MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms

Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen

Prog Chem ›› 2023, Vol. 35 ›› Issue (3) : 458-474.

PDF(6467 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6467 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (3) : 458-474. DOI: 10.7536/PC220822
Review

MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms

Author information +
History +

Abstract

MIL-101(Fe) is a typical Fe-based metal-organic framework (Fe-MOF), which demonstrates the advantages of flexible structure, large specific surface area, large porosity, and adjustable pore size. In recent years, MIL-101(Fe) and its composites have been extensively studied in the field of water pollution remediation, especially in the hexavalent chromium (Cr(Ⅵ)) reduction and advanced oxidation processes for removing organic pollutants in water. The water stability, light absorption activity and the carrier separation efficiency can be significantly improved by functional modification with specific functional materials. In this review, the preparation strategies of MIL-101(Fe) and its composites, as well as their application as heterogeneous catalysts for photocatalysis, H2O2 activation, and persulfate activation were introduced. The future development of MIL-101(Fe) and its composites as catalysts for water purification is prospected.

Key words

MIL-101(Fe) / catalysis / hexavalent chromium / organic pollutants / wastewater treatment

Cite this article

Download Citations
Lan Mingyan , Zhang Xiuwu , Chu Hongyu , et al. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms[J]. Progress in Chemistry. 2023, 35(3): 458-474 https://doi.org/10.7536/PC220822

References

[1]
Wang C C, Yi X H, Wang P. Appl. Catal. B Environ., 2019, 247: 24.
[2]
Zhou H C, Kitagawa S. Chem. Soc. Rev., 2014, 43(16): 5415.
[3]
Ren X Y, Wang C C, Li Y, Wang P, Gao S J. J. Hazard. Mater., 2023, 445: 130552.
[4]
Zhang Y M, Yuan S, Day G, Wang X, Yang X Y, Zhou H C. Coord. Chem. Rev., 2018, 354: 28.
[5]
Qian Y T, Zhang F F, Pang H. Adv. Funct. Mater., 2021, 31(37): 2104231.
[6]
Chu H Y, Wang T Y, Wang C C. Progress in Chemistry, 2022, 34 (12): 2700.
(楚宏宇, 王天宇, 王崇臣. 化学进展, 2022, 34 (12): 2700.).
[7]
Li X Y, Zhang H C, Wang P Y, Hou J, Lu J, Easton C D, Zhang X W, Hill M R, Thornton A W, Liu J Z. Nat. Commun., 2019, 10(1): 1.
[8]
Chen X R, Tong R L, Shi Z Q, Yang B, Liu H, Ding S P, Wang X, Lei Q F, Wu J, Fang W J. ACS Appl. Mater. Interfaces, 2018, 10(3): 2328.
[9]
Jie B R, Lin H D, Zhai Y X, Ye J Y, Zhang D Y, Xie Y F, Zhang X D, Yang Y Q. Chem. Eng. J., 2023, 454: 139931.
[10]
Hu Y H, Zhang L. Adv. Mater., 2010, 22(20): E117.
[11]
Yaghi O M, Li H L. J. Am. Chem. Soc., 1995, 117(41): 10401.
[12]
FÉrey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, SurblÉ S, Margiolaki I. Science, 2005, 309(5743): 2040.
[13]
Biswas S, Couck S, Grzywa M, Denayer J F M, Volkmer D, Van Der Voort P. Eur. J. Inorg. Chem., 2012, 2012(15): 2481.
[14]
Taghizadeh M, Tahami S. Rev. Chem. Eng., 2022,DOI:10.1015/revce-2021-0050.
[15]
Ravi Y, Prasanthi I, Behera S, Datta K K R. ACS Appl. Nano Mater., 2022, 5(4): 5857.
[16]
Wang D K, Huang R K, Liu W J, Sun D R, Li Z H. ACS Catal., 2014, 4(12): 4254.
[17]
Duan M J, Guan Z Y, Ma Y W, Wan J Q, Wang Y, Qu Y F. Chem. Pap., 2018, 72(1): 235.
[18]
Li Z C, Liu X M, Jin W, Hu Q S, Zhao Y P. J. Colloid Interface Sci., 2019, 554: 692.
[19]
Yang M, Tang J, Ma Q Q, Zheng N N, Tan L. J. Porous Mater., 2015, 22(5): 1345.
[20]
Wang F X, Wang C C. Research of Environmental Sciences, 2021, 34(12): 2924.
(王茀学, 王崇臣. 环境科学研究, 2021, 34(12): 2924.).
[21]
Taylor-Pashow K M L, Della Rocca J, Xie Z G, Tran S, Lin W B. J. Am. Chem. Soc., 2009, 131(40): 14261.
[22]
Dong Y N, Hu T D, Pudukudy M, Su H Y, Jiang L H, Shan S Y, Jia Q M. Mater. Chem. Phys., 2020, 251: 123060.
[23]
Wu W B, Decker G E, Weaver A E, Arnoff A I, Bloch E D, Rosenthal J. ACS Cent. Sci., 2021, 7(8): 1427.
[24]
Huang P P, Yao L L, Chang Q, Sha Y H, Jiang G D, Zhang S H, Li Z. Chemosphere, 2022, 291: 133026.
[25]
Zhao X D, Zhang C W, Liu B S, Zhao H F, Gao X L, Wang Y Y, Zhang Y Z, Liu D H, Wang C C. Resour. Conserv. Recycl., 2023, 188: 106647.
[26]
Zhang L, Wang C Y, Wang C C. Resour. Conserv. Recycl., 2023, 190: 106805.
[27]
Zhao F P, Liu Y P, Ben Hammouda S, Doshi B, Guijarro N, Min X B, Tang C J, Sillanpää M, Sivula K, Wang S B. Appl. Catal. B Environ., 2020, 272: 119033.
[28]
Huo Q, Liu G Q, Sun H H, Fu Y F, Ning Y, Zhang B Y, Zhang X B, Gao J, Miao J R, Zhang X L, Liu S Y. Chem. Eng. J., 2021, 422: 130036.
[29]
Vu T A, Le G H, Dao C D, Dang L Q, Nguyen K T, Dang P T, Tran H T K, Duong Q T, Nguyen T V, Lee G D. RSC Adv., 2014, 4(78): 41185.
[30]
Jiang Y N, Wang Z J, Huang J B, Yan F, Du Y, He C S, Liu Y, Yao G, Lai B. Chem. Eng. J., 2022, 439: 135788.
[31]
Xu J J, Wang S Y, Yan C Y, Adeel Sharif H M, Yang B. Chemosphere, 2022, 288: 132666.
[32]
Gong J Q, Zhang W W, Sen T, Yu Y C, Liu Y C, Zhang J L, Wang L Z. ACS Appl. Nano Mater., 2021, 4(5): 4513.
[33]
O’Brien T J, Ceryak S, Patierno S R. Mutat. Res., Fundam. Mol. Mech. Mutagen., 2003, 533(1/2): 3.
[34]
Wang C C, Du X D, Li J, Guo X X, Wang P, Zhang J. Appl. Catal. B Environ., 2016, 193: 198.
[35]
Al-Fartusie F S, Mohssan S N. Indian J. Adv. Chem. Sci., 2017, 5(3): 127.
[36]
Wang C C, Ren X Y, Wang P, Chang C. Chemosphere, 2022, 303: 134949.
[37]
Wang F X, Yi X H, Wang C C, Deng J G. Chinese Journal of Catalysis., 2017, 38(12): 2141.
(王茀学, 衣晓虹, 王崇臣, 邓积光. 催化学报, 2017, 38(12): 2141.).
[38]
Li Y H, Yi X H, Li Y X, Wang C C, Wang P, Zhao C, Zheng W W. Environ. Res., 2021, 201: 111596.
[39]
Wang J W, Qiu F G, Wang P, Ge C J, Wang C C. J. Clean. Prod., 2021, 279: 123408.
[40]
Zhou Y C, Wang P, Fu H F, Zhao C, Wang C C. Chin. Chem. Lett., 2020, 31(10): 2645.
[41]
Du X D, Yi X H, Wang P, Zheng W W, Deng J G, Wang C C. Chem. Eng. J., 2019, 356: 393.
[42]
Zhao Q, Yi X H, Wang C C, Wang P, Zheng W W. Chem. Eng. J., 2022, 429: 132497.
[43]
Doan V D, Huynh B A, Le Pham H A, Vasseghian Y, Le V T. Environ. Res., 2021, 201: 111593.
[44]
Shi L, Wang T, Zhang H B, Chang K, Meng X G, Liu H M, Ye J H. Adv. Sci., 2015, 2(3): 1500006.
[45]
Liu B K, Wu Y J, Han X L, Lv J H, Zhang J T, Shi H Z. J. Mater. Sci. Mater. Electron., 2018, 29(20): 17591.
[46]
Liu J, Hao D D, Sun H W, Li Y, Han J L, Fu B, Zhou J C. Ind. Eng. Chem. Res., 2021, 60(33): 12220.
[47]
Sadeghian S, Pourfakhar H, Baghdadi M, Aminzadeh B. Chemosphere, 2021, 268: 129365.
[48]
Pattappan D, Kavya K V, Vargheese S, Kumar R T R, Haldorai Y. Chemosphere, 2022, 286: 131875.
[49]
Jiang J M, Huang F H, Bai R, Zhang J L, Wang L. J. Environ. Chem. Eng., 2022, 10(3): 107908.
[50]
Fu Y H, Sun D R, Chen Y J, Huang R K, Ding Z X, Fu X Z, Li Z H. Angew. Chem. Int. Ed., 2012, 51(14): 3364.
[51]
Ai L H, Zhang C H, Li L L, Jiang J. Appl. Catal. B Environ., 2014, 148/149: 191.
[52]
Li Y X, Wang X, Wang C C, Fu H F, Liu Y B, Wang P, Zhao C. J. Hazard. Mater., 2020, 399: 123085.
[53]
Li Y X, Fu H F, Wang P, Zhao C, Liu W, Wang C C. Environ. Pollut., 2020, 256: 113417.
[54]
Liu X L, Ma R, Zhuang L, Hu B W, Chen J R, Liu X Y, Wang X K. Crit. Rev. Environ. Sci. Technol., 2021, 51(8): 751.
[55]
Wen J Q, Xie J, Chen X B, Li X. Appl. Surf. Sci., 2017, 391: 72.
[56]
Li X Y, Pi Y H, Wu L Q, Xia Q B, Wu J L, Li Z, Xiao J. Appl. Catal. B Environ., 2017, 202: 653.
[57]
Ndolomingo M J, Bingwa N, Meijboom R. J. Mater. Sci., 2020, 55(15): 6195.
[58]
Tzou Y M, Chen K Y, Cheng C Y, Lee W Z, Teah H Y, Liu Y T. Environ. Pollut., 2020, 261: 114024.
[59]
Wang D B, Jia F Y, Wang H, Chen F, Fang Y, Dong W B, Zeng G M, Li X M, Yang Q, Yuan X Z. J. Colloid Interface Sci., 2018, 519: 273.
[60]
Huang C, Wang J, Li M J, Lei X F, Wu Q. Solid State Sci., 2021, 117: 106611.
[61]
Geng J G, Ma J L, Li F, Ma S Q, Zhang D, Ning X F. Ceram. Int., 2021, 47(10): 13291.
[62]
Huang Z J, Lai Z, Zhu D Y, Wang H Y, Zhao C X, Ruan G H, Du F Y. J. Colloid Interface Sci., 2021, 597: 196.
[63]
Zhang Y, Xiong M Y, Sun A R, Shi Z, Zhu B, Macharia D K, Li F, Chen Z G, Liu J S, Zhang L S. J. Clean. Prod., 2021, 290: 125782.
[64]
Xie L X, Zhang T S, Wang X Y, Zhu W X, Liu Z L, Liu M S, Wang J, Zhang L, Du T, Yang C Y, Zhu M Q, Wang J L. J. Clean. Prod., 2022, 359: 131808.
[65]
He L, Dong Y N, Zheng Y E, Jia Q M, Shan S Y, Zhang Y Q. J. Hazard. Mater., 2019, 361: 85.
[66]
Hajiali M, Farhadian M, Tangestaninejad S, Khosravi M. Adv. Powder Technol., 2022, 33(5): 103546.
[67]
Su S Y, Xing Z P, Zhang S Y, Du M, Wang Y, Li Z Z, Chen P, Zhu Q, Zhou W. Appl. Surf. Sci., 2021, 537: 147890.
[68]
Xie Y H, Liu C R, Li D J, Liu Y. Appl. Surf. Sci., 2022, 592: 153312.
[69]
Cong Y Q, Li Y N, Wang X R, Wei X, Che L, Lv S W. Sep. Purif. Technol., 2022, 297: 121531.
[70]
Ren H H, Bai R, Huang F H, Zhang J L, Wang L. Cryst. Growth. Des., 2022, 22(8): 4864.
[71]
Hu C Y, Jiang Z W, Yang C P, Wang X Y, Wang X, Zhen S J, Wang D M, Zhan L, Huang C Z, Li Y F. Chem. A Eur. J., 2022, 28(54): e202201437.
[72]
Li Y H, Wang P, Wang C C, Liu Y B. Chin. J. Inorg. Chem., 2022, 38(12): 2342.
(李渝航, 王鹏, 王崇臣, 刘艳彪. 无机化学学报, 2022, 38(12): 2342.).
[73]
Shi K X, Qiu F G, Wang J W, Wang P, Li H Y, Wang C C. Sep. Purif. Technol., 2023, 309: 122991.
[74]
Yang H, Zhao Z C, Yang Y P, Zhang Z, Chen W, Yan R Q, Jin Y X, Zhang J. Sep. Purif. Technol., 2022, 300: 121846.
[75]
Guo W X, Zhang F, Lin C J, Wang Z L. Adv. Mater., 2012, 24(35): 4761.
[76]
Du C Y, Zhang Y, Zhang Z, Zhou L, Yu G L, Wen X F, Chi T Y, Wang G L, Su Y H, Deng F F, Lv Y C, Zhu H. Chem. Eng. J., 2022, 431: 133932.
[77]
Bokare A D, Choi W. J. Hazard. Mater., 2014, 275: 121.
[78]
Fu H F, Song X X, Wu L, Zhao C, Wang P, Wang C C. Mater. Res. Bull., 2020, 125: 110806.
[79]
Wang F X, Wang C C, Du X D, Li Y, Wang F, Wang P. Chem. Eng. J., 2022, 429: 132495.
[80]
Zhao Q, Wang C C, Wang P. Chin. Chem. Lett., 2022, 33(11): 4828.
[81]
Wu L, Wang C C, Chu H Y, Yi X H, Wang P, Zhao C, Fu H F. Chemosphere, 2021, 280: 130659.
[82]
Chen D D, Yi X H, Ling L, Wang C C, Wang P. Appl. Organomet. Chem., 2020, 34(9): e5795.
[83]
Gao C, Chen S, Quan X, Yu H T, Zhang Y B. J. Catal., 2017, 356: 125.
[84]
Zhang Y W, Liu F, Yang Z C, Qian J S, Pan B C. Nano. Res., 2021, 14(7): 2383.
[85]
Zhao C C, Dong P, Liu Z M, Wu G R, Wang S J, Wang Y Q, Liu F. RSC Adv., 2017, 7(39): 24453.
[86]
Aboueloyoun Taha A, Huang L B, Ramakrishna S, Liu Y. J. Water Process. Eng., 2020, 33: 101004.
[87]
Liang H, Liu R P, An X Q, Hu C Z, Zhang X W, Liu H J. Chem. Eng. J., 2021, 414: 128669.
[88]
Fu J W, Wang L, Chen Y H, Yan D Y, Ou H S. Environ. Sci. Pollut. Res., 2021, 28(48): 68560.
[89]
Liang H, Liu R P, Hu C Z, An X Q, Zhang X W, Liu H J, Qu J H. J. Hazard. Mater., 2021, 406: 124692.
[90]
Karami K, Beram S M, Siadatnasab F, Bayat P, Ramezanpour A. J. Mol. Struct., 2021, 1231: 130007.
[91]
Li Z T, Gu Y F, Li F T. J. Environ. Chem. Eng., 2022, 10(3): 107686.
[92]
Bao C S, Zhao J, Sun Y Y, Zhao X L, Zhang X H, Zhu Y K, She X L, Yang D J, Xing B S. Environ. Sci.: Nano, 2021, 8(8): 2347.
[93]
Ma Y W, Lu Y F, Hai G T, Dong W J, Li R J, Liu J H, Wang G. Sci. Bull., 2020, 65(8): 658.
[94]
Yan D Y, Hu H, Gao N Y, Ye J S, Ou H S. Appl. Surf. Sci., 2019, 498: 143836.
[95]
Lin J L, Hu H, Gao N Y, Ye J S, Chen Y J, Ou H S. J. Water Process. Eng., 2020, 33: 101010.
[96]
Fakhri H, Farzadkia M, Boukherroub R, Srivastava V, Sillanpää M. Sol. Energy, 2020, 208: 990.
[97]
Bagherzadeh S B, Kazemeini M, Mahmoodi N M. J. Colloid Interface Sci., 2021, 602: 73.
[98]
Li Y C, Wang X Y, Duan Z Y, Yu D H, Wang Q, Ji D D, Liu W X. Sep. Purif. Technol., 2022, 293: 121099.
[99]
Song R T, Yao J, Yang M, Ye Z B, Xie Z, Zeng X. Nanoscale, 2022, 14(18): 7055.
[100]
Lin H D, Jie B R, Ye J Y, Zhai Y X, Luo Z J, Shao G J, Chen R Z, Zhang X D, Yang Y Q. Surf. Interfaces, 2023, 36: 102564.
[101]
Zheng L, Gu Y F, Hua B L, Fu J R, Li F T. Chemosphere, 2022, 307: 135728.
[102]
Wang J L, Tang J T. J. Mol. Liq., 2021, 332: 115755.
[103]
Wu Q S, Yang H P, Kang L, Gao Z, Ren F F. Appl. Catal. B Environ., 2020, 263: 118282.
[104]
Jiang S T, Zhao Z Y, Chen J F, Yang Y, Ding C Y, Yang Y Q, Wang Y X, Liu N, Wang L, Zhang X D. Surf. Interfaces, 2022, 30: 101843.
[105]
Zhang X W, Lan M Y, Wang F, Yi X H, Wang C C. J. Environ. Chem. Eng., 2022, 10(3): 107997.
[106]
Zhang X W, Lan M Y, Wang F, Wang C C, Wang P, Ge C J, Liu W. Chem. Eng. J., 2022, 450: 138082.
[107]
Yi X H, Wang C C. Progress in Chemistry, 2021, 33(03): 471.
(衣晓虹, 王崇臣. 化学进展, 2021, 33(03): 471.).
[108]
Li X H, Guo W L, Liu Z H, Wang R Q, Liu H. Appl. Surf. Sci., 2016, 369: 130.
[109]
Yue X X, Guo W L, Li X H, Zhou H H, Wang R Q. Environ. Sci. Pollut. Res., 2016, 23(15): 15218.
[110]
Li X H, Guo W L, Liu Z H, Wang R Q, Liu H. J. Hazard. Mater., 2017, 324: 665.
[111]
Gong Y, Yang B, Zhang H, Zhao X. J. Mater. Chem. A, 2018, 6(46): 23703.
[112]
Yang J Y, Zeng Z Q, Huang Z G, Cui Y. Catalysts, 2019, 9(11): 906.
[113]
Hu H, Zhang H X, Chen Y, Chen Y J, Zhuang L, Ou H S. Chem. Eng. J., 2019, 368: 273.
[114]
He L, Zhang Y Q, Zheng Y E, Jia Q M, Shan S Y, Dong Y N. J. Porous Mater., 2019, 26(6): 1839.
[115]
Zhang M W, Lin K Y A, Huang C F, Tong S P. Sep. Purif. Technol., 2019, 227: 115632.
[116]
Liu Z, Su R D, Sun X, Zhou W Z, Gao B Y, Yue Q Y, Li Q. Sci. Total Environ., 2020, 741: 140464.
[117]
Xiao Z Y, Li Y, Fan L, Wang Y X, Li L. J. Colloid Interface Sci., 2021, 589: 298.
[118]
Jiang H, Zhong Y, Tian K X, Pang H L, Hao Y Y. Appl. Surf. Sci., 2022, 577: 151902.
[119]
Xu Y Y, Wang Y, Wan J Q, Ma Y W. Chemosphere, 2020, 240: 124849.
[120]
Moazeni M, Hashemian S M, Sillanpää M, Ebrahimi A, Kim K H. J. Environ. Manag., 2022, 303: 113897.
[121]
Bi H, Liu C Z, Li J Y, Tan J. J. Solid State Chem., 2022, 306: 122741.
[122]
Wang Y, Guo W L, Li X H. RSC Adv., 2018, 8(64): 36477.
[123]
Li H X, Lou Y C, Zheng J T, Su L Y, Lu S, Xu C, Huang J G, Zhou Q W, Tang J H, Huang M Z. J. Environ. Chem. Eng., 2022, 10(5): 108272.
[124]
Gu A T, Wang P, Chen K W, Djam Miensah E, Gong C H, Jiao Y, Mao P, Chen K, Jiang J L, Liu Y, Yang Y. Sep. Purif. Technol., 2022, 298: 121461.
[125]
Ezzatahmadi N, Ayoko G A, Millar G J, Speight R, Yan C, Li J H, Li S Z, Zhu J X, Xi Y F. Chem. Eng. J., 2017, 312: 336.
[126]
Xu L J, Wang J L. Appl. Catal. B Environ., 2012, 123/124: 117.
[127]
Jabbari V, Veleta J M, Zarei-Chaleshtori M, Gardea-Torresdey J, Villagrán D. Chem. Eng. J., 2016, 304: 774.
[128]
Guo H S, Su S N, Liu Y, Ren X H, Guo W L. Environ. Sci. Pollut. Res., 2020, 27(14): 17194.
[129]
Ali Khan U, Liu J J, Pan J B, Ma H C, Zuo S L, Yu Y C, Ahmad A, Ullah S, li B S. Ind. Eng. Chem. Res., 2019, 58(1): 79.
[130]
Li H T, Kang Z H, Liu Y, Lee S T. J. Mater. Chem., 2012, 22(46): 24230.
[131]
Wang Q J, Wang G L, Liang X F, Dong X L, Zhang X F. Appl. Surf. Sci., 2019, 467/468: 320.
[132]
Qin X T, Qiang T T, Chen L, Wang S T. Microporous Mesoporous Mater., 2021, 315: 110889.
[133]
Qu D, Sun Z C, Zheng M, Li J, Zhang Y Q, Zhang G Q, Zhao H F, Liu X Y, Xie Z G. Adv. Opt. Mater., 2015, 3(3): 360.
[134]
Wang L J, Li X T, Yang B, Xiao K, Duan H B, Zhao H Z. Chem. Eng. J., 2022, 450: 138215.
[135]
Burtch N C, Jasuja H, Walton K S. Chem. Rev., 2014, 114(20): 10575.
[136]
Kuznicki A, Lorzing G R, Bloch E D. Chem. Commun., 2021, 57(67): 8312.
[137]
Ettlinger R, Lächelt U, Gref R, Horcajada P, Lammers T, Serre C, Couvreur P, Morris R E, Wuttke S. Chem. Soc. Rev., 2022, 51(2), 464.
[138]
Tamames-Tabar C, Cunha D, Imbuluzqueta E, Ragon F, Serre C, Blanco-Prieto M J, Horcajada P. J. Mater. Chem. B, 2014, 2(3): 262.
[139]
Ruyra À, Yazdi A, Espín J, CarnÉ-Sánchez A, Roher N, Lorenzo J, Imaz I, Maspoch D. Chem. Eur. J., 2015, 21(6): 2508.

Funding

National Natural Science Foundation of China(22176012)
Beijing Natural Science Foundation(8202016)
PDF(6467 KB)

Accesses

Citation

Detail

Sections
Recommended

/