Research Progress in the Function and Regulation of Sirtuin 3 in Sepsis-Related Diseases

Junjie LI, Hong MEI, Xinxin LIU, Kun YU, Banghai FENG, Bao FU, Song QIN

Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (4) : 601-610.

PDF(905 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(905 KB)
Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (4) : 601-610. DOI: 10.3881/j.issn.1000-503X.16371
Review Articles

Research Progress in the Function and Regulation of Sirtuin 3 in Sepsis-Related Diseases

Author information +
History +

Abstract

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection,with a high mortality rate.Sirtuin 3,a deacetylase within mitochondria,plays an important regulatory role in cellular metabolism,oxidative stress,and inflammatory responses.In recent years,significant progress has been made in the study of the function and regulatory role of sirtuin 3 in sepsis-related diseases.Research has shown that sirtuin 3 can alleviate organ damage caused by sepsis by regulating mitochondrial function,reducing oxidative stress,and inhibiting inflammatory responses.The specific mechanisms include the regulation of mitochondrial bioenergetics,activation of antioxidant enzyme systems,and inhibition of inflammatory mediator expression.In addition,sirtuin 3 plays a protective role in the pathological process of sepsis by interacting with multiple signaling pathways.This article summarizes the functions and regulatory mechanisms of sirtuin 3 in various sepsis-related diseases,aiming to provide new targets and strategies for the prevention and treatment of sepsis in the future.

Key words

sirtuin 3 / sepsis / multiple organ dysfunction

Cite this article

Download Citations
Junjie LI , Hong MEI , Xinxin LIU , et al . Research Progress in the Function and Regulation of Sirtuin 3 in Sepsis-Related Diseases[J]. Acta Academiae Medicinae Sinicae. 2025, 47(4): 601-610 https://doi.org/10.3881/j.issn.1000-503X.16371

References

[1]
Rudd KE, Johnson SC, Agesa KM, et al. Global,regional, and national sepsis incidence and mortality,1990-2017:analysis for the global burden of disease study[J]. Lancet, 2020, 395(10219):200-211.DOI:10.1016/s0140-6736(19)32989-7.
[2]
Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign:international guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47(11):1181-1247.DOI:10.1007/s00134-021-06506-y.
[3]
Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign:international guidelines for management of sepsis and septic shock:2016[J]. Intensive Care Med, 2017, 43(3):304-377.DOI:10.1007/s00134-017-4683-6.
[4]
Cecconi M, Evans L, Levy M, et al. Sepsis and septic shock[J]. Lancet, 2018, 392(10141):75-87.DOI:10.1016/s0140-6736(18)30696-2.
[5]
Singer M, Deutschman C, Seymour C, et al. The third international consensus definitions for sepsis and septic shock(sepsis-3)[J]. JAMA, 2016, 315(8):801-810.DOI:10.1001/jama.2016.0287.
[6]
Kane AE, Sinclair DA. Sirtuins and NAD(+)in the development and treatment of metabolic and cardiovascular diseases[J]. Circ Res, 2018, 123(7):868-885.DOI:10.1161/circresaha.118.312498.
[7]
Tang H, Zhou Y, Ma L, et al. SIRT3 alleviates mitochondrial dysfunction and senescence in diabetes-associated periodontitis by deacetylating lrpprc[J]. Free Radic Biol Med, 2024, 227(2):407-419.DOI:10.1016/j.freeradbiomed.2024.11.033.
[8]
Devabattula G, Bakchi B, Sharma A, et al. Mitochondria-targeting SIRT3 activator effectively controls bleomycin-induced pulmonary fibrosis[J]. Biofactors, 2025, 51(4):e70032.DOI:10.1002/biof.70032.
[9]
Tang X, Chen XF, Chen HZ, et al. Mitochondrial sirtuins in cardiometabolic diseases[J]. Clin Sci(Lond), 2017, 131(16):2063-2078.DOI:10.1042/cs20160685.
[10]
Bugger H, Witt CN, Bode C. Mitochondrial sirtuins in the heart[J]. Heart Fail Rev, 2016, 21(5):519-528.DOI:10.1007/s10741-016-9570-7.
[11]
Dikalova AE, Pandey A, Xiao L, et al. Mitochondrial deacetylase SIRT3 reduces vascular dysfunction and hypertension while SIRT3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress[J]. Circ Res, 2020, 126(4):439-452.DOI:10.1161/circresaha.119.315767.
[12]
Paulin R, Dromparis P, Sutendra G, et al. Sirtuin 3 deficiency is associated with inhibited mitochondrial function and pulmonary arterial hypertension in rodents and humans[J]. Cell Metab, 2014, 20(5):827-839.DOI:10.1016/j.cmet.2014.08.011.
[13]
Ma LL, Kong FJ, Dong Z, et al. Hypertrophic preconditioning attenuates myocardial ischaemia-reperfusion injury by modulating SIRT3-SOD2-mROS-dependent autophagy[J]. Cell Prolif, 2021, 54(7):e13051.DOI:10.1111/cpr.13051.
[14]
Zhang M, Zhao Z, Shen M, et al. Polydatin protects cardiomyocytes against myocardial infarction injury by activating Sirt3[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(8):1962-1972.DOI:10.1016/j.bbadis.2016.09.003.
[15]
Wei Z, Yang B, Wang H, et al. Caloric restriction,sirtuins,and cardiovascular diseases[J]. Chin Med J(Engl), 2024, 137(8):921-935.DOI:10.1097/cm9.0000000000003056.
[16]
Alqarni MH, Foudah AI, Muharram MM, et al. The pleiotropic function of human sirtuins as modulators of metabolic pathways and viral infections[J]. Cells, 2021, 10(2):460.DOI:10.3390/cells10020460.
[17]
Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins[J]. Nature, 2009, 460(7255):587-591.DOI:10.1038/nature08197.
[18]
Sack MN. The role of SIRT3 in mitochondrial homeostasis and cardiac adaptation to hypertrophy and aging[J]. J Mol Cell Cardiol, 2012, 52(3):520-525.DOI:10.1016/j.yjmcc.2011.11.004.
[19]
Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase SIRT3 in regulating energy homeostasis[J]. Proc Natl Acad Sci U S A, 2008, 105(38):14447-14452.DOI:10.1073/pnas.0803790105.
[20]
Cao T, Ni R, Ding W, et al. Nicotinamide mononucleotide as a therapeutic agent to alleviate multi-organ failure in sepsis[J]. J Transl Med, 2023, 21(1):883.DOI:10.1186/s12967-023-04767-3.
[21]
Kanwal A. Functional and therapeutic potential of mitochondrial SIRT3 deacetylase in disease conditions[J]. Expert Rev Clin Pharmacol, 2018, 11(12):1151-1155.DOI:10.1080/17512433.2018.1546119.
[22]
Lelubre C, Vincent J. Mechanisms and treatment of organ failure in sepsis[J]. Nat Rev Nephrol, 2018, 14(7):417-427.DOI:10.1038/s41581-018-0005-7.
[23]
Koentges C, Cimolai M, Pfeil K, et al. Impaired SIRT3 activity mediates cardiac dysfunction in endotoxemia by calpain-dependent disruption of ATP synthesis[J]. J Mol Cell Cardiol, 2019, 133(8):138-147.DOI:10.1016/j.yjmcc.2019.06.008.
[24]
Xin T, Lu C. SIRT3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury[J]. Aging(Albany NY), 2020, 12(16):16224-16237.DOI:10.18632/aging.103644.
[25]
Xu Q, Xiong H, Zhu W, et al. Small molecule inhibition of cyclic GMP-AMP synthase ameliorates sepsis-induced cardiac dysfunction in mice[J]. Life Sci, 2020,260:118315.DOI:10.1016/j.lfs.2020.118315.
[26]
Zhang L, Zheng YL, Hu RH, et al. Annexin A1 mimetic peptide AC2-26 inhibits sepsis-induced cardiomyocyte apoptosis through LXA4/PI3K/AKT signaling pathway[J]. Curr Med Sci, 2018, 38(6):997-1004.DOI:10.1007/s11596-018-1975-1.
[27]
Ma W, Huang Z, Miao Y, et al. ANXA1sp modulates the protective effect of SIRT3-induced mitophagy against sepsis-induced myocardial injury in mice[J]. Acta Physiol(Oxf), 2024, 240(8):e14184.DOI:10.1111/apha.14184.
[28]
Qin S, Ren Y, Feng B, et al. Annexin-A1 short peptide alleviates septic myocardial injury by upregulating SIRT3 and inhibiting myocardial cell apoptosis[J]. Histol Histopathol, 2024, 39(7):947-957.DOI:10.14670/hh-18-691.
[29]
Qin S, Ren YC, Liu JY, et al. ANXA1SP attenuates sepsis-induced myocardial injury by promoting mitochondrial biosynthesis and inhibiting oxidative stress and autophagy via SIRT3 upregulation[J]. Kaohsiung J Med Sci, 2024, 40(1):35-45.DOI:10.1002/kjm2.12767.
[30]
Liu J, Zhou G, Chen R, et al. Mitochondrial SIRT3 serves as a biomarker for sepsis diagnosis and mortality prediction[J]. Sci Rep, 2022, 12(1):10414.DOI:10.1038/s41598-022-14365-w.
[31]
Li J, Lu K, Zhang X, et al. SIRT3-mediated mitochondrial autophagy in refeeding syndrome-related myocardial injury in sepsis rats[J]. Ann Transl Med, 2022, 10(4):211.DOI:10.21037/atm-22-222.
[32]
Qin Y, Shi Y, Yu Q, et al. Vitamin B12 alleviates myocardial ischemia/reperfusion injury via the SIRT3/AMPK signaling pathway[J]. Biomed Pharmacother, 2023, 163(7):114761.DOI:10.1016/j.biopha.2023.114761.
[33]
Rodrigues M, Antonucci I, Elabd S, et al. p53 is active in human amniotic fluid stem cells[J]. Stem Cells Dev, 2018, 27(21):1507-1517.DOI:10.1089/scd.2017.0254.
[34]
Olivos DJ, Mayo LD. Emerging non-canonical functions and regulation by p53:p53 and stemness[J]. Int J Mol Sci, 2016, 17(12):1982.DOI:10.3390/ijms17121982.
[35]
Gao N, Liu XY, Chen J, et al. Menaquinone-4 alleviates sepsis-associated acute lung injury via activating SIRT3-p53/SLC7a11 pathway[J]. J Inflamm Res, 2024, 17(1):7675-7685.DOI:10.2147/jir.S486984.
[36]
Jing X, Chen Z, Zhang M, et al. Melatonin mitigates the lipopolysaccharide-induced myocardial injury in rats by blocking the p53/xCT pathway-mediated ferroptosis[J]. Naunyn Schmiedebergs Arch Pharmacol, 2025, 398(2):1653-1663.DOI:10.1007/s00210-024-03367-2.
[37]
Ning L, Rui X, Guorui L, et al. A novel mechanism for the protection against acute lung injury by melatonin:mitochondrial quality control of lung epithelial cells is preserved through SIRT3-dependent deacetylation of SOD2[J]Cell Mol Life Sci, 2022, 79(12):610.DOI:10.1007/s00018-022-04628-0.
[38]
Sun M, Li Y, Xu G, et al. Sirt3-mediated OPA1 deacetylation protects against sepsis-induced acute lung injury by inhibiting alveolar macrophage pro-inflammatory polarization[J]. Antioxid Redox Signal, 2024, 41(16-18):1014-1030.DOI:10.1089/ars.2023.0322.
[39]
Shen W, Zhao X, Li S. Exosomes derived from ADSCs attenuate sepsis-induced lung injury by delivery of Circ-Fryl and regulation of the miR-490-3p/SIRT3 pathway[J]. Inflammation, 2022, 45(1):331-342.DOI:10.1007/s10753-021-01548-2.
[40]
Xia W, Pan Z, Zhang H, et al. ERRα protects against sepsis-induced acute lung injury in rats[J]. Mol Med, 2023, 29(1):76.DOI:10.1186/s10020-023-00670-1.
[41]
Wang J, Li W, Zhao F, et al. Sirt3 regulates NLRP3 and participates in the effects of plantainoside d on acute lung injury sepsis[J]. Aging(Albany NY), 2023, 15(14):6710-6720.DOI:10.18632/aging.204628.
[42]
Li X, Wang S, Luo M, et al. Carnosol alleviates sepsis-induced pulmonary endothelial barrier dysfunction by targeting nuclear factor erythroid2-related factor 2/sirtuin-3 signaling pathway to attenuate oxidative damage[J]. Phytother Res, 2024, 38(5):2182-2197.DOI:10.1002/ptr.8138.
[43]
Xin W, Zhou J, Peng Y, et al. SREBP1c-mediated transcriptional repression of YME1L1 contributes to acute kidney injury by inducing mitochondrial dysfunction in tubular epithelial cells[J]. Adv Sci(Weinh), 2025, 12(6):e2412233.DOI:10.1002/advs.202412233.
[44]
Morevati M, Fang EF, Mace ML, et al. Roles of NAD(+) in acute and chronic kidney diseases[J]. Int J Mol Sci, 2022, 24(1):137.DOI:10.3390/ijms24010137.
[45]
Jian Y, Yang Y, Cheng L, et al. SIRT3 mitigates LPS-induced mitochondrial damage in renal tubular epithelial cells by deacetylating YME1L1[J]. Cell Prolif, 2023, 56(2):e13362.DOI:10.1111/cpr.13362.
[46]
Sun C, Xiong H, Guo T. β-Nicotinamide mononucleotide alleviates sepsis-associated acute kidney injury by activating NAD+/Sirt3 signaling[J]. Cell Biochem Biophys, 2025, 83(2):2089-2099.DOI:10.1007/s12013-024-01619-9.
[47]
Morigi M, Perico L, Rota C, et al. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury[J]. J Clin Invest, 2015, 125(2):715-726.DOI:10.1172/jci77632.
[48]
Fan H, Le J, Sun M, et al. Sirtuin 3 deficiency promotes acute kidney injury induced by sepsis via mitochondrial dysfunction and apoptosis[J]. Iran J Basic Med Sci, 2021, 24(5):675-681.DOI:10.22038/ijbms.2021.54905.12312.
[49]
Jin K, Ma Y, Manrique-Caballero C, et al. Activation of AMP-activated protein kinase during sepsis/inflammation improves survival by preserving cellular metabolic fitness[J]. FASEB J, 2020, 34(5):7036-7057.DOI:10.1096/fj.201901900R.
[50]
Sun M, Wang F, Li H, et al. Maresin-1 attenuates sepsis-associated acute kidney injury via suppressing inflammation,endoplasmic reticulum stress and pyroptosis by activating the AMPK/Sirt3 pathway[J]. J Inflamm Res, 2024, 17(1):1349-1364.DOI:10.2147/jir.S442729.
[51]
Gan Y, Tao S, Cao D, et al. Protection of resveratrol on acute kidney injury in septic rats[J]. Hum Exp Toxicol, 2017, 36(10):1015-1022.DOI:10.1177/0960327116678298.
[52]
Fan H, Le JW, Sun M, et al. N-acetylcysteine protects septic acute kidney injury by inhibiting Sirt3-mediated mitochondrial dysfunction and apoptosis[J]. Iran J Basic Med Sci, 2024, 27(7):850-856.DOI:10.22038/ijbms.2024.72882.15853.
[53]
Deng Z, He M, Hu H, et al. Melatonin attenuates sepsis-induced acute kidney injury by promoting mitophagy through Sirt3-mediated TFAM deacetylation[J]. Autophagy, 2024, 20(1):151-165.DOI:10.1080/15548627.2023.2252265.
[54]
Tan C, Gu J, Li T, et al. Inhibition of aerobic glycolysis alleviates sepsis-induced acute kidney injury by promoting lactate/sirtuin 3/AMPK-regulated autophagy[J]. Int J Mol Med, 2021, 47(3):19.DOI:10.3892/ijmm.2021.4852.
[55]
Yuan Y, Yuan L, Yang J, et al. Autophagy-deficient macrophages exacerbate cisplatin-induced mitochondrial dysfunction and kidney injury via miR-195a-5p-Sirt3 axis[J]. Nat Commun, 2024, 15(1):4383.DOI:10.1038/s41467-024-47842-z.
[56]
Strnad P, Tacke F, Koch A, et al. Liver-guardian,modifier and target of sepsis[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(1):55-66.DOI:10.1038/nrgastro.2016.168.
[57]
Van den Broecke A, Van Coile L, Decruyenaere A, et al. Epidemiology,causes, evolution and outcome in a single-center cohort of 1 116 critically ill patients with hypoxic hepatitis[J]. Ann Intensive Care, 2018, 8(1):15.DOI:10.1186/s13613-018-0356-z.
[58]
Spirlì C, Fabris L, Duner E, et al. Cytokine-stimulated nitric oxide production inhibits adenylyl cyclase and cAMP-dependent secretion in cholangiocytes[J]. Gastroenterology, 2003, 124(3):737-753.DOI:10.1053/gast.2003.50100.
[59]
Spirlì C, Nathanson MH, Fiorotto R, et al. Proinflammatory cytokines inhibit secretion in rat bile duct epithelium[J]. Gastroenterology, 2001, 121(1):156-169.DOI:10.1053/gast.2001.25516.
[60]
Zheng Z, Ma H, Zhang X, et al. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis[J]. J Infect Dis, 2017, 215(9):1396-1406.DOI:10.1093/infdis/jix138.
[61]
Liu Z, Guo J, Sun H, et al. α-Lipoic acid attenuates LPS-induced liver injury by improving mitochondrial function in association with GR mitochondrial DNA occupancy[J]. Biochimie, 2015, 116(9):52-60.DOI:10.1016/j.biochi.2015.06.023.
[62]
Shulga N, Pastorino J. Hexokinase Ⅱ binding to mitochondria is necessary for Kupffer cell activation and is potentiated by ethanol exposure[J]. J Biol Chem, 2016, 291(24):12574.DOI:10.1074/jbc.A114.580175.
[63]
Kim A, Koo JH, Lee JM, et al. NRF2-mediated SIRT3 induction protects hepatocytes from ER stress-induced liver injury[J]. FASEB J, 2022, 36(3):e22170.DOI:10.1096/fj.202101470R.
[64]
Li R, Xin T, Li D, et al. Therapeutic effect of sirtuin 3 on ameliorating nonalcoholic fatty liver disease:the role of the ERK-CREB pathway and Bnip3-mediated mitophagy[J]. Redox Biol, 2018, 18(5):229-243.DOI:10.1016/j.redox.2018.07.011.
[65]
Ning Y, Dou X, Wang Z, et al. SIRT3:a potential therapeutic target for liver fibrosis[J]. Pharmacol Ther, 2024, 257(5):108639.DOI:10.1016/j.pharmthera.2024.108639.
[66]
Han X, Ning Y, Dou X, et al. Cornus officinalis with high pressure wine steaming enhanced anti-hepatic fibrosis:possible through SIRT3-AMPK axis[J]. J Pharm Anal, 2024, 14(5):100927.DOI:10.1016/j.jpha.2023.12.017.
[67]
Li M, Li C, Ye Z, et al. SIRT3 modulates fatty acid oxidation and attenuates cisplatin-induced AKI in mice[J]. J Cell Mol Med, 2020, 24(9):5109-5121.DOI:10.1111/jcmm.15148.
[68]
Su G. Lipopolysaccharides in liver injury:molecular mechanisms of Kupffer cell activation[J]. Am J Physiol Gastrointest Liver Physiol, 2002, 283(2):G256-G265.DOI:10.1152/ajpgi.00550.2001.
[69]
Yan J, Li S, Li S. The role of the liver in sepsis[J]. Int Rev Immunol, 2014, 33(6):498-510.DOI:10.3109/08830185.2014.889129.
[70]
Brun-Buisson C, Meshaka P, Pinton P, et al. EPISEPSIS:a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units[J]. Intensive Care Medicine, 2004, 30(4):580-588.DOI:10.1007/s00134-003-2121-4.
[71]
Vincent J, Angus D, Artigas A, et al. Effects of drotrecogin alfa(activated)on organ dysfunction in the PROWESS trial[J]. Crit Care Med, 2003, 31(3):834-840.DOI:10.1097/01.Ccm.0000051515.56179.E1.
[72]
Sun J, Zhang J, Wang X, et al. Gut-liver crosstalk in sepsis-induced liver injury[J]. Crit Care, 2020, 24(1):614.DOI:10.1186/s13054-020-03327-1.
[73]
Pei L, Li R, Wang X, et al. MSCs-derived extracellular vesicles alleviate sepsis-associated liver dysfunction by inhibiting macrophage glycolysis-mediated inflammatory response[J]. Int Immunopharmacol, 2024, 128(3):111575.DOI:10.1016/j.intimp.2024.111575.
[74]
Xiao D, Wang X, Liang W, et al. Convergence of sepsis-associated encephalopathy pathogenesis onto microglia[J]. J Transl Med, 2025, 23(1):622.DOI:10.1186/s12967-025-06635-8.
[75]
Hosokawa K, Gaspard N, Su F, et al. Clinical neurophysiological assessment of sepsis-associated brain dysfunction:a systematic review[J]. Crit Care(Lond), 2014, 18(6):674.DOI:10.1186/s13054-014-0674-y.
[76]
Gofton T, Young G. Sepsis-associated encephalopathy[J]. Nat Rev Neurol, 2012, 8(10):557-566.DOI:10.1038/nrneurol.2012.183.
[77]
He C, Aziguli A, Zhen J, et al. MiRNA-494 specifically inhibits SIRT3-mediated microglia activation in sepsis-associated encephalopathy[J]. Transl Cancer Res, 2022, 11(7):2299-2309.DOI:10.21037/tcr-22-1732.
[78]
Gareau MG. The microbiota-gut-brain axis in sepsis-associated encephalopathy[J]. mSystems, 2022, 7(4):e0053322.DOI:10.1128/msystems.00533-22.
[79]
Wang X, Wen X, Yuan S, et al. Gut-brain axis in the pathogenesis of sepsis-associated encephalopathy[J]. Neurobiol Dis, 2024, 195(6):106499.DOI:10.1016/j.nbd.2024.106499.
[80]
Sun F, Si Y, Bao H, et al. Regulation of sirtuin 3-mediated deacetylation of cyclophilin d attenuated cognitive dysfunction induced by sepsis-associated encephalopathy in mice[J]. Cell Mol Neurobiol, 2017, 37(8):1457-1464.DOI:10.1007/s10571-017-0476-2.
[81]
Iba T, Levy J, Warkentin T, et al. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation[J]. J Thromb Haemost, 2019, 17(11):1989-1994.DOI:10.1111/jth.14578.
[82]
Hunt B. Bleeding and coagulopathies in critical care[J]. N Engl J Med, 2014, 370(9):847-859.DOI:10.1056/NEJMra1208626.
[83]
Gando S, Fujishima S, Saitoh D, et al. The significance of disseminated intravascular coagulation on multiple organ dysfunction during the early stage of acute respiratory distress syndrome[J]. Thromb Res, 2020, 191(7):15-21.DOI:10.1016/j.thromres.2020.03.023.
[84]
Iba T, Levy J. Inflammation and thrombosis:roles of neutrophils,platelets and endothelial cells and their interactions in thrombus formation during sepsis[J]. J Thromb Haemost, 2018, 16(2):231-241.DOI:10.1111/jth.13911.
[85]
Ahamed J, Niessen F, Kurokawa T, et al. Regulation of macrophage procoagulant responses by the tissue factor cytoplasmic domain in endotoxemia[J]. Blood, 2007, 109(12):5251-5259.DOI:10.1182/blood-2006-10-051334.
[86]
Iba T, Miki T, Hashiguchi N, et al. Is the neutrophil a ‘prima donna’ in the procoagulant process during sepsis[J]. Crit Care(Lond), 2014, 18(4):230.DOI:10.1186/cc13983.
[87]
Matsumoto H, Yamakawa K, Ogura H, et al. Enhanced expression of cell-specific surface antigens on endothelial microparticles in sepsis-induced disseminated intravascular coagulation[J]. Shock, 2015, 43(5):443-449.DOI:10.1097/shk.0000000000000331.
[88]
Kudo D, Goto T, Uchimido R, et al. Coagulation phenotypes in sepsis and effects of recombinant human thrombomodulin:an analysis of three multicentre observational studies[J]. Crit Care(Lond), 2021, 25(1):114.DOI:10.1186/s13054-021-03541-5.
[89]
Zhang P, Zhao T, Zhou W. The clinical significance of SIRT3 in COVID-19 patients:a single center retrospective analysis[J]. Ann Clin Lab Sci, 2021, 51(5):686-693.
[90]
Gaul D, Weber J, van Tits L, et al. Loss of SIRT3 accelerates arterial thrombosis by increasing formation of neutrophil extracellular traps and plasma tissue factor activity[J]. Cardiovasc Res, 2018, 114(8):1178-1188.DOI:10.1093/cvr/cvy036.
[91]
Greco E, Lupia E, Bosco O, et al. Platelets and multi-organ failure in sepsis[J]. Int J Mol Sci, 2017, 18(10):2200.DOI:10.3390/ijms18102200.
[92]
Fuchs T, Bhandari A, Wagner D. Histones induce rapid and profound thrombocytopenia in mice[J]. Blood, 2011, 118(13):3708-3714.DOI:10.1182/blood-2011-01-332676.
[93]
Lv D, Luo M, Yan J, et al. Protective effect of sirtuin 3 on CLP-induced endothelial dysfunction of early sepsis by inhibiting NF-κB and NLRP3 signaling pathways[J]. Inflammation, 2021, 44(5):1782-1792.DOI:10.1007/s10753-021-01454-7.
[94]
van der Poll T, Shankar-Hari M, Wiersinga W. The immunology of sepsis[J]. Immunity, 2021, 54(11):2450-2464.DOI:10.1016/j.immuni.2021.10.012.
[95]
Zhang C, Zhang C, Wang H. Immune-checkpoint inhibitor resistance in cancer treatment:current progress and future directions[J]. Cancer Lett, 2023, 562(11):216182.DOI:10.1016/j.canlet.2023.216182.
[96]
Liu T, Vachharajani V, Millet P, et al. Sequential actions of SIRT1-RELB-SIRT3 coordinate nuclear-mitochondrial communication during immunometabolic adaptation to acute inflammation and sepsis[J]. J Biol Chem, 2015, 290(1):396-408.DOI:10.1074/jbc.M114.566349.
[97]
Cajander S, Kox M, Scicluna BP, et al. Profiling the dysregulated immune response in sepsis:overcoming challenges to achieve the goal of precision medicine[J]. Lancet Respir Med, 2024, 12(4):305-322.DOI:10.1016/s2213-2600(23)00330-2.
[98]
He Y, Huang B, Yang Y, et al. MicroRNA-16-5p exacerbates sepsis by upregulating aerobic glycolysis via SIRT3-SDHA axis[J]. Cell Biol Int, 2022, 46(12):2207-2219.DOI:10.1002/cbin.11908.
PDF(905 KB)

Accesses

Citation

Detail

Sections
Recommended

/