Liquid Metal-Based Stretchable Conductive Composites

Zaiyang Zheng, Huibin Sun, Wei Huang

Prog Chem ›› 2025, Vol. 37 ›› Issue (3) : 295-316.

Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
Prog Chem ›› 2025, Vol. 37 ›› Issue (3) : 295-316. DOI: 10.7536/PC240516
Review

Liquid Metal-Based Stretchable Conductive Composites

Author information +
History +

Abstract

Nowadays stretchable electronic devices have become a hot research topic in the field of information electronics because of their excellent mechanical and electrical properties. As the high-speed electron transmission channel in stretching electronic devices, stretchable conductive materials play a crucial role in realizing the functions of stretching electronic devices. Liquid metal has become a hot research object in the field of stretchable conductive composites in recent years because of its intrinsic flexibility and excellent conductivity. Liquid metal is a room temperature liquid conductive material, which exhibits excellent stretchability and tunability due to its inherent high conductivity, fluidity, and ductility. Liquid metal-based stretchable conductive composites preparation and patterning techniques have been reported and many stretchable devices with excellent combination of mechanical and electrical properties have been prepared. In view of the general structural characteristics of liquid metal-based stretchable composites, the key to the preparation is how to solve the interfacial non-impregnation problem caused by the physical property differences between different materials. Therefore, starting from the common types of composites, this paper firstly briefly introduces the components and physical properties of liquid metals generally used, as well as the stretchable polymer matrix materials usually employed. Then, the composite methods of conductive materials and elastomer materials in liquid metal-based electrodes are reviewed from the two ways of "passive" and "active" to deal with the problem of non-wetting at the interface, as well as the blending and dispersion method and the new modification method. Finally, the latest research progress is introduced, and the current status of liquid metal research is summarized. Future development and potential problems to be faced are also discussed.

Contents

1 Introduction

2 Liquid metal-based flexible device material composition

2.1 Liquid metal and its composite materials

2.2 Flexible substrate material

3 Preparation method of liquid metal-based flexible conductive composites

3.1 Passive internal embedding method

3.2 Active surface structure modification method

3.3 Direct blending composite method

3.4 New methods for the preparation and patterning of liquid metal electrodes

4 Conclusion and outlook

Key words

liquid metal / stretchable electronics / electrode patterned preparation technology

Cite this article

Download Citations
Zaiyang Zheng , Huibin Sun , Wei Huang. Liquid Metal-Based Stretchable Conductive Composites[J]. Progress in Chemistry. 2025, 37(3): 295-316 https://doi.org/10.7536/PC240516

References

[1]
Lim H R Kim H S Qazi R Kwon Y T Jeong J W Yeo W H. Adv. Mater.202032(15): 1901924.
[2]
Liu Y Q He K Chen G Leow W R Chen X D. Chem. Rev.2017117(20): 12893.
[3]
Wang X W Liu Z Zhang T. Small201713(25): 1602790.
[4]
Ren Y Sun X Y Liu J. Micromachines202011(2): 200.
[5]
Guo R Wang H M Sun X Y Yao S Y Chang H Wang H Z Liu J Zhang Y Y. ACS Appl. Mater. Interfaces201911(33): 30019.
[6]
Paracha K N Butt A D Alghamdi A S Babale S A Soh P J. Sensors202020(1): 177.
[7]
Guo X H Zhao Y N Xu X Chen D L Zhang X Y Yang G Qiao W Feng R Zhang X Q Wu J Duan Z L Zhang H W Huang L S Xu C Qu L. Compos. Sci. Technol.2021, 213: 108908.
[8]
Fu R P Yang Y Lu C Ming Y Zhao X X Hu Y M Zhao L Hao J Chen W. ACS Omega20183(8): 9146.
[9]
Wang D Chen X Yuan G L Jia Y M Wang Y P Mumtaz A Wang Y J Liu J M. J. Materiomics20195(1): 66.
[10]
Yun J Jayababu N Kim D. Nano Energy2020, 78: 105325.
[11]
Jiang C Y Tsai C H Tzou C Y Hsu F C Chen Y F. Org. Electron.2020, 85: 105849.
[12]
Wen L Li F Cheng H M. Adv. Mater.201628(22): 4306.
[13]
Kim T A Kim H S Lee S S Park M. Carbon201250(2): 444.
[14]
Cherusseri J Sharma R Kar K K. Carbon2016, 105: 113.
[15]
Hu X T Meng X C Zhang L Zhang Y Y Cai Z R Huang Z Q Su M Wang Y Li M Z Li F Y Yao X Wang F Y Ma W Chen Y W Song Y L. Joule20193(9): 2205.
[16]
Meng W Ge R Li Z F Tong J H Liu T F Zhao Q Xiong S X Jiang F Y Mao L Zhou Y H. ACS Appl. Mater. Interfaces20157(25): 14089.
[17]
Ahn S Han T H Maleski K Song J Kim Y H Park M H Zhou H Y Yoo S Gogotsi Y Lee T W. Adv. Mater.202032(23): 2000919.
[18]
Li Y R Li N Zhao S J Fan J Kai J J. J. Mater. Chem. A20208(2): 760.
[19]
Cao F You M Q Kong L M Dou Y J Wu Q Q Wang L Wei B Zhang X Y Wong W Y Yang X Y. Nano Lett.202222(10): 4246.
[20]
Gao L Wang X H Dai W T Bagheri R Wang C Tian Z K Dai X Zou G F. Adv. Mater. Technol.20205(5): 2000012.
[21]
Wang D R Zhang Y K Lu X Ma Z J Xie C Zheng Z J. Chem. Soc. Rev.201847(12): 4611.
[22]
Hong S Lee J Do K Lee M Kim J H Lee S Kim D H. Adv. Funct. Mater.201727(48): 1704353.
[23]
Rajendran V Vinu Mohan A M Jayaraman M Nakagawa T. Nano Energy2019, 65: 104055.
[24]
Qian J Chen Q Y Hong M Xie W Q Jing S S Bao Y H Chen G Pang Z Q Hu L B Li T. Mater. Today2022, 54: 18.
[25]
Cao J W Liang F Li H Y Li X Fan Y J Hu C Yu J Xu J Yin Y M Li F L Xu D Feng H F Yang H L Liu Y W Chen X D Zhu G Li R W. InfoMat20224(4): e12302.
[26]
Neumann T V Dickey M D. Adv. Mater. Technol.20205(9): 2000070.
[27]
Park S Mondal K Treadway R M III Kumar V Ma S Y Holbery J D Dickey M D. ACS Appl. Mater. Interfaces201810(13): 11261.
[28]
Liu S Chen S Shi W Peng Z Luo K Xing S Li J Liu Z Liu L. Adv. Funct. Mater.202131(26): 2102225.
[29]
Dong R H Wang L L Hang C Chen Z Liu X Y Zhong L N Qi J Huang Y Q Liu S Q Wang L P Lu Y Jiang X Y. Small202117(14): 2006612.
[30]
Yang J Cheng W L Kalantar-zadeh K. Proc. IEEE2019107(10): 2168.
[31]
Feng B Jiang X Zou G S Wang W G Sun T M Yang H Zhao G L Dong M Y Xiao Y Zhu H W Liu L. Adv. Funct. Mater.202131(29): 2102359.
[32]
Xiang S X Liu D J Jiang C C Zhou W M Ling D Zheng W T Sun X P Li X Mao Y C Shan C X. Adv. Funct. Mater.202131(26): 2100940.
[33]
Qi X J Zhao H T Wang L H Sun F Q Ye X R Zhang X J Tian M W Qu L J. Chem. Eng. J.2022, 437: 135382.
[34]
Lin R Z Kim H J Achavananthadith S Xiong Z Lee J K W Kong Y L Ho J S. Nat. Commun.2022, 13: 2190.
[35]
Zhou Z Yao Y Zhang C Deng Z Li Q Wang Q Liu J. Adv. Mater. Technol.20217(5): 2101010.
[36]
Fu J H Cui Y T Qin P Gao J Y Ye J Liu J. ACS Appl. Mater. Interfaces202113(30): 36445.
[37]
Duan L F Zhang Y M Zhao J H Zhang J Li Q Chen Y Liu J Liu Q J. ACS Appl. Mater. Interfaces202214(20): 23951.
[38]
Lou Y Liu H Z Zhang J Y. Chem. Eng. J.2020, 399: 125732.
[39]
Li Y Cui Y G Zhang M J Li X D Li R Si W Y Sun Q H Yu L M Huang C S. Nano Lett.202222(7): 2817.
[40]
Abbasi R Mayyas M Ghasemian M B Centurion F Yang J Saborio M Allioux F M Han J L Tang J B Christoe M J Mohibul Kabir K M Kalantar-Zadeh K Rahim M A. J. Mater. Chem. C20208(23): 7805.
[41]
Park C W Moon Y G Seong H Jung S W Oh J Y Na B S Park N M Lee S S Im S G Koo J B. ACS Appl. Mater. Interfaces20168(24): 15459.
[42]
Yeo J C, Kenry, Yu J H Loh K P Wang Z P Lim C T. ACS Sens.20161(5): 543.
[43]
Liu S Yuen M C White E L Boley J W Deng B W Cheng G J Kramer-Bottiglio R. ACS Appl. Mater. Interfaces201810(33): 28232.
[44]
Jiang Y B Su S K Peng H R Sing Kwok H Zhou X Chen S M. J. Mater. Chem. C20175(47): 12378.
[45]
Gao Y X Li H Y Liu J. PLoS One20127(9): e45485.
[46]
Zhao X Xu S Liu J. Front. Energy201711(4): 535.
[47]
Bhuyan P Wei Y W Sin D Yu J Nah C Jeong K U Dickey M D Park S. ACS Appl. Mater. Interfaces202113(24): 28916.
[48]
Yuan X M Wu P C Gao Q Xu J Guo B He Y. Mater. Horiz.20229(3): 961.
[49]
Mao G Y Drack M Karami-Mosammam M Wirthl D Stockinger T Schwödiauer R Kaltenbrunner M. Sci. Adv.20206(26): eabc0251.
[50]
Zhang C Liu S Y Huang X Guo W Li Y Y Wu H. Nano Energy2019, 62: 164.
[51]
Helseth L E. Nano Energy2018, 50: 266.
[52]
Yu L T Feng Y Q S/O M Tamil Selven D Yao L S Soon R H Yeo J C Lim C T. ACS Appl. Mater. Interfaces201911(36): 33347.
[53]
Zheng R M Peng Z F Fu Y Deng Z F Liu S Q Xing S T Wu Y Y Li J Y Liu L. Adv. Funct. Mater.202030(15): 1910524.
[54]
Dou J B Tang L X Mou L Zhang R F Jiang X Y. Compos. Sci. Technol.2020, 197: 108237.
[55]
Wang J C Yang S N Ding P T Cao X Y Zhang Y Cao S T Zhang K K Kong S X Zhou Y L Wang X L Li D C Kong D S. ACS Appl. Mater. Interfaces201911(20): 18590.
[56]
Xu J Y Guo H D Ding H Y Wang Q Tang Z Q Li Z J Sun G X. ACS Appl. Mater. Interfaces202113(6): 7443.
[57]
Park Y G An H S Kim J Y Park J U. Sci. Adv.20195(6): eaaw2844.
[58]
Lopes P A Fernandes D F Silva A F Marques D G de Almeida A T Majidi C Tavakoli M. ACS Appl. Mater. Interfaces202113(12): 14552.
[59]
Zhu H Y Wang S L Zhang M H Li T Y Hu G H Kong D S. NPJ Flex. Electron.2021, 5: 25.
[60]
Wang S L Nie Y Y Zhu H Y Xu Y R Cao S T Zhang J X Li Y Y Wang J H Ning X H Kong D S. Sci. Adv.20228(13): eabl5511.
[61]
Kim M G Brown D K Brand O. Nat. Commun.2020, 11: 1002.
[62]
Jia L C Jia X X Sun W J Zhang Y P Xu L Yan D X Su H J Li Z M. ACS Appl. Mater. Interfaces202012(47): 53230.
[63]
Ou M L Qiu W K Huang K Y Feng H L Chu S. ACS Appl. Mater. Interfaces202012(6): 7673.
[64]
Wang X L Guo R Liu J. Adv. Mater. Technol.20194(2): 1800549.
[65]
Zrnic D Swatik D S. J. Less Common Met.196918(1): 67.
[66]
Daeneke T Khoshmanesh K Mahmood N de Castro I A Esrafilzadeh D Barrow S J Dickey M D Kalantar-zadeh K. Chem. Soc. Rev.201847(11): 4073.
[67]
Dickey M D. Adv. Mater.201729(27): 1606425.
[68]
French S J Saunders D J Ingle G W. J. Phys. Chem.193842(2): 265.
[69]
Graudejus O Jia Z Li T Wagner S. Scr. Mater.201266(11): 919.
[70]
Liu T Y Sen P Kim C J. J. Microelectromech. Syst.201221(2): 443.
[71]
Regan M J Tostmann H Pershan P S Magnussen O M DiMasi E Ocko B M Deutsch M. Phys. Rev. B, 199755(16): 10786.
[72]
Kazem N Hellebrekers T Majidi C. Adv. Mater.201729(27): 1605985.
[73]
Chiechi R Weiss E Dickey M Whitesides G. Angew. Chem.2008120(1): 148.
[74]
Boley J W White E L Kramer R K. Adv. Mater.201527(14): 2355.
[75]
Zavabeti A Ou J Z Carey B J Syed N Orrell-Trigg R Mayes E L H Xu C L Kavehei O O’Mullane A P Kaner R B Kalantar-zadeh K Daeneke T. Science2017358(6361): 332.
[76]
Reus W F Thuo M M Shapiro N D Nijhuis C A Whitesides G M. ACS Nano20126(6): 4806.
[77]
Larsen R J Dickey M D Whitesides G M Weitz D A. J. Rheol.200953(6): 1305.
[78]
Wang M Trlica C Khan M R Dickey M D Adams J J. J. Appl. Phys.2015117(19): 194901.
[79]
Guo R Yao S Y Sun X Y Liu J. Sci. China Mater.201962(7): 982.
[80]
Zhang X Ai J W Ma Z Yin Y J Zou R P Su B. Adv. Funct. Mater.202030(45): 2003680.
[81]
Kim D Yoon Y Kauh S K Lee J. Adv. Funct. Mater.201828(28): 1800380.
[82]
Liu S Kim S Y Henry K E Shah D S Kramer-Bottiglio R. ACS Appl. Mater. Interfaces202113(24): 28729.
[83]
Dong R H Liu X Y Cheng S Y Tang L X Chen M Zhong L N Chen Z Liu S Q Jiang X Y. Adv. Healthc. Mater.202110(4): 2000641.
[84]
Zhang J Z Zhang K Y Yong J L Yang Q He Y N Zhang C J Hou X Chen F. J. Colloid Interface Sci.2020, 578: 146.
[85]
Hong K Choe M Kim S Lee H M Kim B J Park S. Polymers202113(15): 2407.
[86]
Li Y Y Wang S L Zhang J X Ma X H Cao S T Sun Y P Feng S X Fang T Kong D S. ACS Appl. Mater. Interfaces202214(11): 13713.
[87]
Li Y Y Feng S X Cao S T Zhang J X Kong D S. ACS Appl. Mater. Interfaces202012(45): 50852.
[88]
Tang R X Meng Q Y Wang Z S Lu C J Zhang M H Li C C Li Y Y Shen X P Sun Q F. ACS Appl. Mater. Interfaces202113(48): 57725.
[89]
Peng H Xin Y M Xu J Liu H Z Zhang J Y. Mater. Horiz.20196(3): 618.
[90]
Park J E Kang H S Koo M Park C. Adv. Mater.202032(37): 2002178.
[91]
Hao X P Zhang C W Zhang X N Hou L X Hu J Dickey M D Zheng Q Wu Z L. Small202218(23): 2201643.
[92]
Zheng L J Zhu M M Wu B H Li Z L Sun S T Wu P Y. Sci. Adv.20217(22): eabg4041.
[93]
Chen X Q Wan H Guo R Wang X P Wang Y Jiao C C Sun K Hu L. Microsyst. Nanoeng.2022, 8: 48.
[94]
Oh J Bae J. Smart Mater. Struct.202231(6): 065020.
[95]
Appleton B R Tongay S Lemaitre M Gila B Fridmann J Mazarov P Sanabia J E Bauerdick S Bruchhaus L Mimura R Jede R. Nucl. Instrum. Meth. Phys. Res. Sect. B Beam Interact. Mater. At.2012, 272: 153.
[96]
Mineart K P Lin Y L Desai S C Krishnan A S Spontak R J Dickey M D. Soft Matter20139(32): 7695.
[97]
Gao Q W Li H Zhang J J Xie Z W Zhang J Y Wang L. Sci. Rep.2019, 9: 5908.
[98]
Khan M R Trlica C Dickey M D. Adv. Funct. Mater.201525(5): 671.
[99]
Hu T Xuan S H Ding L Gong X L. Sens. Actuat. B Chem.2020, 314: 128095.
[100]
He X K Wu J P Xuan S H Sun S S Gong X L. ACS Appl. Mater. Interfaces202214(7): 9597.
[101]
Costa G Lopes P A Sanati A L Silva A F Freitas M C de Almeida A T Tavakoli M. Adv. Funct. Mater.202232(27): 2113232.
[102]
Zhou L y Fu J z Gao Q Zhao P He Y. Adv. Funct. Mater.201930(3): 1906683.
[103]
Chen Z Y Lee J B. ACS Appl. Mater. Interfaces201911(38): 35488.
[104]
Kumar R Ghai V Sahani A K. IEEE Trans. Nanotechnology2022, 21: 158.
[105]
Ma X H Zhang M H Zhang J X Wang S L Cao S T Li Y Y Hu G H Kong D S. ACS Mater. Lett.20224(4): 634.
[106]
Ma Z J Huang Q Y Xu Q Zhuang Q N Zhao X Yang Y H Qiu H Yang Z L Wang C Chai Y Zheng Z J. Nat. Mater.202120(6): 859.
[107]
Dong C Q Leber A Das Gupta T Chandran R Volpi M Qu Y P Nguyen-Dang T Bartolomei N Yan W Sorin F. Nat. Commun.2020, 11: 3537.
[108]
Dickey M D Chiechi R C Larsen R J Weiss E A Weitz D A Whitesides G M. Adv. Funct. Mater.200818(7): 1097.
[109]
Zhao W W Bischof J L Hutasoit J Liu X Fitzgibbons T C Hayes J R Sazio P J A Liu C X Jain J K Badding J V Chan M H W. Nano Lett.201515(1): 153.
[110]
Chen J Zhang J J Luo Z B Zhang J Y Li L Su Y Gao X Li Y T Tang W Cao C J Liu Q H Wang L Li H. ACS Appl. Mater. Interfaces202012(19): 22200.
[111]
Wu Y X Li Y S Zou Y Rao W Gai Y S Xue J T Wu L Qu X C Liu Y Xu G D Xu L L Liu Z Li Z. Nano Energy2022, 92: 106715.
[112]
Pan X D He H. J. Phys. D: Appl. Phys.202255(38): 384003.
[113]
Kim S Yoo D Lim J Kim J. Adv. Mater. Technol.20249(14): 2301589.
[114]
Kim J Kim Y Lee J Shin M Son D. Polymers202315(18): 3692.
[115]
Kim S Lee S M Bhuyan P Wei Y W Kim S Shimizu K Shintake J Park S. Chem. Eng. J.2023, 456: 141018.
[116]
Liu Y Li R-W Wang S Liu C Liu J Li S Xu F Xu D Zhang W Wu Y Shang J. ACS Appl. Mater. Interfaces202315(18): 22291.
[117]
Niu Y Tian G W Liang C Y Wang T C Ma X Gong G F Qi D P. Adv. Healthc. Mater.202312(10): 2202531.
[118]
Wang B Prasad S Hellman O Li H Fridberger A Hjort K. Adv. Funct. Mater.202434(31): 2309707.
[119]
Wang M Zhang J Liu R Wu T Dai W Liu R Zhang J Liu J. IEEE Trans. Instrum. Meas.2023, 72: 9505711.
[120]
Bae Y J Wei Y W Bhuyan P Mun S Park S. ACS Appl. Polym. Mater.20246(3): 1992.
[121]
Li G Y Sun F K Chen H S Jin Y Zhang A B Du J K. ACS Appl. Mater. Interfaces202113(48): 56961.
[122]
Chen X L Sun P Tian H M Li X M Wang C H Duan J K Luo Y S Li S Chen X M Shao J Y. J. Mater. Chem. C202210(3): 1039.
[123]
Lim T Won S Kim M Trout M A Kim J George J A Zhang H N. ACS Mater. Lett.20224(11): 2289.
[124]
Munirathinam K Prasad G Kim D S Park J Lee D W. Adv. Mater. Technol.20238(11): 2201902.
[125]
Wang B Facchetti A. Adv. Mater.201931(28): e1901408.
[126]
Zhao H T Hu R Li P Gao A Z Sun X T Zhang X H Qi X J Fan Q Liu Y D Liu X Q Tian M W Tao G M Qu L J. Nano Energy2020, 76: 104926.
[127]
Zhao H T Qi X J Ma Y L Sun X T Liu X Q Zhang X J Tian M W Qu L J. Nano Lett.202121(19): 8126.
[128]
Wang W Yu A F Liu X Liu Y D Zhang Y Zhu Y X Lei Y Jia M M Zhai J Y Wang Z L. Nano Energy2020, 71: 104605.
[129]
Zhu S So J H Mays R Desai S Barnes W R Pourdeyhimi B Dickey M D. Adv. Funct. Mater.201323(18): 2308.
[130]
Lee S M Bhuyan P Bae K J Yu J Jeon H Park S. ACS Appl. Electron. Mater.20224(12): 6275.
[131]
Zhang Y Zhang D S Chen Y Y Lin H Zhou X R Zhang Y F Xiong J Q. Adv. Mater. Technol.20238(10): 2202030.
[132]
Ma B Zhang J Chen G Chen Y Xu C Lei L Liu H. Biosensors-Basel202313(1): 28.
[133]
Haque A B M T Tutika R Byrum R L Bartlett M D. Adv. Funct. Mater.202030(25): 2070162.
[134]
Baharfar M Mayyas M Rahbar M Allioux F M Tang J B Wang Y F Cao Z B Centurion F Jalili R Liu G Z Kalantar-Zadeh K. ACS Nano202115(12): 19661.
[135]
Zhang M Y Li G Q Huang L Ran P H Huang J P Yu M Yuqian H Y Guo J H Liu Z Y Ma X. Appl. Mater. Today2021, 22: 100903.
[136]
Hou X J Zhong J X Yang C J Yang Y He J Mu J L Geng W P Chou X J. J. Materiomics20228(5): 958.
[137]
Lee S W Jang J Kim Y Lee S Lee K Han H Lee H Oh J W Kim H Kim T Dickey M D Park C. Appl. Phys. Rev.20229(4): 041404.
[138]
Park K Pyeon J Jeong S H Yoon Y J Kim H. Adv. Mater. Interfaces20229(35): 2201693.
[139]
Wang Q Ji X Y Liu X Liu Y Liang J J. ACS Nano202216(8): 12677.
[140]
Zhong L N Tang L X Yang S J Zhao Z T Zheng Z J Jiang X Y. Anal. Chem.202294(48): 16738.
[141]
Gu S Q Zhou Y L Li Y Y Ma T Guo R H Lu Q Y Zhang J X Cao S T Zhu H Y Li D C Kong D S. Appl. Mater. Today2023, 31: 101764.
[142]
Lin Y Fang T Bai C Sun Y P Yang C Hu G H Guo H R Qiu W J Huang W X Wang L Tao Z H Lu Y Q Kong D S. Nano Lett.202323(23): 11174.
[143]
Peng Y D Dong J C Sun J H Mao Y H Zhang Y X Long J Y Li L Zhang C Zhao Y Lu H Y Qian H L Yan X P Zhao J H Wang F N Huang Y P Liu T X. Nano Energy2023, 110: 108374.
[144]
Qi J Hang C Gao Y Jiang X. ACS Appl. Mater. Interfaces202315(21): 25393.
[145]
Vallem V Aggarwal V Dickey M D. Adv. Mater. Technol.20238(5): 2201233.
[146]
An J Ha B Namgung S Lee B Y. ACS Omega20249(3): 3916.
[147]
Zhang J X Lu Q Y Wu M Sun Y P Wang S L Wang X L Lu M H Kong D S. NPJ Flex. Electron.2024, 8: 1.
[148]
Zhou B Liu J Z Huang X Qiu X Y Yang X Shao H Tang C Y Zhang X X. Nano-Micro Lett.2023, 15: 72.
[149]
Reis Carneiro M Majidi C Tavakoli M. Adv. Funct. Mater.202232(43): 2205956.
[150]
Liu Z Chen S Zhang G Shi H Chen X Shi W Liu L. Adv. Mater. Interfaces20229(11): 2102121.
[151]
Zhang J Ma B Chen G S Chen Y Xu C T Hao Q Zhao C Liu H. ACS Appl. Mater. Interfaces202214(47): 53405.
[152]
Kim S Park Y G Kim J Y Kim E Lee D H Lee J H Cheon J Park J U. ACS Appl. Mater. Interfaces202315(24): 28954.
[153]
Parvini E Hajalilou A Lopes P A Silva A F Tiago M S M Fernandes P M P de Almeida A T Tavakoli M. Adv. Mater. Technol.20249(14): 2301189.
[154]
Wu Y G Wang Z B Xu J B Chen Z Zeng G L Xu Z J Zhou J H Chen X Q Tan Q L Chen Q N Yang Y Chen S Y Wang L Y Wu D Z. Adv. Mater. Technol.20238(9): 2201935.
[155]
Xu Y H Wu B Guo Y Hou C Y Li Y G Wang H Z Zhang Q H. J. Alloys Compd.2023, 945: 169260.
[156]
Kim H Bae J. Adv. Mater. Technol.20249(14): 2301171.
[157]
Lopes P A Santos B C de Almeida A T Tavakoli M. Nat. Commun.2021, 12: 4666.
[158]
Zu W Z Ohm Y Carneiro M R Vinciguerra M Tavakoli M Majidi C. Adv. Mater. Technol.20227(12): 2200534.
[159]
Jung W Koirala G R Lee J S Kim J U Park B Jo Y J Jeong C Hong H Kwon K Ye Y S Kim J Lee K Kim T I. ACS Nano202216(12): 21471.
[160]
Bhuyan P Wei Y W Cho D Nakate U T Kim S Lee S M Choe M Jeon H Park S. Chem. Eng. J.2023, 453: 139832.
[161]
Kim S Saito M Wei Y W Bhuyan P Choe M Fujie T Mondal K Park S. Sens. Actuat. A Phys.2023, 355: 114317.
[162]
Park S J Yang C Hadjadj A Liu S Song H Li X. Coatings202313(11): 1922.
[163]
Wang Z Wu Y Zhu B Chen Q Zhang Y Xu Z Sun D Lin L Wu D. ACS Appl. Mater. Interfaces202315(3): 4713.
[164]
Zhang M K Gong J H Chang H Sun X L Zhang P Fu J H Liu L Li X Y Wang Y S Rao W. Adv. Funct. Mater.202333(24): 2215050.
[165]
Menke M A Li B M Arnold M G Mueller L E Dietrich R Zhou S J Kelley-Loughnane N Dennis P Boock J T Estevez J Tabor C E Sparks J L. Adv. Healthc. Mater.202413(3): 2301811.
[166]
Yu C Cho H Lee W S Jo J Kim H Chang W S. ACS Appl. Electron. Mater.20246(1): 523.
[167]
Zhang J X Lu Q Y Li Y Y Li T Y Lu M H Chen Y F Kong D S. ACS Mater. Lett.20213(8): 1104.
[168]
Ozutemiz K B Majidi C Ozdoganlar O B. Adv. Mater. Technol.20227(11): 2200295.
[169]
Dong J C Peng Y D Nie X L Li L Zhang C Lai F L He G J Ma P M Wei Q F Huang Y P Liu T X. Adv. Funct. Mater.202232(48): 2209762.
[170]
Choi H Luo Y C Olson G Won P Shin J H Ok J Yang Y J Kim T I Majidi C. Adv. Funct. Mater.202333(30): 2301388.
[171]
Han S Kim K Lee S Y Moon S Lee J Y. Adv. Mater.202335(11): 2210112.
[172]
Choi M Y Kim J H Kim S K Koo H J So J H. Adv. Funct. Mater.202434(31): 2310318.
[173]
Fan C H Long Z W Zhang Y X Mensah A He H F Wei Q F Lv P F. Nano Energy2023, 116: 108842.
[174]
Lim T Kim H J Won S Kim C H Yoo J Lee J H Son K S Nam I W Kim K Yeo S Y Yeang B J Kim J H Zhang H N Lee S. ACS Appl. Nano Mater.20236(10): 8482.
[175]
Dong J C Peng Y D Pu L Chang K Q Li L Zhang C Ma P M Huang Y P Liu T X. Nano Lett.202222(18): 7597.
[176]
Bhuyan P Cho D Choe M Lee S M Park S. Polymers202214(4): 710.
[177]
Li G Q Ma X Xu Z R Shen Y F Yuan M Huang J P Cole T Wei J J Liu S H Han F Li H F, Bayinqiaoge, Xu Z W Tang S Y Liu Z Y. iScience202225(12): 105495.
[178]
Parvini E Hajalilou A Lopes P A Tiago M S M de Almeida A T Tavakoli M. Soft Matter202218(44): 8486.
[179]
Bai Y R Li X Q Zheng C C Guo R Li X S. Biosensors202313(7): 692.
[180]
He Y Wan C W Yang X Wang Y T Fang J Liu Y Q. Adv. Mater. Technol.20238(11): 2370049.
[181]
Lee D Park S Seo J Lee W-Y Kim M-g Kim J. Adv. Funct. Mater.202334(31): 2311696.
[182]
Zang W P Wang Y H Wu W J Yao J S Hao X S Yu B Wu D M Cao P F Jiang Y J Ning N Y Tian M Zhang L Q. ACS Nano202418(1): 1226.
[183]
Tavakoli M Malakooti M H Paisana H Ohm Y Green Marques D Alhais Lopes P Piedade A P de Almeida A T Majidi C. Adv. Mater.201830(29): 1801852.
[184]
Zadan M Malakooti M H Majidi C. ACS Appl. Mater. Interfaces202012(15): 17921.
[185]
Kazem N Bartlett M D Majidi C. Adv. Mater.201830(22): 1706594.
[186]
Krisnadi F Nguyen L L, Ankit, Ma J Kulkarni M R Mathews N Dickey M D. Adv. Mater.202032(30): 2001642.
[187]
Mou L Qi J Tang L X Dong R H Xia Y Gao Y Jiang X Y. Small202016(51): 2005336.
[188]
Li X Zhu P C Zhang S C Wang X C Luo X P Leng Z W Zhou H Pan Z F Mao Y C. ACS Nano202216(4): 5909.
[189]
Pei D F Yu S Y Liu P Wu Y P Zhang X F Chen Y J Li M J Li C X. Adv. Funct. Mater.202232(35): 2204257.
[190]
Zhang W Wang P L Huang L Z Guo W Y Zhao J J Ma M G. Nano Energy2023, 117: 108875.
[191]
Bhuyan P Wei Y W Choe M Cho D Lee S M Park S. Nano Energy2023, 108: 108214.
[192]
Frey E J Im S Bachmann A L Genzer J Dickey M D. Adv. Funct. Mater.202434(31): 2308574.
[193]
Li S Y Zhao H Y Xu H R Lu H Luo P G Zhou T. Chem. Eng. J.2024, 482: 149173.
[194]
Wu D Wu S W Narongdej P Duan S D Chen C Yan Y C Liu Z X Hong W Frenkel I He X M. Adv. Mater.202436(34): 2307632.
[195]
Kim M Cho C Shin W Park J J Kim J Won P Majidi C Ko S H. NPJ Flex. Electron.2022, 6: 99.
[196]
Cho C Shin W Kim M Bang J Won P Hong S Ko S H. Small202218(37): 2202841.
[197]
Luo H Y Lu Y Y Xu Y H Yang G Cui S Y Han D Zhou Q T Ouyang X P Yang H Y Cheng T H Xu K C. Nano Energy2022, 103: 107803.
[198]
Ma J X Liu Z H Nguyen Q K Zhang P. Adv. Funct. Mater.202434(31): 2308128.
[199]
Li Y Xiao S Zhang X X Jia P Tian S S Pan C Zeng F P Chen D C Chen Y Y Tang J Xiong J Q. Nano Energy2022, 98: 107347.
[200]
Monnens W Zhang B K Zhou Z Y Snels L Binnemans K Molina-Lopez F Fransaer J. Adv. Mater.202335(51): 2305967.
[201]
Sanati A L Nikitin T Fausto R Majidi C Tavakoli M. Adv. Mater. Technol.20249(14): 2301428.

Accesses

Citation

Detail

Sections
Recommended

/