Advances in Construction and Application of Biliary Organoids

Zhongwen LEI, Yang XIANG, Yijun YANG

Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (4) : 611-620.

PDF(1364 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1364 KB)
Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (4) : 611-620. DOI: 10.3881/j.issn.1000-503X.16367
Review Articles

Advances in Construction and Application of Biliary Organoids

Author information +
History +

Abstract

Biliary duct injury,congenital biliary atresia,biliary tract tumors,primary sclerosing cholangitis,etc.are common and refractory diseases in the digestive system in clinical practice.The existing surgical operations and drug treatments demonstrate limited effects.Organoids,as an emerging technology,have attracted much attention in recent years for deeply understanding the pathogenesis and development of these diseases and seeking more effective treatment approaches.An organoid,a three-dimensional complex derived from stem/progenitor cells,can simulate the complex structure and physiological function of tissues or organs in vitro.It provides an important platform for studying the pathogenesis of biliary tract diseases and brings new hope for the repair and regeneration of biliary tract injury.The seed cells for constructing biliary organoids are mainly biliary tract epithelial cells,pluripotent stem cells,etc.The conventional technologies for constructing biliary organoids mainly include embedding,rotary culture,and hanging drop culture.In recent years,new culture technologies such as organ chip and three-dimensional and four-dimensional printing are emerging.This article reviews the construction methods of biliary organoids,discusses the application of these organoids in disease model construction,disease mechanism research,drug screening,and tissue/organ repair,and proposes the current problems and future research directions of biliary organoids,which will provide reference for treating common refractory digestive system diseases in clinical practice.

Key words

organoid / biliary tract disease / drug screening / regenerative medicine

Cite this article

Download Citations
Zhongwen LEI , Yang XIANG , Yijun YANG. Advances in Construction and Application of Biliary Organoids[J]. Acta Academiae Medicinae Sinicae. 2025, 47(4): 611-620 https://doi.org/10.3881/j.issn.1000-503X.16367

References

[1]
De’angelis N, Catena F, Memeo R, et al. 2020 WSES guidelines for the detection and management of bile duct injury during cholecystectomy[J]. World J Emerg Surg,2021, 16(1):30.DOI:10.1186/s13017-021-00369-w.
[2]
Marino MV, Mirabella A, Guarrasi D, et al. Robotic-assisted repair of iatrogenic common bile duct injury after laparoscopic cholecystectomy:surgical technique and outcomes[J]. Int J Med Robot, 2019, 15(3):e1992.DOI:10.1002/rcs.1992.
[3]
Guerra F, Coletta D, Gavioli M, et al. Minimally invasive surgery for the management of major bile duct injury due to cholecystectomy[J]. J Hepatobiliary Pancreat Sci, 2020, 27(4):157-163.DOI:10.1002/jhbp.710.
[4]
Licata JP, Schwab KH, Har-El YE, et al. Bioreactor technologies for enhanced organoid culture[J]. Int J Mol Sci, 2023, 24(14):11427.DOI:10.3390/ijms241411427.
[5]
O’connell L, Winter DC. Organoids:past learning and future directions[J]. Stem Cells Dev, 2020, 29(5):281-289.DOI:10.1089/scd.2019.0227.
[6]
Ogoke O, Maloy M, Parashurama N. The science and engineering of stem cell-derived organoids-examples from hepatic,biliary,and pancreatic tissues[J]. Biol Rev Camb Philos Soc, 2021, 96(1):179-204.DOI:10.1111/brv.12650.
[7]
Sato K, Zhang W, Safarikia S, et al. Organoids and spheroids as models for studying cholestatic liver injury and cholangiocarcinoma[J]. Hepatology, 2021, 74(1):491-502.DOI:10.1002/hep.31653.
[8]
Sampaziotis F, Muraro D, Tysoe OC, et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver[J]. Science, 2021, 371(6531):839-846.DOI:10.1126/science.aaz6964.
[9]
Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244):262-265.DOI:10.1038/nature07935.
[10]
Li Y, Zeng PM, Wu J, et al. Advances and applications of brain organoids[J]. Neurosci Bull, 2023, 39(11):1703-1716.DOI:10.1007/s12264-023-01065-2.
[11]
Matkovic Leko I, Schneider RT, Thimraj TA, et al. A distal lung organoid model to study interstitial lung disease,viral infection and human lung development[J]. Nat Protoc, 2023, 18(7):2283-2312.DOI:10.1038/s41596-023-00827-6.
[12]
Nishinakamura R. Advances and challenges toward developing kidney organoids for clinical applications[J]. Cell Stem Cell, 2023, 30(8):1017-1027.DOI:10.1016/j.stem.2023.07.011.
[13]
Beshiri M, Agarwal S, Yin JJ, et al. Prostate organoids:emerging experimental tools for translational research[J]. J Clin Invest, 2023, 133(10):e169616.DOI:10.1172/jci169616.
[14]
Liu S, Fang C, Zhong C, et al. Recent advances in pluripotent stem cell-derived cardiac organoids and heart-on-chip applications for studying anti-cancer drug-induced cardiotoxicity[J]. Cell Biol Toxicol, 2023, 39(6):2527-2549.DOI:10.1007/s10565-023-09835-4.
[15]
Wu F, Wu D, Ren Y, et al. Generation of hepatobiliary organoids from human induced pluripotent stem cells[J]. J Hepatol, 2019, 70(6):1145-1158.DOI:10.1016/j.jhep.2018.12.028.
[16]
Wang S, Wang X, Tan Z, et al. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury[J]. Cell Res, 2019, 29(12):1009-1026.DOI:10.1038/s41422-019-0242-8.
[17]
Sampaziotis F, Tysoe O, Brevini T, et al. Use of biliary organoids in cholestasis research[J]. Methods Mol Biol, 2019,1981:373-382.DOI:10.1007/978-1-4939-9420-5_25.
[18]
Habanjar O, Diab-Assaf M, Caldefie-Chezet F, et al. 3D cell culture systems:tumor application,advantages,and disadvantages[J]. Int J Mol Sci, 2021, 22(22):12200.DOI:10.3390/ijms222212200.
[19]
Lee SY, Teng Y, Son M, et al. Three-dimensional aggregated spheroid model of hepatocellular carcinoma using a 96-pillar/Well plate[J]. Molecules, 2021, 26(16):4949.DOI:10.3390/molecules26164949.
[20]
Mattei C, Lim R, Drury H, et al. Generation of vestibular tissue-like organoids from human pluripotent stem cells using the rotary cell culture system[J]. Front Cell Dev Biol, 2019,7:25.DOI:10.3389/fcell.2019.00025.
[21]
Ryu NE, Lee SH, Park H. Spheroid culture system methods and applications for mesenchymal stem cells[J]. Cells, 2019, 8(12):1620.DOI:10.3390/cells8121620.
[22]
Sun B, Zhao Y, Wu W, et al. A superhydrophobic chip integrated with an array of medium reservoirs for long-term hanging drop spheroid culture[J]. Acta Biomater, 2021, 135:234-242.DOI:10.1016/j.actbio.2021.08.006.
[23]
Zhou S, Yang J, Li R, et al. Live imaging of 3D hanging drop arrays through manipulation of light-responsive pyroelectric slippery surface and chip adhesion[J]. Nano Lett, 2023, 23(23):10710-10718.DOI:10.1021/acs.nanolett.3c02570.
[24]
Marques IA, Fernandes C, Tavares NT, et al. Magnetic-based human tissue 3D cell culture:a systematic review[J]. Int J Mol Sci, 2022, 23(20):12681.DOI:10.3390/ijms232012681.
[25]
Tepe U, Aslanbay Guler B, Imamoglu E. Applications and sensory utilizations of magnetic levitation in 3D cell culture for tissue engineering[J]. Mol Biol Rep, 2023, 50(8):7017-7025.DOI:10.1007/s11033-023-08585-0.
[26]
Xing C, Kemas A, Mickols E, et al. The choice of ultra-low attachment plates impacts primary human and primary canine hepatocyte spheroid formation,phenotypes,and function[J]. Biotechnol J, 2024, 19(2):e2300587.DOI:10.1002/biot.202300587.
[27]
Hockney S, Parker J, Turner JE, et al. Next generation organoid engineering to replace animals in cancer drug testing[J]. Biochem Pharmacol, 2023,213:115586.DOI:10.1016/j.bcp.2023.115586.
[28]
Deng S, Li C, Cao J, et al. Organ-on-a-chip meets artificial intelligence in drug evaluation[J]. Theranostics, 2023, 13(13):4526-4558.DOI:10.7150/thno.87266.
[29]
Li X, Zhu H, Gu B, et al. Advancing intelligent organ-on-a-chip systems with comprehensive in situ bioanalysis[J]. Adv Mater, 2023, 36(18):e2305268.DOI:10.1002/adma.202305268.
[30]
Nasiri R, Zhu Y, De Barros NR.Microfluidics and organ-on-a-chip for disease modeling and drug screening[J]. Biosensors(Basel), 2024, 14(2):86.DOI:10.3390/bios14020086.
[31]
Palasantzas V, Tamargo-Rubio I, Le K, et al. IPSC-derived organ-on-a-chip models for personalized human genetics and pharmacogenomics studies[J]. Trends Genet, 2023, 39(4):268-284.DOI:10.1016/j.tig.2023.01.002.
[32]
Baptista LS, Porrini C, S Kronemberger G, et al. Corrigendum:3D organ-on-a-chip:the convergence of microphysiological systems and organoids[J]. Front Cell Dev Biol, 2024,12:1365671.DOI:10.3389/fcell.2024.1365671.
[33]
Shoji JY, Davis RP, Mummery CL, et al. Global meta-analysis of organoid and organ-on-chip research[J]. Adv Healthc Mater, 2023, 13(21):e2301067.DOI:10.1002/adhm.202301067.
[34]
Kantaros A. 3D printing in regenerative medicine:technologies and resources utilized[J]. Int J Mol Sci, 2022, 23(23):14621.DOI:10.3390/ijms232314621.
[35]
Assad H, Assad A, Kumar A. Recent developments in 3D bio-printing and its biomedical applications[J]. Pharmaceutics, 2023, 15(1):255.DOI:10.3390/pharmaceutics15010255.
[36]
Jing S, Lian L, Hou Y, et al. Advances in volumetric bioprinting[J]. Biofabrication, 2023, 16(1):012004.DOI:10.1088/1758-5090/ad0978.
[37]
Mandal A, Chatterjee K. 4D printing for biomedical applications[J]. J Mater Chem B, 2024, 12(12):2985-3005.DOI:10.1039/d4tb00006d.
[38]
Kalogeropoulou M, Díaz-Payno PJ, Mirzaali MJ, et al. 4D printed shape-shifting biomaterials for tissue engineering and regenerative medicine applications[J]. Biofabrication, 2024, 16(2):022002.DOI:10.1088/1758-5090/ad1e6f.
[39]
Wan X, Xiao Z, Tian Y, et al. Recent advances in 4D printing of advanced materials and structures for functional applications[J]. Adv Mater, 2024, 36(34):e2312263.DOI:10.1002/adma.202312263.
[40]
Marsee A, Roos FJM, Verstegen MMA, et al. Building consensus on definition and nomenclature of hepatic,pancreatic,and biliary organoids[J]. Cell Stem Cell, 2021, 28(5):816-832.DOI:10.1016/j.stem.2021.04.005.
[41]
Lugli N, Kamileri I, Keogh A, et al. R-spondin 1 and noggin facilitate expansion of resident stem cells from non-damaged gallbladders[J]. EMBO Rep, 2016, 17(5):769-779.DOI:10.15252/embr.201642169.
[42]
Sampaziotis F, Justin AW, Tysoe OC, et al. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids[J]. Nat Med, 2017, 23(8):954-963.DOI:10.1038/nm.4360.
[43]
Verstegen MMA, Roos FJM, Burka K, et al. Human extrahepatic and intrahepatic cholangiocyte organoids show region-specific differentiation potential and model cystic fibrosis-related bile duct disease[J]. Sci Rep, 2020, 10(1):21900.DOI:10.1038/s41598-020-79082-8.
[44]
Zhu JJ, Yang YF, Dong R, et al. Biliatresone:progress in biliary atresia study[J]. World J Pediatr, 2023, 19(5):417-424.DOI:10.1007/s12519-022-00619-0.
[45]
Glessner JT, Ningappa MB, Ngo KA, et al. Biliary atresia is associated with polygenic susceptibility in ciliogenesis and planar polarity effector genes[J]. J Hepatol, 2023, 79(6):1385-1395.DOI:10.1016/j.jhep.2023.07.039.
[46]
Short C, Zhong A, Xu J, et al. TWEAK/FN14 promotes profibrogenic pathway activation in Prominin-1-expressing hepatic progenitor cells in biliary atresia[J]. Hepatology, 2023, 77(5):1639-1653.DOI:10.1097/hep.0000000000000026.
[47]
Deng YH, Pu CL, Li YC, et al. Analysis of biliary epithelial-mesenchymal transition in portal tract fibrogenesis in biliary atresia[J]. Dig Dis Sci, 2011, 56(3):731-740.DOI:10.1007/s10620-010-1347-6.
[48]
Lendahl U, Lui VCH, Chung PHY, et al. Biliary atresia-emerging diagnostic and therapy opportunities[J]. EBioMedicine, 2021,74:103689.DOI:10.1016/j.ebiom.2021.103689.
[49]
Chen S, Li P, Wang Y, et al. Rotavirus infection and cytopathogenesis in human biliary organoids potentially recapitulate biliary atresia development[J]. mBio, 2020, 11(4):e01968-20.DOI:10.1128/mBio.01968-20.
[50]
Amarachintha SP, Mourya R, Ayabe H, et al. Biliary organoids uncover delayed epithelial development and barrier function in biliary atresia[J]. Hepatology, 2022, 75(1):89-103.DOI:10.1002/hep.32107.
[51]
Xing J, Ding P, Wan X, et al. Application and progress of cultured models of gallbladder carcinoma[J]. J Clin Transl Hepatol, 2023, 11(3):695-704.DOI:10.14218/jcth.2022.00351.
[52]
Domènech Omella J, Cortesi EE, Verbinnen I, et al. A novel mouse model of combined hepatocellular-cholangiocarcinoma induced by diethylnitrosamine and loss of ppp2r5d[J]. Cancers(Basel), 2023, 15(16):4193.DOI:10.3390/cancers15164193.
[53]
Calvisi DF, Boulter L, Vaquero J, et al. Criteria for preclinical models of cholangiocarcinoma:scientific and medical relevance[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(7):462-480.DOI:10.1038/s41575-022-00739-y.
[54]
Nuciforo S, Heim MH. Organoids to model liver disease[J]. JHEP Rep, 2021, 3(1):100198.DOI:10.1016/j.jhepr.2020.100198.
[55]
Zhou G, Lieshout R, Van Tienderen GS, et al. Modelling immune cytotoxicity for cholangiocarcinoma with tumour-derived organoids and effector T cells[J]. Br J Cancer, 2022, 127(4):649-660.DOI:10.1038/s41416-022-01839-x.
[56]
Maier CF, Zhu L, Nanduri LK, et al. Patient-derived organoids of cholangiocarcinoma[J]. Int J Mol Sci, 2021, 22(16):8675.DOI:10.3390/ijms22168675.
[57]
Reich M, Spomer L, Klindt C, et al. Downregulation of TGR5(GPBAR1)in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis[J]. J Hepatol, 2021, 75(3):634-646.DOI:10.1016/j.jhep.2021.03.029.
[58]
Zhang W, Kyritsi K, Isidan A, et al. Development of scaffold-free three-dimensional cholangiocyte organoids to study the progression of primary sclerosing cholangitis[J]. Am J Pathol, 2023, 193(9):1156-1169.DOI:10.1016/j.ajpath.2023.05.005.
[59]
Du Y, De Jong IEM, Gupta K, et al. Human vascularized bile duct-on-a chip:a multi-cellular micro-physiological system for studying cholestatic liver disease[J]. Biofabrication, 2023, 16(1):015004.DOI:10.1088/1758-5090/ad0261.
[60]
Jalan-Sakrikar N, De Assuncao TM, Navarro-Corcuera A, et al. Induced pluripotent stem cells from subjects with primary sclerosing cholangitis develop a senescence phenotype following biliary differentiation[J]. Hepatol Commun, 2022, 6(2):345-360.DOI:10.1002/hep4.1809.
[61]
Yang R, Yu Y. Patient-derived organoids in translational oncology and drug screening[J]. Cancer Lett, 2023,562:216180.DOI:10.1016/j.canlet.2023.216180.
[62]
Magré L, Verstegen MMA, Buschow S, et al. Emerging organoid-immune co-culture models for cancer research:from oncoimmunology to personalized immunotherapies[J]. J Immunother Cancer, 2023, 11(5):e006290.DOI:10.1136/jitc-2022-006290.
[63]
Yuan B, Zhao X, Wang X, et al. Patient-derived organoids for personalized gallbladder cancer modelling and drug screening[J]. Clin Transl Med, 2022, 12(1):e678.DOI:10.1002/ctm2.678.
[64]
Ren X, Huang M, Weng W, et al. Personalized drug screening in patient-derived organoids of biliary tract cancer and its clinical application[J]. Cell Rep Med, 2023, 4(11):101277.DOI:10.1016/j.xcrm.2023.101277.
[65]
Xiang Y, Wang W, Gao Y, et al. Production and characterization of an integrated multi-layer 3D printed PLGA/GelMA scaffold aimed for bile duct restoration and detection[J]. Front Bioeng Biotechnol, 2020,8:971.DOI:10.3389/fbioe.2020.00971.
[66]
Hu W, Lazar MA. Modelling metabolic diseases and drug response using stem cells and organoids[J]. Nat Rev Endocrinol, 2022, 18(12):744-759.DOI:10.1038/s41574-022-00733-z.
[67]
Hu Y, Hu X, Luo J, et al. Liver organoid culture methods[J]. Cell Biosci, 2023, 13(1):197.DOI:10.1186/s13578-023-01136-x.
[68]
Du Y, Khandekar G, Llewellyn J, et al. A bile duct-on-a-chip with organ-level functions[J]. Hepatology, 2020, 71(4):1350-1363.DOI:10.1002/hep.30918.
[69]
Monteduro AG, Rizzato S, Caragnano G, et al. Organs-on-chips technologies-aguide from disease models to opportunities for drug development[J]. Biosens Bioelectron, 2023,231:115271.DOI:10.1016/j.bios.2023.115271.
[70]
Charles S, Jackson-Holmes E, Sun G, et al. Non-invasive quality control of organoid cultures using mesofluidic CSTR bioreactors and high-content imaging[J]. Adv Mater Technol, 2024, 10(3):2400473.DOI:10.1002/admt.202400473.
[71]
Fang S, Todd PW, Hanley TR. A bench-scale rotating bioreactor with improved oxygen transfer and cell growth[J]. Chem Eng Sci, 2022,256:117688.DOI:10.1016/j.ces.2022.117688.
[72]
Rimal R, Muduli S, Desai P, et al. Vascularized 3D human skin models in the forefront of dermatological research[J]. Adv Healthc Mater, 2024, 13(9):e2303351.DOI:10.1002/adhm.202303351.
[73]
Ock SA, Kim SY, Ju WS, et al. Adipose tissue-derived mesenchymal stem cells extend the lifespan and enhance liver function in hepatocyte organoids[J]. Int J Mol Sci, 2023, 24(20):15429.DOI:10.3390/ijms242015429.
PDF(1364 KB)

Accesses

Citation

Detail

Sections
Recommended

/