Research Progress of Photoacoustic Imaging in the Precision Diagnosis and Treatment of Thyroid Carcinoma

Jiaojiao MA, Xuehua XI, Yang DU, Bo ZHANG

Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (3) : 447-451.

PDF(847 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(847 KB)
Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (3) : 447-451. DOI: 10.3881/j.issn.1000-503X.16349
Review Articles

Research Progress of Photoacoustic Imaging in the Precision Diagnosis and Treatment of Thyroid Carcinoma

Author information +
History +

Abstract

The incidence of thyroid cancer keeps rising globally,with the majority being papillary thyroid carcinoma (PTC),which has a favorable prognosis.However,some aggressive PTCs exhibit different clinical behaviors and higher mortality risks,with the growth rate surpassing that of well-differentiated PTC and undifferentiated cancers.Therefore,achieving precise diagnosis and treatment of thyroid carcinoma presents a significant challenge.Photoacoustic imaging is a molecular imaging technology that integrates optical imaging and ultrasound,providing imaging information on structure,function,and molecules.Moreover,it can utilize exogenous contrast agents to realize tumor treatment,such as photothermal therapy,serving as a promising technology for precise diagnosis and treatment of thyroid carcinoma.Researchers both domestically and internationally have explored the application of photoacoustic imaging in the precise diagnosis and treatment of thyroid tumors.This article reviews the research progress,elucidates the advantages and limitations of photoacoustic imaging in the diagnosis and treatment of thyroid carcinoma,and prospects on the precise diagnosis and treatment of this disease.

Key words

thyroid carcinoma / photoacoustic imaging / precision diagnosis and treatment / molecular imaging

Cite this article

Download Citations
Jiaojiao MA , Xuehua XI , Yang DU , et al. Research Progress of Photoacoustic Imaging in the Precision Diagnosis and Treatment of Thyroid Carcinoma[J]. Acta Academiae Medicinae Sinicae. 2025, 47(3): 447-451 https://doi.org/10.3881/j.issn.1000-503X.16349

References

[1]
Pizzato M, Li M, Vignat J, et al. The epidemiological landscape of thyroid cancer worldwide:GLOBOCAN estimates for incidence and mortality rates in 2020[J]. Lancet Diabetes Endocrinol, 2022, 10(4):264-272.DOI:10.1016/S2213-8587(22)00035-3.
[2]
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3):229-263.DOI:10.3322/caac.21834.
[3]
Lloyd RV, Osamura RY, Kloppel G, et al. WHO classification of tumours:pathology and genetics of tumours of endocrine organs[M]. 4th ed. Lyon: IARC Press, 2017.
[4]
Shi X, Liu R, Basolo F, et al. Differential clinicopathological risk and prognosis of major papillary thyroid cancer variants[J]. J Clin Endocrinol Metab, 2016, 101(1):264-274.DOI:10.1210/jc.2015-2917.
[5]
Cartwright S, Fingeret A. Contemporary evaluation and management of tall cell variant of papillary thyroid carcinoma[J]. Curr Opin Endocrinol Diabetes Obes, 2020, 27(5):351-357.DOI:10.1097/MED.0000000000000559.
[6]
Ho AS, Luu M, Barrios L, et al. Incidence and mortality risk spectrum across aggressive variants of papillary thyroid carcinoma[J]. JAMA Oncol, 2020, 6(5):706-713.DOI:10.1001/jamaoncol.2019.6851.
[7]
James ML, Gambhir SS. A molecular imaging primer:modalities,imaging agents,and applications[J]. Physiol Rev, 2012, 92(2):897-965.DOI:10.1152/physrev.00049.2010.
[8]
Steinberg I, Huland DM, Vermesh O, et al. Photoacoustic clinical imaging[J]. Photoacoustics. 2019, 14:77-98.DOI:10.1016/j.pacs.2019.04.001.
[9]
Karlas A, Pleitez MA, Aguirre J, et al. Optoacoustic imaging in endocrinology and metabolism[J]. Nat Rev Endocrinol, 2021, 17(6):323-335.DOI:10.1038/s41574-021-00482-5.
[10]
Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer:The American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26 (1):1-133.DOI:10.1089/thy.2015.0020.
[11]
Shin JH, Baek JH, Chung J, et al. Ultrasonography diagnosis and imaging-based management of thyroid nodules:Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations[J]. Korean J Radiol, 2016, 17(3):370-395.DOI:10.3348/kjr.2016.17.3.370.
[12]
Russ G, Bonnema SJ, Erdogan MF, et al. European Thyroid Association Guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults:The EU-TIRADS[J]. Eur Thyroid J, 2017, 6(5):225-237.DOI:10.1159/000478927.
[13]
Tessler FN, Middleton WD, Grant EG, et al. ACR Thyroid Imaging,Reporting and Data System (TI-RADS):white paper of the ACR TI-RADS Committee[J]. J Am Coll Radiol, 2017, 14(5):587-595.DOI:10.1016/j.jacr.2017.01.046.
[14]
Dogra VS, Chinni BK, Valluru KS, et al. Preliminary results of ex vivo multispectral photoacoustic imaging in the management of thyroid cancer[J]. AJR Am J Roentgenol, 2014, 202(6):W552-W558.DOI:10.2214/AJR.13.11433.
[15]
Yang M, Zhao L, He X, et al. Photoacoustic/ultrasound dual imaging of human thyroid cancers:an initial clinical study[J]. Biomed Opt Express, 2017, 8(7):3449-3457.DOI:10.1364/BOE.8.003449.
[16]
Dima A, Ntziachristos V. In-vivo handheld optoacoustic tomography of the human thyroid[J]. Photoacoustics. 2016, 4(2):65-69.DOI:10.1016/j.pacs.2016.05.003.
[17]
Roll W, Markwardt NA, Masthoff M, et al. Multispectral optoacoustic tomography of benign and malignant thyroid disorders:a pilot study[J]. J Nucl Med, 2019, 60(10):1461-1466.DOI:10.2967/jnumed.118.222174.
[18]
Kim J, Park B, Ha J, et al. Multiparametric photoacoustic analysis of human thyroid cancers in vivo[J]. Cancer Res, 2021, 81(18):4849-4860.DOI:10.1158/0008-5472.CAN-20-3334.
[19]
曲恩泽, 戴志飞, 王淑敏, 等. 自制超声/荧光双功能造影剂在兔正常淋巴结中的显像[J]. 中国医学科学院学报, 2013, 35(4):411-415.DOI:10.3881/j.issn.1000-503X.2013.04.010.
[20]
Wu Y, Zeng F, Zhao Y, et al. Emerging contrast agents for multispectral optoacoustic imaging and their biomedical applications[J]. Chem Soc Rev, 2021, 50(14):7924-7940.DOI:10.1039/d1cs00358e.
[21]
Weber J, Beard PC, Bohndiek SE. Contrast agents for molecular photoacoustic imaging[J]. Nat Methods, 2016, 13(8):639-650.DOI:10.1038/nmeth.3929.
[22]
Karthikesh MS, Yang X. Photoacoustic image-guided interventions[J]. Exp Biol Med (Maywood), 2020, 245(4):330-341.DOI:10.1177/1535370219889323
[23]
Ma X, Li X, Shi J, et al. Host-guest polypyrrole nanocomplex for three-stimuli-responsive drug delivery and imaging-guided chemo-photothermal synergetic therapy of refractory thyroid cancer[J]. Adv Healthc Mater, 2019, 8(17):e1900661.DOI:10.1002/adhm.201900661.
[24]
Zhang Z, Wang L, Wang J, et al. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment[J]. Adv Mater, 2012, 24(11):1418-1423.DOI:10.1002/adma.201104714.
[25]
Xi D, Xiao M, Cao J, et al. NIR light-driving barrier-free group rotation in nanoparticles with an 88.3% photothermal conversion efficiency for photothermal therapy[J]. Adv Mater, 2020, 32(11):e1907855.DOI:10.1002/adma.201907855.
[26]
Peng J, Chen F, Liu Y, et al. A light-driven dual-nanotransformer with deep tumor penetration for efficient chemo-immunotherapy[J]. Theranostics, 2022, 12(4):1756-1768.DOI:10.7150/thno.68756.
[27]
Liu Y, Yu B, Dai X, et al. Biomineralized calcium carbonate nanohybrids for mild photothermal heating-enhanced gene therapy[J]. Biomaterials, 2021,274:120885.DOI:10.1016/j.biomaterials.2021.120885.
[28]
Lin L, Wang LV. The emerging role of photoacoustic imaging in clinical oncology[J]. Nat Rev Clin Oncol, 2022, 19(6):365-384.DOI:10.1038/s41571-022-00615-3.
[29]
Liu H, Teng X, Yu S, et al. Recent advances in photoacoustic imaging:current status and future perspectives[J]. Micromachines(Basel), 2024, 15(8):1007.DOI:10.3390/mi15081007.
PDF(847 KB)

Accesses

Citation

Detail

Sections
Recommended

/