Functional Mechanisms of Spinal Cord Fragile X Mental Retardation Protein and β-Catenin Involved in Neuropathic Pain

Long ZHANG, Jinsong ZHAO, Li ZHOU, Lei CHEN, Zhiying FENG

Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (4) : 509-518.

PDF(2064 KB)
Home Journals Acta Academiae Medicinae Sinicae
Acta Academiae Medicinae Sinicae

Abbreviation (ISO4): Acta Academiae Medicinae Sinicae      Editor in chief: Xuetao CAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2064 KB)
Acta Academiae Medicinae Sinicae ›› 2025, Vol. 47 ›› Issue (4) : 509-518. DOI: 10.3881/j.issn.1000-503X.16494
Original Articles

Functional Mechanisms of Spinal Cord Fragile X Mental Retardation Protein and β-Catenin Involved in Neuropathic Pain

Author information +
History +

Abstract

Objective To explore the functional mechanism of spinal cord fragile X mental retardation protein(FMRP)involved in neuropathic pain(NP)by using the sciatic nerve model of chronic compression injury(CCI).Methods First,to investigate the changes of spinal cord FMRP and β-catenin following the development of NP,this study compared the 50%mechanical withdrawal threshold(MWT)and thermal withdrawal latency(TWL)in CCI rats,as well as changes of FMRP and β-catenin in the spinal dorsal horn post-surgery,through random grouping.Immunofluorescence staining was performed on spinal cord tissue sections from CCI rats.Second,to further validate the alterations in pain behavior when the FMRP function was lost,we measured the 50%MWT,TWL,and FMRP and β-catenin in the spinal dorsal horn after FMRP knockdown in CCI rats.Finally,we measured the 50%MWT,TWL,and FMRP and β-catenin in the case of FMRP hyperfunction for validation.Results Compared with the baseline CCI group and the naive and sham groups after modeling,the CCI group after modeling showed decreases in 50%MWT and TWL(all P<0.001).After modeling,compared with the naive group and the sham group,the CCI group presented up-regulated expression of FMRP(P=0.027,P=0.022)and β-catenin(P<0.001,P=0.001)in the spinal dorsal horn.No co-localization of FMRP with astrocytes and microglia was observed in the spinal cord,while the co-localization with neurons was observed.Compared with the baseline,the CCI+FMRP knockdown group showed decreases in 50%MWT(P=0.015)and TWL(P=0.001)after modeling.After intrathecal injection of small interfering RNA(siRNA),the 50%MWT(P=0.020)and TWL(P=0.009)of the CCI+FMRP knockdown group were increased.Moreover,compared with the CCI group and the CCI+solvent group,the CCI+FMRP knockdown group showed increases in 50%MWT(both P<0.001)and TWL(P=0.005,P=0.006).After intrathecal injection of siRNA,the expression levels of FMRP(P=0.012,P=0.007)and β-catenin(both P<0.001)in the spinal dorsal horn of the CCI+FMRP knockdown group were lower than those of the CCI group and the CCI+solvent group.Compared with the baseline FMRP overexpression group and the naive and negative control groups after adeno-associated virus(AAV)injection,the FMRP overexpression group after AAV injection showed decreases in 50%MWT and TWL(all P<0.001).After AAV injection,compared with the naive group and the negative control group,the FMRP overexpression group demonstrated up-regulated expression of FMRP(both P<0.001)and β-catenin(P=0.006,P=0.008)in the spinal cord.Conclusions This study confirms that spinal cord FMRP and β-catenin are involved in NP induced by CCI.Spinal cord FMRP may be one of the potential therapeutic targets for NP.

Key words

fragile X mental retardation protein / β-catenin / neuropathic pain / spinal cord

Cite this article

Download Citations
Long ZHANG , Jinsong ZHAO , Li ZHOU , et al . Functional Mechanisms of Spinal Cord Fragile X Mental Retardation Protein and β-Catenin Involved in Neuropathic Pain[J]. Acta Academiae Medicinae Sinicae. 2025, 47(4): 509-518 https://doi.org/10.3881/j.issn.1000-503X.16494

References

[1]
Raja SN, Carr DB, Cohen M, et al. The revised International Association for the Study of Pain definition of pain:concepts,challenges,and compromises[J]. Pain, 2020, 161(9):1976-1982.DOI:10.1097/j.pain.0000000000001939.
[2]
Bouhassira D. Neuropathic pain:definition,assessment and epidemiology[J]. Rev Neurol(Paris), 2019, 175(1-2):16-25.DOI:10.1016/j.neurol.2018.09.016.
[3]
Murnion BP. Neuropathic pain:current definition and review of drug treatment[J]. Aust Prescr, 2018, 41(3):60-63.DOI:10.18773/austprescr.2018.022.
[4]
Finnerup NB, Haroutounian S, Kamerman P, et al. Neuropathic pain:an updated grading system for research and clinical practice[J]. Pain, 2016, 157(8):1599-1606.DOI:10.1097/j.pain.0000000000000492.
[5]
Cruccu G, Garcia-Larrea L, Hansson P, et al. EAN guidelines on central neurostimulation therapy in chronic pain conditions[J]. Eur J Neurol, 2016, 23(10):1489-1499.DOI:10.1111/ene.13103.
[6]
Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults:a systematic review and meta-analysis[J]. Lancet Neurol, 2015, 14(2):162-173.DOI:10.1016/S1474-4422(14)70251-0.
[7]
Zilliox LA. Neuropathic pain[J]. Continuum(Minneap Minn), 2017, 23(2):512-532.DOI:10.1212/CON.0000000000000462.
[8]
Dworkin RH, O’Connor AB, Kent J, et al. Interventional management of neuropathic pain:NeuPSIG recommendations[J]. Pain, 2013, 154(11):2249-2261.DOI:10.1016/j.pain.2013.06.004.
[9]
Symons FJ, Byiers BJ, Raspa M, et al. Self-injurious behavior and fragile X syndrome:findings from the national fragile X survey[J]. Am J Intellect Dev Disabil, 2010, 115(6):473-481.DOI:10.1352/1944-7558-115.6.473.
[10]
Hessl D, Tassone F, Loesch DZ, et al. Abnormal elevation of FMR1 mRNA is associated with psychological symptoms in individuals with the fragile X premutation[J]. Am J Med Genet B Neuropsychiatr Genet, 2005, 139B(1):115-121.DOI:10.1002/ajmg.b.30241.
[11]
Berry-Kravis E, Goetz CG, Leehey MA, et al. Neuropathic features in fragile X premutation carriers[J]. Am J Med Genet A, 2007, 143A(1):19-26.DOI:10.1002/ajmg.a.31559.
[12]
Hagerman RJ, Hagerman P. Fragile X-associated tremor/ataxia syndrome-features,mechanisms and management[J]. Nat Rev Neurol, 2016, 12(7):403-412.DOI:10.1038/nrneurol.2016.82.
[13]
Casingal CR, Kikkawa T, Inada H, et al. Identification of FMRP target mRNAs in the developmental brain:FMRP might coordinate Ras/MAPK,Wnt/β-catenin,and mTOR signaling during corticogenesis[J]. Mol Brain, 2020, 13(1):167.DOI:10.1186/s13041-020-00706-1.
[14]
Ehyai S, Miyake T, Williams D, et al. FMRP recruitment of β-catenin to the translation pre-initiation complex represses translation[J]. EMBO Rep, 2018, 19(12):e45536.DOI:10.15252/embr.201745536.
[15]
Størkson RV, Kjørsvik A, Tjølsen A, et al. Lumbar catheterization of the spinal subarachnoid space in the rat[J]. J Neurosci Methods, 1996, 65(2):167-172.DOI:10.1016/0165-0270(95)00164-6.
[16]
Chen L, Guo X, Zhang L, et al. Upregulation of FMRP is involved in neuropathic pain by regulating GluN2B activation in rat spinal cord[J]. J Neurochem, 2025, 169(2):e70022.DOI:10.1111/jnc.70022.
[17]
Price TJ, Melemedjian OK. Fragile X mental retardation protein(FMRP)and the spinal sensory system[J]. Results Probl Cell Differ, 2012,54:41-59.DOI:10.1007/978-3-642-21649-7_4.
[18]
Wang L, Almeida LE, Nettleton M, et al. Altered nocifensive behavior in animal models of autism spectrum disorder:the role of the nicotinic cholinergic system[J]. Neuropharmacology, 2016, 111:323-334.DOI:10.1016/j.neuropharm.2016.09.013.
[19]
Veeraragavan S, Graham D, Bui N, et al. Genetic reduction of muscarinic M4 receptor modulates analgesic response and acoustic startle response in a mouse model of fragile X syndrome(FXS)[J]. Behav Brain Res, 2012, 228(1):1-8.DOI:10.1016/j.bbr.2011.11.018.
[20]
Darnell JC, Klann E. The translation of translational control by FMRP:therapeutic targets for FXS[J]. Nat Neurosci, 2013, 16(11):1530-1536.DOI:10.1038/nn.3379.
[21]
Mientjes EJ, Nieuwenhuizen I, Kirkpatrick L, et al. The generation of a conditional Fmr1 knock out mouse model to study Fmrp function in vivo[J]. Neurobiol Dis, 2006, 21(3):549-555.DOI:10.1016/j.nbd.2005.08.019.
[22]
Yang LK, Lu L, Feng B, et al. FMRP acts as a key messenger for visceral pain modulation[J]. Mol Pain, 2020,16:1744806920972241.DOI:10.1177/1744806920972241.
[23]
Yang Y, Zhao J, Li Y, et al. Fragile X mental retardation protein-regulated proinflammatory cytokine expression in the spinal cord contributes to the pathogenesis of inflammatory pain induced by complete Freund’s adjuvant[J]. J Neurochem, 2021, 159(3):512-524.DOI:10.1111/jnc.15485.
[24]
Price TJ, Rashid MH, Millecamps M, et al. Decreased nociceptive sensitization in mice lacking the fragile X mental retardation protein:role of mGluR1/5 and mTOR[J]. J Neurosci, 2007, 27(51):13958-13967.DOI:10.1523/JNEUROSCI.4383-07.2007.
[25]
Christie SB, Akins MR, Schwob JE, et al. The FXG:a presynaptic fragile X granule expressed in a subset of developing brain circuits[J]. J Neurosci, 2009, 29(5):1514-1524.DOI:10.1523/JNEUROSCI.3937-08.2009.
[26]
Price TJ, Flores CM, Cervero F, et al. The RNA binding and transport proteins staufen and fragile X mental retardation protein are expressed by rat primary afferent neurons and localize to peripheral and central axons[J]. Neuroscience, 2006, 141(4):2107-2116.DOI:10.1016/j.neuroscience.2006.05.047.
[27]
Mei X, Yang Y, Zhao J, et al. Role of fragile X mental retardation protein in chronic pain[J]. Mol Pain, 2020,16:1744806920928619.DOI:10.1177/1744806920928619.
[28]
Darnell JC, Van Driesche SJ, Zhang C, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism[J]. Cell, 2011, 146(2):247-261.DOI:10.1016/j.cell.2011.06.013.
[29]
Xie RG, Chu WG, Liu DL, et al. Presynaptic NMDARs on spinal nociceptor terminals state-dependently modulate synaptic transmission and pain[J]. Nat Commun, 2022, 13(1):728.DOI:10.1038/s41467-022-28429-y.
[30]
Huang Y, Chen SR, Chen H, et al. Theta-Burst stimulation of primary afferents drives long-term potentiation in the spinal cord and persistent pain via α2δ-1-bound NMDA receptors[J]. J Neurosci, 2022, 42(3):513-527.DOI:10.1523/JNEUROSCI.1968-21.2021.
[31]
Richter JD, Zhao X. The molecular biology of FMRP:new insights into fragile X syndrome[J]. Nat Rev Neurosci, 2021, 22(4):209-222.DOI:10.1038/s41583-021-00432-0.
[32]
Patel AB, Loerwald KW, Huber KM, et al. Postsynaptic FMRP promotes the pruning of cell-to-cell connections among pyramidal neurons in the L5A neocortical network[J]. J Neurosci, 2014, 34(9):3413-3418.DOI:10.1523/JNEUROSCI.2921-13.2014.
[33]
Zhang YK, Huang ZJ, Liu S, et al. WNT signaling underlies the pathogenesis of neuropathic pain in rodents[J]. J Clin Invest, 2013, 123(5):2268-2286.DOI:10.1172/JCI65364.
[34]
Zhao Y, Yang Z. Effect of Wnt signaling pathway on pathogenesis and intervention of neuropathic pain[J]. Exp Ther Med, 2018, 16(4):3082-3088.DOI:10.3892/etm.2018.6512.
[35]
Resham K, Sharma SS. Pharmacological interventions targeting Wnt/β-catenin signaling pathway attenuate paclitaxel-induced peripheral neuropathy[J]. Eur J Pharmacol, 2019,864:172714.DOI:10.1016/j.ejphar.2019.172714.
[36]
Westmark CJ, Maloney B, Alisch RS, et al. FMRP regulates the nuclear export of Adam9 and Psen1 mRNAs:secondary analysis of an N(6)-methyladenosine dataset[J]. Sci Rep, 2020, 10(1):10781.DOI:10.1038/s41598-020-66394-y.
[37]
Griffin JN, Del Viso F, Duncan AR, et al. RAPGEF5 regulates nuclear translocation of β-catenin[J]. Dev Cell, 2018, 44(2):248-260.e4.DOI:10.1016/j.devcel.2017.12.001.
[38]
Ding Q, Zhang F, Feng Y, et al. Carbamazepine restores neuronal signaling,protein synthesis,and cognitive function in a mouse model of fragile X syndrome[J]. Int J Mol Sci, 2020, 21(23):9327.DOI:10.3390/ijms21239327.
[39]
Ramírez-López A, Pastor A, de la Torre R, et al. Role of the endocannabinoid system in a mouse model of fragile X undergoing neuropathic pain[J]. Eur J Pain, 2021, 25(6):1316-1328.DOI:10.1002/ejp.1753.
[40]
Lu JS, Chen QY, Chen X, et al. Cellular and synaptic mechanisms for Parkinson’s disease-related chronic pain[J]. Mol Pain, 2021,17:1744806921999025.DOI:10.1177/1744806921999025.
[41]
Wang H, Wu LJ, Kim SS, et al. FMRP acts as a key messenger for dopamine modulation in the forebrain[J]. Neuron, 2008, 59(4):634-647.DOI:10.1016/j.neuron.2008.06.027.
[42]
Guo Y, Chen X, Xing R, et al. Interplay between FMRP and lncRNA TUG1 regulates axonal development through mediating Sno N-Ccd1 pathway[J]. Hum Mol Genet, 2018, 27(3):475-485.DOI:10.1093/hmg/ddx417.
[43]
Edbauer D, Neilson JR, Foster KA, et al. Regulation of synaptic structure and function by FMRP-associated micro RNAs miR-125b and miR-132[J]. Neuron, 2010, 65(3):373-384.DOI:10.1016/j.neuron.2010.01.005.
PDF(2064 KB)

Accesses

Citation

Detail

Sections
Recommended

/