Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 

Top access

  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All

Please wait a minute...
  • Select all
    |
  • Review
    Haozhe Zhang, Wenlong Xu, Fansheng Meng, Qiang Zhao, Yingyun Qiao, Yuanyu Tian
    Prog Chem. 2025, 37(2): 226-234. https://doi.org/10.7536/PC240512
    PDF (27) HTML (152)   Knowledge map   Save

    Plastic products represented by polyethylene terephthalate (PET) have become an important part of modern life and global economy. In order to solve the resource waste and environmental problems caused by PET waste and to realize high-value recycling of materials, there is an urgent need to explore low-cost green and efficient conversion and recycling methods. Chemical depolymerization can deal with low-value, mixed, and contaminated plastics, recover polymer monomers through different chemical reactions or chemically upgrade and recycle to produce new high value-added products, realizing the closed-loop recycling of plastic waste and high value-added applications, which is a key way to establish a circular polymer economy. This paper reviews the latest research progress of chemical depolymerization process of PET waste, analyzes the problems of chemical depolymerization technology of PET waste, and looks forward to the future development trend of chemical depolymerization process of PET waste.

    Contents

    1 Introduction

    2 Chemical recovery methods

    2.1 Hydrolysis

    2.2 Alcoholysis

    2.3 Ammonolysis and aminolysis

    2.4 Supercritical depolymerization

    3 Conclusion and outlook

  • Review
    Zuyi Huang, Xueqiang Tan, Jimin Zheng
    Prog Chem. 2025, 37(2): 185-194. https://doi.org/10.7536/PC240202
    PDF (23) HTML (110)   Knowledge map   Save

    Bifunctional small molecules are a sort of small molecules that engage multiple targets. They are subdivided into two categories: bifunctional small molecules with linkers and without linkers. Targeted protein degradation (TPD) is a currently emerging strategy hijacking cellular protein degradation systems, namely ubiquitin-proteasomal system and lysosomal system, to induce the degradation of targeted protein for drug development. Distinct from the traditional mechanism of action based on inhibition, TPD inhibits the function of targeted protein through targeted clearance, thus is advantageous in long-term inhibition and targeting undruggable proteins. With a unique mechanism of action, bifunctional small molecules are capable of binding degradation-associated protein and targeted protein simultaneously, and therefore used widely in the realm of TPD. This review summarizes the recent development of bifunctional molecules in TPD. Proteolysis targeting chimeras (PROTACs), molecular degraders of extracellular proteins through the asialoglycoprotein receptors (MoDE-As), and autophagy targeting chimeras (AUTACs) which based on bifunctional small molecules with linkers, and molecular glue degraders (MGDs) and autophagosome-tethering compounds (ATTECs) which based on bifunctional small molecules without linkers are introduced, with their clinical application highlighted. Finally, the challenges that the two categories of bifunctional small molecules respectively face in the realm of TPD as well as prospects and suggestions for their development are proposed.

    Contents

    1 Introduction

    2 Bifunctional small molecules with linkers for TPD

    2.1 PROTACs

    2.2 AUTACs

    2.3 MoDE-As

    2.4 Challenges for bifunctional small molecules with linkers in TPD

    3 Bifunctional small molecules with linkers for TPD

    3.1 MGDs

    3.2 ATTECs

    3.3 Rational design strategy for bifunctional small molecules without linkers

    4 Conclusion and outlook

  • Review
    Yanhong Liu, Dongju Zhang
    Prog Chem. 2025, 37(2): 281-292. https://doi.org/10.7536/PC240411

    The visible-light-driven copper-catalyzed decarboxylative coupling reaction of carboxylic acids and their derivatives is a novel, efficient, and green synthetic method. It allows the construction of various carbon-carbon and carbon-heteroatom bonds for the synthesis of a wide range of high-value-added chemicals, making it a hot topic in the field of modern synthetic chemistry. In recent years, researchers worldwide have conducted extensive studies in this area, achieving a series of innovative results that have been widely applied in organic synthesis, materials science, and medicinal chemistry. This paper reviews the latest experimental and theoretical advances in the visible-light-driven copper-catalyzed decarboxylative coupling reactions of carboxylic acids and their derivatives, with a focus on several typical cross-coupling reactions that form C—X (X = C, N, O, S) bonds. It also discusses the future development prospects of this catalytic method.

    Contents

    1 Introduction

    2 Mechanism of photocatalyst and copper complex co-catalysis

    3 Photocatalyst and copper complex co-catalyzed carboxylic acid (ester) decarboxylative coupling reactions

    3.1 C—C coupling

    3.2 C—N coupling

    3.3 C—O coupling

    3.4 C—S coupling

    4 Conclusion and outlook

  • Review
    Zaiyang Zheng, Huibin Sun, Wei Huang
    Prog Chem. 2025, 37(3): 295-316. https://doi.org/10.7536/PC240516

    Nowadays stretchable electronic devices have become a hot research topic in the field of information electronics because of their excellent mechanical and electrical properties. As the high-speed electron transmission channel in stretching electronic devices, stretchable conductive materials play a crucial role in realizing the functions of stretching electronic devices. Liquid metal has become a hot research object in the field of stretchable conductive composites in recent years because of its intrinsic flexibility and excellent conductivity. Liquid metal is a room temperature liquid conductive material, which exhibits excellent stretchability and tunability due to its inherent high conductivity, fluidity, and ductility. Liquid metal-based stretchable conductive composites preparation and patterning techniques have been reported and many stretchable devices with excellent combination of mechanical and electrical properties have been prepared. In view of the general structural characteristics of liquid metal-based stretchable composites, the key to the preparation is how to solve the interfacial non-impregnation problem caused by the physical property differences between different materials. Therefore, starting from the common types of composites, this paper firstly briefly introduces the components and physical properties of liquid metals generally used, as well as the stretchable polymer matrix materials usually employed. Then, the composite methods of conductive materials and elastomer materials in liquid metal-based electrodes are reviewed from the two ways of "passive" and "active" to deal with the problem of non-wetting at the interface, as well as the blending and dispersion method and the new modification method. Finally, the latest research progress is introduced, and the current status of liquid metal research is summarized. Future development and potential problems to be faced are also discussed.

    Contents

    1 Introduction

    2 Liquid metal-based flexible device material composition

    2.1 Liquid metal and its composite materials

    2.2 Flexible substrate material

    3 Preparation method of liquid metal-based flexible conductive composites

    3.1 Passive internal embedding method

    3.2 Active surface structure modification method

    3.3 Direct blending composite method

    3.4 New methods for the preparation and patterning of liquid metal electrodes

    4 Conclusion and outlook

  • Review
    Kaichong Wang, Han Wang, Yayi Wang
    Prog Chem. 2025, 37(2): 157-172. https://doi.org/10.7536/PC240501
    PDF (12) HTML (51)   Knowledge map   Save

    Solar energy is the energy source for all life on Earth, and its efficient conversion is of great significance for solving the global energy crises and environmental issues. Inspired by natural photosynthesis, researchers have recently developed whole-cell biohybrids based on semiconductors and microorganisms by integrating the excellent light absorption ability of photosensitizer semiconductors and the efficient biocatalysis ability of whole-cell microbes. The development of whole-cell biohybrids aims to realize efficient solar-to-chemical production in a green and low-carbon pathway. This review clarifies the operation principle and advantages of whole-cell biohybrids, and the properties of photosensitizer semiconductors are summarized, including the band structure, excitation wavelength and quantum yield. Moreover, this work innovatively concludes the construction mechanisms of whole-cell biohybrids and the electron transfer mechanisms in the interface between semiconductor and microbe. Moreover, the advanced progress of whole-cell biohybrids are reviewed, such as the high-value conversion of carbon dioxide, artificial nitrogen fixation, hydrogen production as well as pollutant removal and recovery. Finally, the environmental impacts and challenges of whole-cell biohybrids are discussed and the perspectives for the development of whole-cell biohybrids are proposed. This article is expected to provide fundamental insights for the further development and actual application of whole-cell biohybrids.

    Contents

    1 Introduction

    2 Principles and advantages of whole-cell biohybrids

    3 Types of photosensitizers in whole-cell biohybrids

    3.1 Inorganic semiconductors

    3.2 Organic semiconductors

    4 Construction mechanisms of whole-cell biohybrids

    5 Advanced application progresses of whole-cell biohybrids

    5.1 High-value conversion of CO2

    5.2 Artificial nitrogen fixation

    5.3 Hydrogen production

    5.4 Pollutants removal and resource recovery

    6 The environmental impacts and challenges in whole-cell biohybrids

    7 Conclusion and outlook

  • Review
    Qing Wang, Peng Li, Dawei Wu, Lu Jiang, Xinrui Fang, Haitao Niu, Hua Zhou
    Prog Chem. 2025, 37(2): 255-280. https://doi.org/10.7536/PC240415
    PDF (12) HTML (68)   Knowledge map   Save

    The exceptional waterproof and oil-repellent properties of fluorides, attributed to their remarkably low surface energy, have rendered them extensively employed in the realm of functional finishing. However, the use of fluorine presents potential hazards to human health and engenders irreversible harm to the environment. Consequently, it is progressively being regulated by nations, and discovering alternatives without fluorine has emerged as an imperative concern that necessitates immediate attention in the fields of waterproofing and anti-fouling. To clarify the definition of the fluorine-free materials with oil-repellent property and explore their potential applications in the field of chemistry, the research background of fluorine-free surfaces with oil-repellent property was described, along with a comprehensive review and evaluation of recent achievements and preparation methods. Furthermore, the mechanism of fluorine-free surfaces with oil-repellent property was analyzed, and the application status of fluorine-free coating with oil-repellent property in textiles, construction, food, liquid treatment and other fields was summarized. Additionally, an analysis of the current challenges in ongoing research process of fluorine-free surfaces with oil-repellent property was provided. Finally, a prospective outlook on the future of green and environmentally-friendly fluorine-free surface technology was prospected.

    Contents

    1 Introduction

    2 Properties and characteristics of fluorine-free surfaces with oil-repellent property

    3 Preparation strategy of fluorine-free surfaces with oil-repellent property

    3.1 Solid fluorine-free surfaces with oil-repellent property

    3.2 Liquid fluorine-free surfaces with oil-repellent property

    3.3 “Liquid-like” fluorine-free surfaces with oil- repellent property

    4 Application of fluorine-free surfaces with oil- repellent property

    5 Conclusion and outlook

  • Review
    Yunpeng Fu, Wanglei Chen, Xin Zhou, Yang Wang, Jinglun Wang
    Prog Chem. 2025, 37(6): 934-948. https://doi.org/10.7536/PC240816
    PDF (18) HTML (55)   Knowledge map   Save

    Lithium metal batteries (LMBs) have attracted significant attention due to their remarkable energy density. Yet, challenges surrounding safety and cycling stability have existed as crucial factors impeding their practical application. The development of an efficient electrolyte, which stands as a vital component in LMBs, serves as a key strategy to tackle those issues. In this review, the fluorinated solvent for lithium metal batteries is summarized in detail for the follow three reasons: (1) because of the strong electron-withdrawing effect of fluorine atoms, the fluorination of electrolyte solvents can reduce the HOMO and LUMO energy level, facilitating the generation of a robust solid electrolyte interface layer enriched with LiF on the lithium metal anode's surface; (2) fluorination can alter the electrostatic potential distribution of electrolyte solvents, thereby modifying coordination sites and regulating solvation structures; (3) the fluorination of solvents can also enhance the temperature endurance and flame retardance of the electrolyte. According to the chemical structures, fluorinated carbonates, fluorinated ethers, fluorinated carboxylates, fluorinated siloxanes, and fluorinated nitriles are elucidated elaborately based on the degree of fluorination and position of fluorine substitution. The relationships between the chemical structures of fluorinated solvents and the solvation structure, interfacial compatibility, and cell performances are described systematically. This review summarizes and provides insights into the future development prospects on fluorinated solvents for lithium metal batteries.

    Contents

    1 Introduction

    2 Fluorinated carbonate based solvents

    2.1 Fluorinated cyclic carbonate

    2.2 Fluorinated linear carbonate

    3 Fluorinated ether based solvents

    3.1 Fluorinated cyclic ether

    3.2 Fluorinated linear ether

    3.3 Partial fluorinated ether

    4 Other fluorinated solvents

    5 Conclusion and outlook

  • Review
    Yaqing Hu, Kunyu Xu, Haoling Yang, Fengfan Zhang, Zihao Yang, Zhaoxia Dong
    Prog Chem. 2025, 37(3): 332-350. https://doi.org/10.7536/PC240505

    Taking into account environmental concerns and the ongoing shift towards clean energy, converting carbon dioxide (CO2) into ethylene (C2H4) through electrochemical CO2 reduction (ECO2RR) using renewable electricity is a sustainable and eco-friendly solution for achieving carbon neutrality while also providing economic benefits. Despite significant advancements in the field, issues such as low selectivity, activity and stability continue to persist. This paper presents a review of recent research progress in copper-based catalytic systems for ECO2RR in the production of ethylene. Firstly, the mechanism of ECO2RR is briefly summarized. It then highlights various catalyst design strategies for ethylene production, such as tandem catalysis, crystal surface modulation, surface modification, valence influence, size sizing, defect engineering, and morphology design. Finally, the paper discusses future challenges and prospects for the synthesis of ethylene through electrocatalytic CO2 reduction.

    Contents

    1 Introduction

    2 CO2 electroreduction mechanisms on Cu catalysts

    2.1 The adsorption and activation of CO2

    2.2 The formation of *CO intermediates

    2.3 C-C coupling

    3 Key performance parameter

    4 Catalyst design strategies

    4.1 Tandem catalysis

    4.2 Facet exposure

    4.3 Surface modification

    4.4 Valence state

    4.5 Size control

    4.6 Defects engineering

    4.7 Morphology design

    5 Conclusion and prospect

  • Review
    Aoqi Su, Xinyu Li, Ran Wang, Lili Gao, Tifeng Jiao
    Prog Chem. 2025, 37(2): 133-156. https://doi.org/10.7536/PC240417

    In the realm of two-dimensional nanomaterials, black phosphorus (BP) is considered a promising candidate to address the shortcomings of graphene and transition metal dichalcogenides (TMDs). Low- dimensional black phosphorus (BP) refers to a class of nanomaterials derived from the layered semiconductor BP. These materials exhibit high structural anisotropy, tunable bandgap widths, and high hole and electron mobility, endowing BP with unique properties such as conductivity, photothermal, photodynamic, and mechanical behaviors. BP's near-infrared light response significantly enhances its effectiveness in photothermal and photodynamic antibacterial applications. Additionally, due to its unique layered structure, BP nanosheets (BPNS) possess a high surface-to-volume ratio, making them excellent carriers for loading and delivering other antimicrobial nanomaterials or drugs. First, this article discusses the physical properties of low-dimensional BP and introduces various preparation methods. Furthermore, it systematically reviews exciting therapeutic applications of polymer-modified black phosphorus nanomaterials in various fields, such as cancer treatment (phototherapy, drug delivery, and synergistic immunotherapy), bone regeneration, and neurogenesis. Finally, the paper discusses some challenges facing future clinical trials and potential directions for further research.

    Contents

    1 Introduction

    2 Preparation methods of BPNs

    2.1 Mechanical exfoliation

    2.2 Ultrasonication-assisted liquid exfoliation

    2.3 Electrochemical exfoliation

    2.4 Chemical vapor deposition (CVD)

    2.5 Hydro/solvothermal synthesis

    3 Structure and properties of BPNs

    3.1 Structure of BPNs

    3.2 Properties of BPNs

    4 Biomedical application

    4.1 Disease diagnosis

    4.2 Therapeutic strategies

    5 Conclusion and outlook

  • Review
    Zhiqiang Zhang, Haichao Li, Ying Long
    Prog Chem. 2025, 37(6): 918-933. https://doi.org/10.7536/PC240803
    PDF (31) HTML (65)   Knowledge map   Save

    Hypochlorous acid/hypochlorite (HOCl/ClO-) are important participants in various physiological and pathological processes in the organisms. Both contribute immune defense throughinflammatory responses, but their overproduction and generation at inappropriate sites will result in oxidative damage of cell membranes, DNA, and proteins. Therefore, in view of the important physiopathological significance of HOCl/ClO-, its specific identification and detection have been an important research topic for researchers. Fluorescence and fluorescent probe methods stand out among many traditional detection methods due to their many advantages. In this paper, some representative research works on HOCl/ClO- specific fluorescent probes for organic small molecules are reviewed from the first case to the present day, categorized according to the recognition mechanisms between fluorescent probes and HOCl/ClO-. The recognition mechanisms and biological applications of HOCl/ClO- specific fluorescent probes are highlighted, and the prospects for the chemical and biological development of HOCl/ClO- specific fluorescent probes are discussed.

    Contents

    1 Introduction

    2 Oxidation reaction mechanism

    2.1 Oxidation of phenol/aniline analogs

    2.2 Oxidation of oximes

    2.3 Oxidation of pyrroles

    2.4 Oxidation of dibenzoylhydrazines

    2.5 Sulphur/selenium ether/ester oxidation

    3 Electrophilic chlorination reaction mechanism

    4 HOCl-mediated cyclization mechanisms

    5 Cleavage reaction mechanism based on C=C/C=N bonds

    6 Deprotection mechanism based on dimethyl thiocarbamate

    6.1 Based on the BODIPY fluorophore

    6.2 Based on the coumarin fluorophore

    6.3 Based on the naphthalene fluorophore

    6.4 HBT derivatives as fluorophores

    6.5 Based on the resorufin fluorophore

    6.6 Based on the cyano fragment fluorophore

    6.7 Based on the hemicyanine xanthene and cyanine fluorophores

    7 Deprotection mechanisms based on oxathiolones/dithiolones

    8 Mechanism of desulfurization reactions based on C=S bonds

    9 Based on other reaction mechanisms

    10 Conclusion and outlook

  • Review
    Weilong Qin, Ruiyuan Sun, Muhammad Bilal Akbar, Yang Zhou, Yongbo Kuang
    Prog Chem. 2025, 37(3): 425-438. https://doi.org/10.7536/PC240414

    Solar photoelectrochemical (PEC) water splitting holds significant importance for the development of sustainable green energy. With ongoing research, the BiVO4 photoanode, a core component of PEC systems, faces challenges in scaling up and maintaining long-term stability. The superiority of fully conformal coating strategies lies in their lack of substrate size constraints, ability to suppress photo-corrosion of the BiVO4 semiconductor, creation of multifunctional interfaces, and potential synergistic action with heterojunctions and promoter catalysts, which may facilitate the stable operation of large-scale PEC water splitting devices for over 1000 hours. This review briefly introduces the basic principles of PEC water splitting and the development status of representative devices, elaborates on the important concept and main design principles of fully conformal coatings aimed at large-scale photoanodes, summarizes recent advances in materials capable of achieving fully conformal deposition coatings, including molecular catalysts, metal oxides/hydroxides, carbonized/sulfurized/phosphorized materials, and metal-organic frameworks (MOFs), and discusses key characteristics of fully conformal coatings with greater development potential. Finally, it presents a prospective view on future trends in fully conformal coatings for BiVO4 photoanodes.

    Contents

    1 Introduction

    2 Fundamentals of PEC water splitting and develop- ment status of PEC device

    3 Basic principles of fully conformal coating strategy

    3.1 Fully conformal coating and its importance

    3.2 Primary design principles of fully conformal coating

    4 Recent progress of fully conformal coating strategy

    4.1 Molecular catalyst

    4.2 Metal oxides/hydroxides

    4.3 Carbide/Sulfide/Phosphide

    4.4 Metal-organic framework

    5 Conclusion and outlook

  • Review
    Xiushuang Jiang, Junming Wang, Hongzhi Liu
    Prog Chem. 2025, 37(5): 724-742. https://doi.org/10.7536/PC240612
    PDF (10) HTML (43)   Knowledge map   Save

    With the improvement of living standard and heightened awareness of environmental protection,renewable and environmentally friendly cellulose materials have attracted much attention in the field of daytime radiative cooling due to their high mid-infrared emissivity and the advantages of tunability of hierarchical structure. In this review,the classification,advantages/disadvantages of radiative cooling materials,the principles of radiative cooling,and the factors influencing their performance are introduced. The classification,state of the art as well as radiative cooling properties of cellulose-based daytime radiative cooling materials are elaborated. The recent progress in the four main application areas including building thermal management,personal thermal management,photovoltaics and low-temperature storage/transportation are summarized. Finally,the existing challenges in the current research are discussed and the future development in this field is also envisaged.

    Contents

    1 Introduction

    2 Radiative cooling

    2.1 Principles

    2.2 Influencing factors

    3 Cellulose-based daytime radiative cooling materials and classification

    3.1 Natural cellulose-based materials

    3.2 Cellulose derivatives-based materials

    3.3 Bacterial cellulose-based materials

    4 Application fields

    4.1 Building thermal management

    4.2 Personal thermal management

    4.3 Photovoltaics

    4.4 Low-temperature storage/transportation

    5 Conclusion and outlook

  • Review
    Shan Yuanhang, Hu Jun, Wang Meng
    Prog Chem. 2025, 37(9): 1342-1351. https://doi.org/10.7536/PC20250211

    Liquid crystal elastomers (LCEs) are crosslinked polymer networks that combine the anisotropy of liquid crystals with the entropic elasticity of elastomers. They exhibit reversible large deformations under external stimuli, making them a focal point in smart materials research. Among various forms, LCE fibers, characterized by their high aspect ratio and large specific surface area, demonstrate enhanced sensitivity, greater deformation capacity, and excellent reversibility, weavability, and programmability, significantly broadening their application potential. In recent years, advancements in manufacturing technologies have expanded the fabrication methods of LCE fibers from traditional pulling and templating techniques to advanced spinning technologies such as melt spinning, electrospinning, wet spinning, and emerging 3D/4D printing techniques. These innovations have not only provided more possibilities for structural design and performance optimization of LCE fibers but also promoted their widespread use in high-performance material applications. This article systematically reviews the molecular structure and diverse fabrication methods of LCE fibers, discusses their applications in artificial muscles, soft robotics, smart clothing, and wearable devices, and provides an outlook on the future development of LCE fibers.

    Contents

    1 Introduction

    2 Molecular structures of liquid crystal elastomer fiber

    3 Fabrication technology of liquid crystal elastomer fiber

    3.1 Pultrusion method

    3.2 Template method

    3.3 Printing method

    3.4 Spinning method

    3.5 Microfluidic method

    4 Application of liquid crystal elastomer fiber

    4.1 Artificial muscles

    4.2 Soft robots

    4.3 Intelligent textiles

    5 Conclusion and outlook

  • Review
    Shuxian Zhang, Kang Jin
    Prog Chem. 2025, 37(5): 649-669. https://doi.org/10.7536/PC240613

    In recent decades,along with the improvement of peptide synthetic strategies,the development about bicyclic peptides have been accelerated vigorously,and as a result,more and more bicyclic peptide compounds have entered the clinical trial stage. Through high-throughput screening of peptide compound libraries,the efficiency of obtaining target structures has been greatly increased,further promoting the development of the bicyclic peptide field. Compared with linear and monocyclic peptides,bicyclic peptides have much larger structures and greater structural rigidity,which results in higher affinity and selectivity of the binding to their targets. The absence of terminally free amine and carboxyl groups can also increase the stability of bicyclic peptides against proteolytic enzymes significantly. In addition,the facility of bicyclic peptides to cross cell membranes contributes the improved bioavailability. With the sustainable development and wide application of synthetic technologies,more and more potential bicyclic peptides have been developed successively,laying the foundation for the researches of bicyclic peptide drugs. However,in terms of druggability,there are still many limitations in solubility,conformational stability and in vivo activity,which are urgently need to be solved by means of pharmaceutical preparation and chemically structural modification. This review mainly focuses on the chemical preparation strategies of bicyclic peptides and their applications in drug discovery in recent years.

    Contents

    1 Introduction

    2 Introduction of bicyclic peptides

    2.1 Structural characteristics

    2.2 Natural bicyclic peptide

    3 Synthesis of bicyclic peptides

    4 Construction of bicyclic peptide libraries

    4.1 Chemical construction of bicyclic peptide libraries

    4.2 Biological construction of bicyclic peptide libraries

    5 Applications of bicyclic peptides

    5.1 Bicyclic peptide coupling(targeted delivery)

    5.2 PPIs

    5.3 Enzyme inhibitors/agonists

    5.4 Receptor Inhibitors

    5.5 Antimicrobial bicyclic peptides

    5.6 Imaging and contrast

    6 Outlook and discussion

  • Review
    Jiansong Liu, Guida Pan, Feng Zhang, Wei Gao, Juntao Tang, Guipeng Yu
    Prog Chem. 2025, 37(5): 686-697. https://doi.org/10.7536/PC240705
    PDF (12) HTML (29)   Knowledge map   Save

    In recent years,covalent organic frameworks(COFs)have emerged as focal points in the research of membrane materials. Distinguished by their distinctive porous structures and structural versatility,COFs offer a promising avenue for advancement in membrane applications compared to conventional polymeric materials. This article delves into diverse interfacial systems,systematically detailing the methodologies for fabricating high-performance COF membranes via interfacial polymerization. The mechanisms underlying membrane formation across various interfacial systems and the strategies for precisely controlling the membrane structure will be elucidated. Furthermore,the intricate relationship between the membrane structure and application performance will be summarized. The challenges and perspectives in this field will be highlighted in the last part of this review.

    Contents

    1 Introduction

    2 Gas/liquid interface polymerization

    2.1 Langmuir-Blodgett method

    2.2 Surfactant-mediated

    3 Liquid/liquid interface polymerization

    3.1 Regulation of the system

    3.2 Additive-mediated

    3.3 Optimizing synthetic conditions

    4 Liquid/solid interface polymerization

    5 Solid/gas interface polymerization

    6 Applications of COF membrane

    6.1 Water resource treatment

    6.2 Gas separation and storage

    6.3 Membrane catalysis

    6.4 Electric device

    7 Conclusion and outlook

  • Review
    Xin Chen, Jingzhao Wang, Xiangming Cui, Mi Zhou, Jianan Wang, Wei Yan
    Prog Chem. 2025, 37(5): 758-774. https://doi.org/10.7536/PC240713

    Li-S batteries have great application prospects because of their extremely high capacity and energy density. However,the instability and insulation of polysulfides(LiPSs)seriously hinder their further application. In order to solve the problem of slow reaction kinetics in Li-S batteries,it is urgent to explore efficient catalysts to accelerate the sulfur redox. In the case,transition metals with unique and excellent catalytic properties are considered as potential catalysts for Li-S battery. However,differences in the structure and properties of transition metals will lead to different catalytic mechanisms. Therefore,this work divides five types of transition metals(ferrous metals,conventional non-ferrous metals,precious metals,rare refractory metals,and rare earth metals)based on metal characteristics. Then,the catalytic mechanisms of transition metal catalysts were analyzed,including adsorption,accelerating electron transfer,reducing activation energy and co-catalysis. Besides,the research progress of various metals used in Li-S batteries was reviewed,and the catalytic mechanisms of different types of metals were clarified. Four optimization strategies were proposed: nanostructured design,doping-modification,alloying and external cladding,in order to provide certain references for the design of Li-S battery catalysts.

    Contents

    1 Introduction

    2 Catalytic mechanism and functionality of transition metal catalysts

    2.1 Catalytic mechanism

    2.2 Functionality

    3 The application of transition metals in lithium sulfur batteries

    3.1 Ferrous metal

    3.2 Non-ferrous metal

    3.3 Noble metal

    3.4 Rare refractory metal

    3.5 Rare earth metal

    4 Challenges and optimization strategies of transition metal catalysts

    5 Conclusion and outlook

  • Review
    Zou Shuanglin, Xu Yingchun, Gui Tao, Tan Rong, Xiao Lingping, Sun Runcang
    Prog Chem. 2025, 37(9): 1352-1360. https://doi.org/10.7536/PC20250305
    PDF (15) HTML (38)   Knowledge map   Save

    In the era of heightened global environmental consciousness, the principle of sustainable development has become deeply ingrained in public awareness. However, conventional petroleum-based adhesives are plagued by issues of unsustainability, high energy consumption, and significant environmental pollution during their production and application. Consequently, the development of green, sustainable, and high-performance biomass-based adhesives has emerged as a critical research focus. Biomass-based adhesives continue to encounter significant challenges, including suboptimal water resistance, elevated production costs, and the necessity for enhanced environmental performance. Future research should focus on optimizing the modification process of biomass raw materials, reducing production costs, improving the comprehensive properties of adhesives, and promoting their large-scale industrial application. In-depth investigation into the correlation between the structure and properties of biomass is crucial for the development of environmentally friendly and cost-effective adhesives. This paper summarizes the classification, modification methods, and properties of biomass-based raw materials and provides a detailed prospect for their future development.

    Contents

    1 Introduction

    2 Modification strategies for the preparation of bio-based adhesives

    2.1 Physical modification

    2.2 Chemical modification

    2.3 Composite modification

    3 Adhesive production from biomass-based material

    3.1 Lignin

    3.2 Polysaccharides

    3.3 Proteins

    4 Conclusion and outlook

  • Review
    Fangcheng Hu, Junxian Hu, Yang Tian, Dong Wang, Tingzhuang Ma, Lipeng Wang
    Prog Chem. 2025, 37(3): 439-454. https://doi.org/10.7536/PC240508

    With excellent multiplication performance, stable high and low-temperature performance, abundant sodium resources and low cost, sodium-ion batteries have good application prospects in the field of large-scale energy storage and low-speed electric vehicles. The cathode material determines the working voltage and cycling performance of sodium-ion batteries, and is the core component that directly affects the overall performance of sodium-ion batteries. Among them, Na3V2(PO42F3 (NVPF) has excellent structural stability and high working potential, but slow ion diffusion and low electronic conductivity, which need to be further improved by elemental doping and other modification means. This paper has introduced the background, crystal structure and preparation method of NVPF. Has summarized in detail the modification progress of doping at different doping sites, such as sodium, vanadium, and anionic sites in NVPF materials. The mechanisms of doping in NVPF materials were analyzed, which can optimize the particle size, enhance the lattice stability, change the lattice spacing to enhance the diffusion rate of sodium ions, and increase the electronic conductivity. Based on the above, this paper summarized the preparation, doping sites and effects of NVPF materials from the perspective of subsequent research, and have also looked ahead to the future prospects of doping modification.

    Contents

    1 Research background

    2 Structural mechanism and preparation of vanadium sodium fluorophosphate

    2.1 Structural Characteristics

    2.2 Preparation methods

    3 Doping modification of sodium vanadium fluorophosphate at different sites

    3.1 Sodium site doping

    3.2 Vanadium site doping

    3.3 Anion site doping

    3.4 Carbon layer heteroatom doping

    4 Study on the doping mechanism of sodium vanadium fluorophosphate

    4.1 Suppresses particle agglomeration and optimizes particle size

    4.2 Enhance structural stability

    4.3 Changing the lattice spacing to enhance ion diffusion rate

    4.4 Improve the electronic conductivity

    5 Summary and outlook

  • Review
    Keqi Zhang, Zongying Fu, Shenjie Han, Yun Lu
    Prog Chem. 2025, 37(6): 903-917. https://doi.org/10.7536/PC240715

    In order to promote the comprehensive green transformation of economic and social development, the standardization of green energy-saving materials has concurrently fostered the emergence of novel materials. Confronted with the dual crisis of energy scarcity and environmental pollution, aerogels have garnered significant research interest because of their exceptional physicochemical properties, such as low thermal conductivity, high strength, low density and high specific surface area. Biomass-based natural wood and its derived nanocellulose, as renewable, biodegradable, and surface chemistry-tunable eco-friendly materials, have attracted widespread attention. This article first reviews the evolution and classification of woody aerogel, then discusses the preparation methods, structural characteristics, and performance advantages of woody aerogels. Subsequently, it provides an overview of the applications of woody aerogels in energy-efficient construction, environmental purification, and energy storage. Finally, it summarizes and analyzes the current research status and the problems faced by woody aerogels, and looks forward to the future development of this field.

    Contents

    1 Introduction

    2 Research progress of woody aerogel

    2.1 Overview of woody aerogel

    2.2 Preparation method of woody aerogel

    2.3 Structure and properties of woody aerogel

    3 Application of woody aerogel

    3.1 Building energy efficiency field

    3.2 Environmental purification field

    3.3 Energy storage field

    4 Conclusion and outlook

  • Review
    Yifan Tang, Jutang Hu, Qianying Song, Guichao Kuang, Libao Chen
    Prog Chem. 2025, 37(6): 858-867. https://doi.org/10.7536/PC240725
    PDF (10) HTML (31)   Knowledge map   Save

    All-solid-state batteries have the characteristics of high energy density, long cycle lifeand high safety, which is the development direction of the next generation of electrochemical energy storage. Solid-state electrolytes are the core components of all-solid-state batteries, and sulfide electrolytes have attracted extensive attention due to their advantages of high ionic conductivity and good mechanical ductility. As one of the most studied sulfide electrolytes in recent years, lithium-phosphorus-sulfur-chloride sulfide (LPSC) has high ionic conductivity and relatively low cost, but its practical application is limited by shortcomings such as poor stability and poor compatibility of positive and negative electrode materials. The composite solid-state electrolyte has good electrochemical and mechanical properties, and the composite solid-state electrolyte is prepared by modifying the LPSC with polymers, aiming to improve the interfacial compatibility and electrochemical stability of the LPSC. In this paper, the basic composition, recombination mode, modification strategy and ion transport mechanism of LPSC composite solid electrolyte are reviewed, and the future research direction and application prospect of LPSC composite electrolyte are prospected.

    Contents

    1 Introduction

    2 Ion transport mechanism in LPSC composite solid electrolyte

    3 Classification of LPSC composite solid electrolytes

    3.1 LPSC-CSSE based on polymers

    3.2 LPSC-CSSE based on sulfides

    4 Conclusion and outlook

ISSN 1005-281X (Print)
Started from 1989

Published by: Chinese Academy of Sciences (CAS) and the National Natural Science Foundation of China (NSFC)