian immune system[J]. Viruses, 2018, 11(1):10.DOI:10.3390/v11010010.
[39]
Gubin MM, Vesely MD. Cancer immunoediting in the era of immuno-oncology[J]. Clin Cancer Res, 2022, 28(18):3917-3928.DOI:10.1158/1078-0432.Ccr-21-1804.
[40]
Kucharewicz-krukowska A, Slopek S. Immunogenic effect of bacteriophage in patients subjected to phage therapy[J]. Arch Immunol Ther Exp (Warsz), 1987, 35(5):553-561.
[41]
Gogokhia L, Round JL. Immune-bacteriophage interactions in inflammatory bowel diseases[J]. Curr Opin Virol, 2021, 49:30-35.DOI:10.1016/j.coviro.2021.04.010.
[42]
Jończyk-Matysia E, Weber-Dᶏbrowska B, Owczarek B, et al. Phage-phagocyte interactions and their implications for phage application as therapeutics[J]. Viruses, 2017, 9(6):150.DOI:10.3390/v9060150.
[43]
Murgas P, Bustamante N, Araya N, et al. A filamentous bacteriophage targeted to carcinoembryonic antigen induces tumor regression in mouse models of colorectal cancer[J]. Cancer Immunol Immunother, 2018, 67(2):183-193.DOI:10.1007/s00262-017-2076-x.
[44]
Fluckiger A, Daillère R, Sassi M, et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage[J]. Science, 2020, 369(6506):936-942.DOI:10.1126/science.aax0701.
[45]
Pajtasz-Piasecka E, Rossowska J, Duś D, et al. Bacteriophages support anti-tumor response initiated by DC-based vaccine against murine transplantable colon carcinoma[J]. Immunol Lett, 2008, 116(1):24-32.DOI:10.1016/j.imlet.2007.11.004.
[46]
Rojas G, Carmenate T, García-Pérez G, et al. Phagekines:directed evolution and characterization of functional cytokines displayed on phages[J]. Methods Mol Biol, 2023,2702:149-189.DOI:10.1007/978-1-0716-3381-6_8.
[47]
Perea L, Rodríguez-Rubio L, Nieto JC, et al. Bacteriophages immunomodulate the response of monocytes[J]. Exp Biol Med (Maywood), 2021, 246(11):1263-1268.DOI:10.1177/1535370221995154.
[48]
Thi HV, Ngo AD, Tran LT, et al. Phage for cancer therapy[J]. Prog Mol Biol Transl Sci, 2023, 201:225-239.DOI:10.1016/bs.pmbts.2023.03.015.
[49]
Smith GP. Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface[J]. Science, 1985, 228(4705):1315-1317.DOI:10.1126/science.4001944.
[50]
Wang Y, Gao S, LV J, et al. Phage display technology and its applications in cancer immunotherapy[J]. Anticancer Age-nts Med Chem, 2019, 19(2):229-235.DOI:10.2174/1871520618666181029140814.
[51]
Ma Z, Qin H, Chen H, et al. Phage display-derived oligopeptide-functionalized probes for in vivo specific photoacoustic imaging of osteosarcoma[J]. Nanomedicine, 2017, 13(1):111-121.DOI:10.1016/j.nano.2016.09.002.
[52]
Liu Z, Gray BD, Barber C, et al. Characterization of TCP-1 probes for molecular imaging of colon cancer[J]. J Control Release, 2016, 239:223-230.DOI:10.1016/j.jconrel.2016,08,033.
[53]
Yang X, Zhang F, Luo J, et al. A new non-muscle-invasive bladder tumor-homing peptide identified by phage display in vivo[J]. Oncol Rep, 2016, 36(1):79-89.DOI:10.3892/or.2016.4829.
[54]
Mandelin J, Cardó-Vila M, Driessen WH, et al. Selection and identification of ligand peptides targeting a model of castrate-resistant osteogenic prostate cancer and their receptors[J]. Proc Natl Acad Sci U S A, 2015, 112(12):3776-3781.DOI:10.1073/pnas.1500128112.
[55]
Yang C, He X, Liu X, et al. OSTP as a novel peptide specifically targeting human ovarian cancer[J]. Oncol Rep, 2015, 34(2):972-978.DOI:10.3892/or.2015.4066.
[56]
Loi M, Di Paolo D, Soster M, et al. Novel phage display-derived neuroblastoma-targeting peptides potentiate the effect of drug nanocarriers in preclinical settings[J]. J Control Release, 2013, 170(2):233-241.DOI:10.1016/j.jconrel.2013.04.029.
[57]
Jiang Y, Yang N, Zhang H, et al. Enhanced in vivo antitumor efficacy of dual-functional peptide-modified docetaxel nanoparticles through tumor targeting and Hsp90 inhibition[J]. J Control Release, 2016, 221:26-36.DOI:10.1016/j.jconrel.2015.11.029.
[58]
Choi H, Kim HD, Choi YW, et al. T7 phage display reveals NOLC1 as a GM3 binding partner in human breast cancer MCF-7 cells[J]. Arch Biochem Biophys, 2023,750:109810.DOI:10.1016/j.abb.2023.109810.
[59]
Bar H, Yacoby I, Benhar I. Killing cancer cells by targeted drug-carrying phage nanomedicines[J]. BMC Biotechnol, 2008,8:37.DOI:10.1186/1472-6750-8-37.
[60]
Deporter SM, Mcnaughton BR. Engineered M13 bacteriophage nanocarriers for intracellular delivery of exogenous proteins to human prostate cancer cells[J]. Bioconjug Chem, 2014, 25(9):1620-1625.DOI:10.1021/bc500339k.
[61]
Smith TL, Yuan Z, Cardó-Vila M, et al. AAVP displaying octreotide for ligand-directed therapeutic transgene delivery in neuroendocrine tumors of the pancreas[J]. Proc Natl Acad Sci U S A, 2016, 113(9):2466-2471.DOI:10.1073/pnas.1525709113.
[62]
Ayat H, Burrone OR, Sadghizadeh M, et al. Isolation of scFv antibody fragments against HER2 and CEA tumor antigens from combinatorial antibody libraries derived from cancer patients[J]. Biologicals, 2013, 41(6):345-354.DOI:10.1016/j.biologicals.2013.05.004.
[63]
Romani C, Cocco E, Bignotti E, et al. Evaluation of a novel human IgG1 anti-claudin3 antibody that specifically recognizes its aberrantly localized antigen in ovarian cancer cells and that is suitable for selective drug delivery[J]. Oncotarget, 2015, 6(33):34617-34628.DOI:10.18632/oncotarget.5315.
[64]
Lin H, Zhang H, Wang J, et al. A novel human Fab antibody for Trop2 inhibits breast cancer growth in vitro and in vivo[J]. Int J Cancer, 2014, 134(5):1239-1249.DOI:10.1002/ijc.28451.
[65]
Dabrowska K, Skaradziński G, Jończyk P, et al. The effect of bacteriophages T4 and HAP1 on in vitro melanoma migration[J]. BMC Microbiol, 2009,9:13.DOI:10.1186/1471-2180-9-13.
[66]
Dong X, Pan P, Zheng DW, et al. Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer[J]. Sci Adv, 2020, 6(20):eaba1590.DOI:10.1126/sciadv.aba1590.
[67]
Miedzybrodzki R, Fortuna W, Weber-Dabrowska B, et al. A retrospective analysis of changes in inflammatory markers in patients treated with bacterial viruses[J]. Clin Exp Med, 2009, 9(4):303-312.DOI:10.1007/s10238-009-0044-2.
[68]
Li J, Zheng H, Leung SSY. Potential of bacteriophage therapy in managing Staphylococcus aureus infections during chemotherapy for lung cancer patients[J]. Sci Rep, 2023, 13(1):9534.DOI:10.1038/s41598-023-36749-2.
[69]
Abdul-Mutakabbir JC, Griffith NC, Shield RK, et al. Contemporary perspective on the treatment of acinetobacter baumannii infections:insights from the society of infectious diseases pharmacists[J]. Infect Dis Ther, 2021, 10(4):2177-2202.DOI:10.1007/s40121-021-00541-4.
[70]
Lu J, Ding J, Liu Z, et al. Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review)[J]. Int J Oncol, 2022, 60(2):12.DOI:10.3892/ijo.2022.5302.
[71]
Hwang YJ, Myung H. Engineered bacteriophage T7 as a potent anticancer agent in vivo[J]. Front Microbiol, 2020,11:491001.DOI:10.3389/fmicb.2020.491001.
[72]
Asavarut P, Waramit S, Suwan K, et al. Systemically targeted cancer immunotherapy and gene delivery using transmorphic particles[J]. EMBO Mol Med, 2022, 14(8):e15418.DOI:10.15252/emmm.202115418.
[73]
Frenzel A, Schirrmann T, Hust M. Phage display-derived human antibodies in clinical development and therapy[J]. MAbs, 2016, 8(7):1177-1194.DOI:10.1080/19420862.2016.1212149.
[74]
Petrenko VA. Landscape phage:evolution from phage display to nanobiotechnology[J]. Viruses, 2018, 10(6):311.DOI:10.3390/v10060311.
[75]
Cesur-Ergün B, Demir-Dora D. Gene therapy in cancer[J]. J Gene Med, 2023, 25(11):e3550.DOI:10.1002/jgm.3550.
[76]
Hajitou A, Trepel M, Lilley CE, et al. A hybrid vector for ligand-directed tumor targeting and molecular imaging[J]. Cell, 2006, 125(2):385-398.DOI:10.1016/j.cell.2006.02.042.
[77]
Dobroff AS, D’Angelo S, Eckhardt BL, et al. Towards a transcriptome-based theranostic platform for unfavorable breast cancer phenotypes[J]. Proc Natl Acad Sci U S A, 2016, 113(45):12780-12785.DOI:10.1073/pnas.1615288113.
[78]
Chira S, Gulei D, Hajitou A, et al. Restoring the p53 ’guardian’ phenotype in p53-deficient tumor cells with CRISPR/Cas9[J]. Trends Biotechnol, 2018, 36(7):653-660.DOI:10.1016/j.tibtech.2018.01.014.
[79]
Sanmukh SG, Dos Santos NJ, Barquilha CN, et al. Bacteriophages M13 and T4 increase the expression of anchorage-dependent survival pathway genes and down regulate androgen receptor expression in LNCaP prostate cell line[J]. Viruses, 2021, 13(9):1754.DOI:10.3390/v13091754.
[80]
Hodyra-Stefaniak K, Miernikiew P, Drapała J, et al. Mammalian host-versus-phage immune response determines phage fate in vivo[J]. Sci Rep, 2015,5:14802.DOI:10.1038/srep14802.
[81]
Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819):1709-1712.DOI:10.1126/science.1138140.
[82]
Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms[J]. Nat Rev Microbiol, 2010, 8(5):317-327.DOI:10.1038/nrmicro2315.
[83]
Federici S, Kredo-Russo S, Valdés-Mas R, et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation[J]. Cell, 2022, 185(16):2879-2898.e24.DOI:10.1016/j.cell.2022.07.003.
[84]
Doron S, Melamed S, Ofir G, et al. Systematic discovery of antiphage defense systems in the microbial pangenome[J]. Science, 2018, 359(6379):eaar4120.DOI:10.1126/science.aar4120.
PDF(809 KB)

Accesses

Citation

Detail

Sections
Recommended

/