Raman Spectroscopy in the Detection of Environmental Micro- and Nanoplastics: Applications and Challenges

Kefu Ye, Minjie Xie, Xingqi Chen, Zhiyu Zhu, Shixiang Gao

Prog Chem ›› 2025, Vol. 37 ›› Issue (1) : 2-15.

PDF(1618 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1618 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (1) : 2-15. DOI: 10.7536/PC240710
Microplastics Special Issue

Raman Spectroscopy in the Detection of Environmental Micro- and Nanoplastics: Applications and Challenges

Author information +
History +

Abstract

This review highlights the advantages and research advancements of Raman spectroscopy in detecting micro- and nanoplastics in the environment. With the worsening issue of microplastic pollution, particularly its widespread presence in aquatic and terrestrial ecosystems, Raman spectroscopy has emerged as a non-destructive, high-resolution analytical technique widely employed for identifying and quantitatively analyzing micro- and nanoplastics. This is attributed to its unique spectral characteristics and reduced susceptibility to water interference compared to infrared spectroscopy. The strengths of Raman spectroscopy in detecting micro- and nanoplastics lie in its high spatial resolution, broad spectral range, and exceptional sensitivity. However, challenges such as fluorescence interference and low signal-to-noise ratios persist in the detection process. To enhance Raman signals, researchers have introduced various approaches, including sample pretreatment, surface-enhanced Raman spectroscopy (SERS), and nonlinear Raman spectroscopy techniques. Furthermore, this paper underscores the necessity of building a comprehensive Raman spectroscopy database to boost detection accuracy and efficiency. Future research directions include developing more effective preprocessing methods, dynamically monitoring the behavior of micro- and nanoplastics, and integrating intelligent detection systems.

Contents

1 Introduction

2 Raman spectroscopy methods for micro-and nanoplastics

2.1 Basic principles and conventional Raman spectroscopy

2.2 Surface-enhanced Raman spectroscopy (SERS)

2.3 Coherent Raman spectroscopy (CRS)

2.4 Raman imaging

3 Identification in environmental samples with Raman spectroscopy

3.1 Fluorescence interference and its elimination

3.2 Machine learning applications with Raman spectral databases

4 Quantitative Analysis

4.1 In situ concentration and mass concentration

4.2 Number concentration via µ-Raman and imaging

5 Conclusion and outlook

Key words

Raman spectroscopy / micro- and nanoplastics / qualitative identification / quantitative detection / signal enhancement and optimization / machine learning

Cite this article

Download Citations
Kefu Ye , Minjie Xie , Xingqi Chen , et al . Raman Spectroscopy in the Detection of Environmental Micro- and Nanoplastics: Applications and Challenges[J]. Progress in Chemistry. 2025, 37(1): 2-15 https://doi.org/10.7536/PC240710

References

[1]
MacLeod M, Arp H P H, Tekman M B, Jahnke A. Science, 2021, 373(6550): 61.
[2]
Ding J F, Ju P, Ran Q, Li J X, Jiang F H, Cao W, Zhang J, Sun C J. Sci. Adv., 2023, 9(27): eadf5897.
[3]
Hanvey J S, Lewis P J, Lavers J L, Crosbie N D, Pozo K, Clarke B O. Anal. Methods, 2017, 9(9): 1369.
[4]
Hernandez L M, Xu E G, Larsson H C E, Tahara R, Maisuria V B, Tufenkji N. Environ. Sci. Technol., 2019, 53(21): 12300.
[5]
Duis K, Coors A. Environ. Sci. Eur., 2016, 28(1): 2.
[6]
Horton A A, Walton A, Spurgeon D J, Lahive E, Svendsen C. Sci. Total Environ., 2017, 586: 127.
[7]
Karami A, Golieskardi A, Choo C K, Larat V, Karbalaei S, Salamatinia B. Sci. Total Environ., 2018, 612: 1380.
[8]
Schymanski D, Goldbeck C, Humpf H U, Fürst P. Water Res., 2018, 129: 154.
[9]
Chen Y L, Xu H Y, Luo Y L, Ding Y T, Huang J G, Wu H H, Han J N, Du L J, Kang A Q, Jia M Y, Xiong W P, Yang Z H. Water Res., 2023, 242: 120243.
[10]
Eriksen M, Lebreton L C M, Carson H S, Thiel M, Moore C J, Borerro J C, Galgani F, Ryan P G, Reisser J. PLoS One, 2014, 9(12): e111913.
[11]
Osman A I, Hosny M, Eltaweil A S, Omar S, Elgarahy A M, Farghali M, Yap P S, Wu Y S, Nagandran S, Batumalaie K, Gopinath S C B, John O D, Sekar M, Saikia T, Karunanithi P, Hatta M H M, Akinyede K A. Environ. Chem. Lett., 2023, 21: 1.
[12]
Barnes D K A, Galgani F, Thompson R C, Barlaz M. Phil. Trans. R. Soc. B, 2009, 364(1526): 1985.
[13]
Jahnke A, Arp H P H, Escher B I, Gewert B, Gorokhova E, Kühnel D, Ogonowski M, Potthoff A, Rummel C, Schmitt-Jansen M, Toorman E, MacLeod M. Environ. Sci. Technol. Lett., 2017, 4(3): 85.
[14]
Shim W J, Hong S H, Eo S E. Anal. Methods, 2017, 9(9): 1384.
[15]
Silva A B, Bastos A S, Justino C I L, da Costa J P, Duarte A C, Rocha-Santos T A P. Anal. Chim. Acta, 2018, 1017: 1.
[16]
Shan J, Zhao J, Liu L, Zhang Y, Wang X, Wu F. Environ. Pollut., 2018, 238:121.
[17]
Elert A M, Becker R, Duemichen E, Eisentraut P, Falkenhagen J, Sturm H, Braun U. Environ. Pollut., 2017, 231: 1256.
[18]
Ribeiro-Claro P, Nolasco M M, Araújo C. Characterization and Analysis of Microplastics. Amsterdam: Elsevier, 2017: 119.
[19]
Gago J, Galgani F, Maes T, Thompson R C. Front. Mar. Sci., 2016, 3: 219.
[20]
Araujo C F, Nolasco M M, Ribeiro A M P, Ribeiro-Claro P J A. Water Res., 2018, 142: 426.
[21]
Ivleva N P, Wiesheu A C, Niessner R. Angew. Chem. Int. Ed., 2017, 56(7): 1720.
[22]
Borman S A. Anal. Chem., 1982, 54(9): 1021A.
[23]
Käppler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn K J, Voit B. Anal. Bioanal. Chem., 2016, 408(29): 8377.
[24]
Lehner R, Weder C, Petri-Fink A, Rothen-Rutishauser B. Environ. Sci. Technol., 2019, 53(4): 1748.
[25]
Rillig M C, Kim S W, Kim T Y, Waldman W R. Environ. Sci. Technol., 2021, 55(5): 2717.
[26]
Andrady A L. Mar. Pollut. Bull., 2017, 119(1): 12.
[27]
Cózar A, Echevarría F, González-Gordillo J I, Irigoien X, Úbeda B, Hernández-León S, Palma Á T, Navarro S, García-de-Lomas J, Ruiz A, Fernández-de-Puelles M L, Duarte C M. Proc. Natl. Acad. Sci. U. S. A., 2014, 111(28): 10239.
[28]
Enders K, Lenz R, Stedmon C A, Nielsen T G. Mar. Pollut. Bull., 2015, 100(1): 70.
[29]
Erni-Cassola G, Gibson M I, Thompson R C, Christie-Oleza J A. Environ. Sci. Technol., 2017, 51(23): 13641.
[30]
Griffiths P R, Miseo E V. Infrared and Raman Spectroscopic Imaging: Second, Completely Revised and Updated Edition, 2014. 1-56.
[31]
Dieing T, Hollricher O. Vib. Spectrosc., 2008, 48(1): 22.
[32]
Caldwell J, Taladriz-Blanco P, Rothen-Rutishauser B, Petri-Fink A. Nanomaterials, 2021, 11(5): 1149.
[33]
Min W, Freudiger C W, Lu S J, Xie X S. Annu. Rev. Phys. Chem., 2011, 62: 507.
[34]
Lv L L, He L, Jiang S Q, Chen J J, Zhou C X, Qu J H, Lu Y Q, Hong P Z, Sun S L, Li C Y. Sci. Total Environ., 2020, 728: 138449.
[35]
Xu G J, Cheng H Y, Jones R, Feng Y Q, Gong K D, Li K J, Fang X Z, Ali Tahir M, Valev V K, Zhang L W. Environ. Sci. Technol., 2020, 54(24): 15594.
[36]
Chang L, Jiang S, Luo J, Zhang J F, Liu X H, Lee C Y, Zhang W. Environ. Sci.: Nano, 2022, 9(2): 542.
[37]
Li J, Liu H, Chen S Y, Liang X, Gao Y M, Zhao X F, Li Z, Zhang C, Lei F C, Yu J. J. Phys. Chem. Lett., 2022, 13(25): 5815.
[38]
Zhang J J, Peng M, Lian E K, Xia L, Asimakopoulos A G, Luo S H, Wang L. Environ. Sci. Technol., 2023, 57(22): 8365.
[39]
Zhu Z D, Han K H, Feng Y T, Li Z H, Zhang A X, Wang T, Zhang M F, Zhang W. ACS Appl. Mater. Interfaces, 2023, 15(30): 36988.
[40]
Liu J, Xu G J, Ruan X J, Li K J, Zhang L W. Front. Environ. Sci. Eng., 2022, 16(11): 143.
[41]
Q T, Ly N H, Kim M K, Lim S H, Son S J, Zoh K D, Joo S W. J. Hazard. Mater., 2021, 402: 123499.
[42]
Jeon Y, Kim D, Kwon G, Lee K Y, Oh C S, Kim U J, You J. Carbohydr. Polym., 2021, 272: 118470.
[43]
Ruan X J, Ao J P, Ma M L, Jones R R, Liu J, Li K J, Ge Q Y, Xu G J, Liu Y Y, Wang T, Xie L F, Wang W, You W B, Wang L C, Valev V K, Ji M B, Zhang L W. Environ. Sci. Technol., 2024, 58(21): 9091.
[44]
Xu D W, Su W, Lu H W, Luo Y L, Yi T A, Wu J, Wu H, Yin C, Chen B Y. Phys. Chem. Chem. Phys., 2022, 24(19): 12036.
[45]
Qin Y Z, Qiu J X, Tang N, Wu Y Z, Yao W X, He Y S. Environ. Res., 2023, 228: 115926.
[46]
Yang Q, Zhang S Y, Su J, Li S, Lv X C, Chen J, Lai Y C, Zhan J H. Environ. Sci. Technol., 2022, 56(15): 10818.
[47]
Ruan X J, Xie L F, Liu J, Ge Q Y, Liu Y Y, Li K J, You W B, Huang T T, Zhang L W. J. Hazard. Mater., 2024, 462: 132702.
[48]
Hu R, Zhang K N, Wang W, Wei L, Lai Y C. J. Hazard. Mater., 2022, 429: 128388.
[49]
Kihara S, Chan A, In E, Taleb N, Tollemache C, Yick S, McGillivray D J. RSC Adv., 2022, 12(32): 20519.
[50]
Lin P Y, Wu I H, Tsai C Y, Kirankumar R, Hsieh S. Anal. Chim. Acta, 2022, 1198: 339516.
[51]
Lee C H, Fang J K. J. Environ. Sci., 2022, 121: 58.
[52]
Park C, Lim D, Kong S M, Won N I, Na Y H, Shin D. Water Res., 2023, 244: 120459.
[53]
Kleinman S L, Frontiera R R, Henry A I, Dieringer J A, Van Duyne R P. Phys. Chem. Chem. Phys., 2013, 15(1): 21.
[54]
Dong X, Gu H M, Kang J, Yuan X J, Wu J W. Colloids Surf. A Physicochem. Eng. Aspects, 2010, 368(1-3): 142.
[55]
Bell S E J, Sirimuthu N M S. J. Phys. Chem. A, 2005, 109(33): 7405.
[56]
Nickel U, Mansyreff K, Schneider S. J. Raman Spectrosc., 2004, 35(2): 101.
[57]
Xu L J, Lei Z C, Li J X, Zong C, Yang C J, Ren B. J. Am. Chem. Soc., 2015, 137(15): 5149.
[58]
Xu L J, Zong C, Zheng X S, Hu P, Feng J M, Ren B. Anal. Chem., 2014, 86(4): 2238.
[59]
Rhee H, Jeong S, Lee H, Cho M G, Choi D S. Environ. Pollut., 2024, 342: 123080.
[60]
Laptenok S P, Martin C, Genchi L C, Duarte C M, Liberale C. Environ. Pollut., 2020, 267: 115640.
[61]
Qian N X, Gao X, Lang X Q, Deng H P, Bratu T M, Chen Q X, Stapleton P, Yan B Z, Min W. Proc. Natl. Acad. Sci. U. S. A., 2024, 121(3): e2300582121.
[62]
Huber M J, Zada L, Ivleva N P, Ariese F. Anal. Chem., 2024, 96(22): 8949.
[63]
Watts A J R, Urbina M A, Goodhead R, Moger J, Lewis C, Galloway T S. Environ. Sci. Technol., 2016, 50(10): 5364.
[64]
Watts A J R, Lewis C, Goodhead R M, Beckett S J, Moger J, Tyler C R, Galloway T S. Environ. Sci. Technol., 2014, 48(15): 8823.
[65]
Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway T S. Environ. Sci. Technol., 2013, 47(12): 6646.
[66]
Choi D S, Lim S, Park J S, Kim C H, Rhee H, Cho M. Environ. Sci. Technol., 2022, 56(5): 3045.
[67]
Wang M, Huang Z L, Wu C, Yan S, Fang H T, Pan W, Tan Q G, Pan K, Ji R, Yang L Y, Pan B C, Wang P, Miao A J. Environ. Sci. Technol., 2024, 58(6): 2922.
[68]
Fueser H, Pilger C, Kong C H, Huser T, Traunspurger W. Environ. Pollut., 2022, 294: 118662.
[69]
Xin L, Huang M Z, Huang Z W. Environ. Int., 2024, 187: 108679.
[70]
Shi L Y, Zheng C G, Shen Y H, Chen Z X, Silveira E S, Zhang L Y, Wei M, Liu C, de Sena-Tomas C, Targoff K, Min W. Nat. Commun., 2018, 9: 2995.
[71]
Lenz R, Enders K, Stedmon C A, MacKenzie D M A, Nielsen T G. Mar. Pollut. Bull., 2015, 100(1): 82.
[72]
Fang C, Sobhani Z, Zhang X, Gibson C T, Tang Y H, Naidu R. Water Res., 2020, 183: 116046.
[73]
Jakubowicz I, Enebro J, Yarahmadi N. Polym. Test., 2021, 93: 106953.
[74]
Sobhani Z, Zhang X, Gibson C, Naidu R, Megharaj M, Fang C. Water Res., 2020, 174: 115658.
[75]
Krug H F, Wick P. Angew. Chem. Int. Ed., 2011, 50(6): 1260.
[76]
Domingues C, Santos A, Alvarez-Lorenzo C, Concheiro A, Jarak I, Veiga F, Barbosa I, Dourado M, Figueiras A. ACS Nano, 2022, 16(7): 9994.
[77]
Yu E S, Jeong E T, Lee S, Kim I S, Chung S, Han S, Choi I, Ryu Y S. ACS Nano, 2023, 17(3): 2114.
[78]
Fang C, Luo Y L, Naidu R. Trac Trends Anal. Chem., 2023, 166: 117158.
[79]
Fang C, Sobhani Z, Zhang X, McCourt L, Routley B, Gibson C T, Naidu R. Water Res., 2021, 194: 116913.
[80]
Su J M, Zhang F P, Yu C X, Zhang Y S, Wang J C, Wang C Q, Wang H, Jiang H R. J. Environ. Manag., 2023, 344: 118756.
[81]
Luo Y L, Zhang X, Zhang Z X, Naidu R, Fang C. Anal. Chem., 2022, 94(7): 3150.
[82]
Anger P M, Prechtl L, Elsner M, Niessner R, Ivleva N P. Anal. Methods, 2019, 11(27): 3483.
[83]
Luo Y L, Chuah C, Al Amin M, Khoshyan A, Gibson C T, Tang Y H, Naidu R, Fang C. J. Hazard. Mater., 2022, 431: 128636.
[84]
Fang C, Luo Y L, Zhang X, Zhang H P, Nolan A, Naidu R. Chemosphere, 2022, 286: 131736.
[85]
Jin N F, Song Y Z, Ma R, Li J Y, Li G H, Zhang D Y. Anal. Chim. Acta, 2022, 1197: 339519.
[86]
Tian M P, Morais C L M, Shen H Q, Pang W Y, Xu L, Huang Q Y, Martin F L. J. Hazard. Mater., 2022, 422: 126892.
[87]
Peng L C, Fu D D, Qi H Y, Lan C Q, Yu H M, Ge C J. Sci. Total Environ., 2020, 698: 134254.
[88]
Auta H S, Emenike C U, Fauziah S H. Environ. Int., 2017, 102: 165.
[89]
Bläsing M, Amelung W. Sci. Total Environ., 2018, 612: 422.
[90]
Zhang S L, Yang X M, Gertsen H, Peters P, Salánki T, Geissen V. Sci. Total Environ., 2018, 616-617: 1056.
[91]
Li Q C, Lai Y J, Yu S J, Li P, Zhou X X, Dong L J, Liu X, Yao Z W, Liu J F. Anal. Chem., 2021, 93(10): 4559.
[92]
Enders K, Lenz R, Beer S, Stedmon C A. ICES J. Mar. Sci., 2017, 74(1): 326.
[93]
Hurley R R, Lusher A L, Olsen M, Nizzetto L. Environ. Sci. Technol., 2018, 52(13): 7409.
[94]
Nuelle M T, Dekiff J H, Remy D, Fries E. Environ. Pollut., 2014, 184: 161.
[95]
Kiran B R, Kopperi H, Venkata Mohan S. Rev. Environ. Sci. Bio/Technol., 2022, 21(1): 169.
[96]
Sullivan K D, Gugliada V. Mar. Pollut. Bull., 2018, 133: 622.
[97]
Halenkovič T, Kotrla M, Gutwirth J, Nazabal V, Němec P. Photon. Res., 2022, 10(9): 2261.
[98]
Ghosal S, Chen M, Wagner J, Wang Z M, Wall S. Environ. Pollut., 2018, 233: 1113.
[99]
Xie L F, Luo S H, Liu Y Y, Ruan X J, Gong K D, Ge Q Y, Li K J, Valev V K, Liu G K, Zhang L W. Environ. Sci. Technol., 2023, 57(46): 18203.
[100]
Zada L, Leslie H A, Vethaak A D, Tinnevelt G H, Jansen J J, de Boer J F, Ariese F. J. Raman Spectrosc., 2018, 49(7): 1136.
[101]
Cai L Q, Wang J D, Peng J P, Wu Z Q, Tan X L. Sci. Total Environ., 2018, 628-629: 740.
[102]
Da Costa J P, Nunes A R, Santos P S M, Girão A V, Duarte A C, Rocha-Santos T. J. Environ. Sci. Health Part A, 2018, 53(9): 866.
[103]
Rodrigues M O, Abrantes N, Gonçalves F J M, Nogueira H, Marques J C, Gonçalves A M M. Sci. Total Environ., 2018, 633: 1549.
[104]
Munno K, De Frond H, O’Donnell B, Rochman C M. Anal. Chem., 2020, 92(3): 2443.
[105]
Gong R Y, Wang J, Wang X, Liu Y, Shan J J. Food Packag. Shelf Life, 2023, 39: 101152.
[106]
Feng Z K, Zheng L N, Liu J. Chemosphere, 2023, 325: 138312.
[107]
Lei B, Bissonnette J R, Hogan Ú E, Bec A E, Feng X Y, Smith R D L. Anal. Chem., 2022, 94(49): 17011.
[108]
Barton S J, Ward T E, Hennelly B M. Anal. Methods, 2018, 10(30): 3759.
[109]
Weisser J, Pohl T, Heinzinger M, Ivleva N P, Hofmann T, Glas K. Trac Trends Anal. Chem., 2022, 148: 116535.
[110]
Lim J, Shin G, Shin D. Anal. Chem., 2024, 96(17): 6819.
[111]
Lawson L S, Rodriguez J D. Anal. Chem., 2016, 88(9): 4706.
[112]
Chaisrikhwun B, Ekgasit S, Pienpinijtham P. J. Hazard. Mater., 2023, 442: 130046.
[113]
Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A. Nature, 1997, 389(6653): 827.
[114]
Hu H, Larson R G. J. Phys. Chem. B, 2002, 106(6): 1334.
[115]
Li D D, Tian X Y, Yang W Q, Wang X, Liu Y, Shan J J. Chemosphere, 2023, 339: 139775.
[116]
Schwaferts C, Niessner R, Elsner M, Ivleva N P. Trac Trends Anal. Chem., 2019, 112: 52.
[117]
Li P, Li Q C, Hao Z N, Yu S J, Liu J F. J. Environ. Sci., 2020, 94: 88.
[118]
Jung J Y, Kim Y W, Yoo J Y, Koo J, Kang Y T. Anal. Chem., 2010, 82(3): 784.
[119]
Covernton G A, Pearce C M, Gurney-Smith H J, Chastain S G, Ross P S, Dower J F, Dudas S E. Sci. Total Environ., 2019, 667: 124.
[120]
Fournier S B, D’Errico J N, Adler D S, Kollontzi S, Goedken M J, Fabris L, Yurkow E J, Stapleton P A. Part. Fibre Toxicol., 2020, 17(1): 55.
[121]
Banerjee A, Shelver W L. Sci. Total Environ., 2021, 755: 142518.

Funding

National Natural Science Foundation of China(22241601)
PDF(1618 KB)

Accesses

Citation

Detail

Sections
Recommended

/