Photo-Driven Whole-Cell Biohybrids Based on Semiconductors and Microorganisms

Kaichong Wang, Han Wang, Yayi Wang

Prog Chem ›› 2025, Vol. 37 ›› Issue (2) : 157-172.

PDF(16700 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(16700 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (2) : 157-172. DOI: 10.7536/PC240501
Review

Photo-Driven Whole-Cell Biohybrids Based on Semiconductors and Microorganisms

Author information +
History +

Abstract

Solar energy is the energy source for all life on Earth, and its efficient conversion is of great significance for solving the global energy crises and environmental issues. Inspired by natural photosynthesis, researchers have recently developed whole-cell biohybrids based on semiconductors and microorganisms by integrating the excellent light absorption ability of photosensitizer semiconductors and the efficient biocatalysis ability of whole-cell microbes. The development of whole-cell biohybrids aims to realize efficient solar-to-chemical production in a green and low-carbon pathway. This review clarifies the operation principle and advantages of whole-cell biohybrids, and the properties of photosensitizer semiconductors are summarized, including the band structure, excitation wavelength and quantum yield. Moreover, this work innovatively concludes the construction mechanisms of whole-cell biohybrids and the electron transfer mechanisms in the interface between semiconductor and microbe. Moreover, the advanced progress of whole-cell biohybrids are reviewed, such as the high-value conversion of carbon dioxide, artificial nitrogen fixation, hydrogen production as well as pollutant removal and recovery. Finally, the environmental impacts and challenges of whole-cell biohybrids are discussed and the perspectives for the development of whole-cell biohybrids are proposed. This article is expected to provide fundamental insights for the further development and actual application of whole-cell biohybrids.

Contents

1 Introduction

2 Principles and advantages of whole-cell biohybrids

3 Types of photosensitizers in whole-cell biohybrids

3.1 Inorganic semiconductors

3.2 Organic semiconductors

4 Construction mechanisms of whole-cell biohybrids

5 Advanced application progresses of whole-cell biohybrids

5.1 High-value conversion of CO2

5.2 Artificial nitrogen fixation

5.3 Hydrogen production

5.4 Pollutants removal and resource recovery

6 The environmental impacts and challenges in whole-cell biohybrids

7 Conclusion and outlook

Key words

solar energy / semiconductor / microorganism / whole-cell biohybrid / electron transport

Cite this article

Download Citations
Kaichong Wang , Han Wang , Yayi Wang. Photo-Driven Whole-Cell Biohybrids Based on Semiconductors and Microorganisms[J]. Progress in Chemistry. 2025, 37(2): 157-172 https://doi.org/10.7536/PC240501

References

[1]
Wang Y J, Wang R, Tanaka K, Ciais P, Penuelas J, Balkanski Y, Sardans J, Hauglustaine D, Liu W, Xing X F, Li J R, Xu S Q, Xiong Y K, Yang R P, Cao J J, Chen J M, Wang L, Tang X, Zhang R H. Nature, 2023, 619(7971): 761.
[2]
Lin H W, Luo S Q, Zhang H B, Ye J H. Joule, 2022, 6(2): 294.
[3]
Winter L R, Cooper N J, Lee B, Patel S K, Wang L, Elimelech M. Environ. Sci. Technol., 2022, 56(15): 10577.
[4]
Lv J Q, Xie J F, Mohamed A G A, Zhang X, Feng Y Y, Jiao L, Zhou E B, Yuan D Q, Wang Y B. Nat. Rev. Chem., 2023, 7(2): 91.
[5]
Lewis N S. Science, 2016, 351(6271): aad1920.
[6]
Tao X P, Zhao Y, Wang S Y, Li C, Li R G. Chem. Soc. Rev., 2022, 51(9): 3561.
[7]
Wang Q, Pornrungroj C, Linley S, Reisner E. Nat. Energy, 2022, 7(1): 13.
[8]
Lu A H, Wang X, Li Y, Ding H D, Wang C Q, Zeng C P, Hao R X, Yang X X. Sci. Sin. Terrae, 2014, 44(6): 1117.
(鲁安怀, 王鑫, 李艳, 丁竑瑞, 王长秋, 曾翠平, 郝瑞霞, 杨晓雪. 中国科学: 地球科学, 2014, 44(6): 1117.)
[9]
Lu A H, Li Y, Ding H R, Xu X M, Li Y Z, Ren G P, Liang J, Liu Y W, Hong H, Chen N, Chu S Q, Liu F F, Li Y, Wang H R, Ding C, Wang C Q, Lai Y, Liu J, Dick J, Liu K H, Hochella M F Jr. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(20): 9741.
[10]
Xiao K M, Liang J, Wang X Y, Hou T F, Ren X N, Yin P Q, Ma Z P, Zeng C P, Gao X, Yu T, Si T, Wang B, Zhong C, Jiang Z F, Lee C S, Yu J C, Wong P K. Energy Environ. Sci., 2022, 15(2): 529.
[11]
Burlacot A, Dao O, Auroy P, Cuiné S, Li-Beisson Y, Peltier G. Nature, 2022, 605(7909): 366.
[12]
Fang X, Kalathil S, Reisner E. Chem. Soc. Rev., 2020, 49(14): 4926.
[13]
Guan X, Erşan S, Hu X C, Atallah T L, Xie Y C, Lu S T, Cao B C, Sun J W, Wu K, Huang Y, Duan X F, Caram J R, Yu Y, Park J O, Liu C. Nat. Catal., 2022, 5(11): 1019.
[14]
Hann E C, Overa S, Harland-Dunaway M, Narvaez A F, Le D N, Orozco-Cárdenas M L, Jiao F, Jinkerson R E. Nat. Food, 2022, 3(6): 461.
[15]
Sakimoto K K, Wong A B, Yang P D. Science, 2016, 351(6268): 74.
[16]
Zhang D S, Tong Z H, Wu L Z. Prog. Chem., 2022, 34(7): 1590.
(张德善, 佟振合, 吴骊珠. 化学进展, 2022, 34(7): 1590.)
[17]
Xiao Y J, Qian Y, Chen A Q, Qin T, Zhang F, Tang H H, Qiu Z T, Lin B L. J. Mater. Chem. A, 2020, 8(35): 18310.
[18]
Sahoo P C, Pant D, Kumar M, Puri S K, Ramakumar S S V. Trends Biotechnol., 2020, 38(11): 1245.
[19]
Cestellos-Blanco S, Zhang H, Kim J M, Shen Y-X, Yang P D. Nat. Catal., 2020, 3(3): 245.
[20]
Wang X Y, Zhang J C, Li K, An B L, Wang Y Y, Zhong C. Sci. Adv., 2022, 8(18): eabm7665.
[21]
Hu A D, Zhou S G, Ye J. Prog. Chem., 2021, 33(11): 2103.
(胡安东, 周顺桂, 叶捷. 化学进展, 2021, 33(11): 2103.)
[22]
Shen J Y, Liu Y, Qiao L. ACS Appl. Mater. Interfaces, 2023, 15(5): 6235.
[23]
Qiu B C, Du M M, Ma Y X, Zhu Q H, Xing M Y, Zhang J L. Energy Environ. Sci., 2021, 14(10): 5260.
[24]
Yoshino S, Iwase A, Yamaguchi Y, Suzuki T M, Morikawa T, Kudo A. J. Am. Chem. Soc., 2022, 144(5): 2323.
[25]
Shiuan Ng L, Raja Mogan T, Lee J K, Li H T, Ken Lee C L, Kwee Lee H. Angew. Chem. Int. Ed., 2023, 62(47): e202313695.
[26]
Guo M W, Lu X, Qiao S. Water Res., 2024, 250: 121059.
[27]
Honda Y, Watanabe M, Hagiwara H, Ida S, Ishihara T. Appl. Catal. B Environ., 2017, 210: 400.
[28]
Xie Y C, Erşan S, Guan X, Wang J Y, Sha J H, Xu S N, Wohlschlegel J A, Park J O, Liu C. Proc. Natl. Acad. Sci. U. S. A., 2023, 120(42): e2308373120.
[29]
Edwards E H, Jelušić J, Kosko R M, McClelland K P, Ngarnim S S, Chiang W, Lampa-Pastirk S, Krauss T D, Bren K L. Proc. Natl. Acad. Sci. U. S. A., 2023, 120(17): e2206975120.
[30]
Jin S, Jeon Y, Jeon M S, Shin J, Song Y, Kang S, Bae J Y, Cho S, Lee J K, Kim D R, Cho B K. Proc. Natl. Acad. Sci. U. S. A., 2021, 118(9): e2020552118.
[31]
Yu W, Zeng Y, Wang Z H, Xia S P, Yang Z W, Chen W J, Huang Y M, Lv F T, Bai H T, Wang S. Sci. Adv., 2023, 9(11): eadf6772.
[32]
Kornienko N, Zhang J Z, Sakimoto K K, Yang P D, Reisner E. Nat. Nanotechnol., 2018, 13(10): 890.
[33]
Chen Y J, Li P, Zhou J W, Buru C T, Đorđević L, Li P H, Zhang X, Cetin M M, Stoddart J F, Stupp S I, Wasielewski M R, Farha O K. J. Am. Chem. Soc., 2020, 142(4): 1768.
[34]
Xiao X, Ma X L, Liu Z Y, Li W W, Yuan H, Ma X B, Li L X, Yu H Q. Environ. Int., 2019, 126: 560.
[35]
Wu D. Doctoral Dissertation of East China Normal University, 2022.
(吴丹. 华东师范大学博士论文, 2022.)
[36]
Shi H F, Jiang X B, Wen X J, Hou C, Chen D, Mu Y, Shen J Y. Water Res., 2024, 248: 120846.
[37]
Zhang K J, Li R J, Chen J X, Chai L Y, Lin Z, Zou L, Shi Y. Appl. Catal. B Environ., 2024, 342: 123375.
[38]
Gai P P, Yu W, Zhao H, Qi R L, Li F, Liu L B, Lv F T, Wang S. Angew. Chem. Int. Ed., 2020, 59(18): 7224.
[39]
Wang B, Xiao K M, Jiang Z F, Wang J F, Yu J C, Wong P K. Energy Environ. Sci., 2019, 12(7): 2185.
[40]
Han H X, Tian L J, Liu D F, Yu H Q, Sheng G P, Xiong Y J. J. Am. Chem. Soc., 2022, 144(14): 6434.
[41]
Zhang R T, He Y, Yi J, Zhang L J, Shen C P, Liu S J, Liu L F, Liu B H, Qiao L. Chem, 2020, 6(1): 234.
[42]
Ding Y C, Bertram J R, Eckert C, Bommareddy R R, Patel R, Conradie A, Bryan S, Nagpal P. J. Am. Chem. Soc., 2019, 141(26): 10272.
[43]
Ye J, Wang C, Gao C, Fu T, Yang C H, Ren G P, J, Zhou S G, Xiong Y J. Nat. Commun., 2022, 13: 6612.
[44]
Wang Y L, Liu Y Q, Zhao N, Wang J Y, Yang Y, Cui D Z, Zhao M. Biotechnol. J., 2023, 18(12): 2300084.
[45]
Wang Q, Kalathil S, Pornrungroj C, Sahm C D, Reisner E. Nat. Catal., 2022, 5(7): 633.
[46]
Guo J L, Suástegui M, Sakimoto K K, Moody V M, Xiao G, Nocera D G, Joshi N S. Science, 2018, 362(6416): 813.
[47]
Cui S, Tian L J, Li J, Wang X M, Liu H Q, Fu X Z, He R L, Lam P K S, Huang T Y, Li W W. Chem. Eng. J., 2022, 428: 131254.
[48]
Shen H Q, Wang Y Z, Liu G W, Li L H, Xia R, Luo B F, Wang J X, Suo D, Shi W D, Yong Y C. ACS Catal., 2020, 10(22): 13290.
[49]
Wen N, Jiang Q Q, Cui J T, Zhu H M, Ji B T, Liu D Y. Nano Today, 2022, 47: 101681.
[50]
Koh S, Choi Y, Lee I, Kim G M, Kim J, Park Y S, Lee S Y, Lee D C. J. Am. Chem. Soc., 2022, 144(24): 10798.
[51]
Luo B F, Wang Y Z, Li D, Shen H Q, Xu L X, Fang Z, Xia Z L, Ren J L, Shi W D, Yong Y C. Adv. Energy Mater., 2021, 11(19): 2100256.
[52]
Wang J, Chen N, Bian G K, Mu X, Du N, Wang W J, Ma C G, Fu S, Huang B L, Liu T G, Yang Y B, Yuan Q. Angew. Chem. Int. Ed., 2022, 61(32): e202207132.
[53]
Zhang H, Liu H, Tian Z Q, Lu D, Yu Y, Cestellos-Blanco S, Sakimoto K K, Yang P D. Nat. Nanotechnol., 2018, 13(10): 900.
[54]
Wang Y Q, Zhao Y L, Wang S J, Xiao G, Jin Y, Wang Z S, Su H J. ACS Sustainable Chem. Eng., 2023, 11(1): 300.
[55]
Dai C H, Liu B. Energy Environ. Sci., 2020, 13(1): 24.
[56]
Liu L B, Zhou X, Bai H T, Huang Y M, Lv F T, Wang S. Sci. Sin. Chim., 2022, 52: 241.
(刘礼兵, 周鑫, 白昊天, 黄一鸣, 吕凤婷, 王树. 中国科学: 化学, 2022, 52(2): 241.)
[57]
Yang C, Cheng B, Xu J S, Yu J G, Cao S W. EnergyChem, 2024, 6(1): 100116.
[58]
Yu W, Bai H T, Zeng Y, Zhao H, Xia S P, Huang Y M, Lv F T, Wang S. Research, 2022, 2022: 2022: 9834093.
[59]
Chen Z X, Quek G, Zhu J-Y, Chan S J W, Cox-Vázquez S J, Lopez-Garcia F, Bazan G C. Angew. Chem. Int. Ed., 2023, 62(37): e202307101.
[60]
Wu D, Zhang W M, Fu B H, Zhang Z H. Joule, 2022, 6(10): 2293.
[61]
Hu A D, Ye J, Ren G P, Qi Y P, Chen Y P, Zhou S G. Angew. Chem. Int. Ed., 2022, 61(35): e202206508.
[62]
Liu Z-X, Yu Z-P, Shen Z Q, He C L, Lau T K, Chen Z, Zhu H M, Lu X H, Xie Z Q, Chen H Z, Li C-Z. Nat. Commun., 2021, 12: 3049.
[63]
Zhang H Q, Hu Y X, Chen X S, Yu L, Huang Y N, Wang Z W, Wang S G, Lou Y P, Ma X N, Sun Y J, Li J, Ji D Y, Li L Q, Hu W P. Adv. Funct. Mater., 2022, 32(20): 2111705.
[64]
Yamilova O R, Martynov I V, Brandvold A S, Klimovich I V, Balzer A H, Akkuratov A V, Kusnetsov I E, Stingelin N, Troshin P A. Adv. Energy Mater., 2020, 10(7): 1903163.
[65]
Huang Y N, Wu K J, Sun Y J, Hu Y X, Wang Z W, Yuan L Q, Wang S G, Ji D Y, Zhang X T, Dong H L, Gong Z M, Li Z Y, Weng X F, Huang R, Cui Y, Chen X S, Li L Q, Hu W P. Nat. Commun., 2024, 15: 626.
[66]
Zuo G Z, Linares M, Upreti T, Kemerink M. Nat. Mater., 2019, 18(6): 588.
[67]
Wang Z J, Gao D, Geng H, Xing C F. J. Mater. Chem. A, 2021, 9(35): 19788.
[68]
Zeng Y, Bai H T, Yu W, Xia S P, Shen Q, Huang Y M, Lv F T, Bazan G C, Wang S. Angew. Chem. Int. Ed., 2023, 62(30): e202303877.
[69]
Ye J, Chen Y P, Gao C, Wang C, Hu A D, Dong G W, Chen Z, Zhou S G, Xiong Y J. Angew. Chem. Int. Ed., 2022, 61(52): e202213244.
[70]
Yu W, Pavliuk M V, Liu A J, Zeng Y, Xia S P, Huang Y M, Bai H T, Lv F T, Tian H N, Wang S. ACS Appl. Mater. Interfaces, 2023, 15(1): 2183.
[71]
Xiao K M, Tsang T H, Sun D, Liang J, Zhao H, Jiang Z F, Wang B, Yu J C, Wong P K. Adv. Energy Mater., 2021, 11(21): 2100291.
[72]
Qi R L, Zhao H, Zhou X, Liu J, Dai N, Zeng Y, Zhang E D, Lv F T, Huang Y M, Liu L B, Wang Y L, Wang S. Angew. Chem. Int. Ed., 2021, 60(11): 5759.
[73]
Liu S R, Yi X F, Wu X E, Li Q B, Wang Y P. Small, 2020, 16(44): 2004194.
[74]
García de Arquer F P, Talapin D V, Klimov V I, Arakawa Y, Bayer M, Sargent E H. Science, 2021, 373(6555): eaaz8541.
[75]
Lin Y L, Shi J Y, Feng W, Yue J P, Luo Y Q, Chen S, Yang B, Jiang Y W, Hu H C, Zhou C K, Shi F Y, Prominski A, Talapin D V, Xiong W, Gao X, Tian B Z. Sci. Adv., 2023, 9(29): eadg5858.
[76]
Yao S S, Jin B, Liu Z M, Shao C Y, Zhao R B, Wang X Y, Tang R K. Adv. Mater., 2017, 29(14): 1605903.
[77]
Tian L J, Li W W, Zhu T T, Chen J J, Wang W K, An P F, Zhang L, Dong J C, Guan Y, Liu D F, Zhou N Q, Liu G, Tian Y C, Yu H Q. J. Am. Chem. Soc., 2017, 139(35): 12149.
[78]
Jin C Y, Xu W, Jin K, Yu L, Lu H F, Liu Z, Liu J L, Zhu X H, Wu Y H, Zhang Y. Inorg. Chem. Front., 2023, 10(14): 4008.
[79]
Cui S, Si Y, Fu X Z, Li H H, Wang X M, Du W Z, Teng L, He R L, Liu H Q, Ye R Q, Li W W. Chem. Eng. J., 2023, 457: 141237.
[80]
Zheng T T, Zhang M L, Wu L H, Guo S Y, Liu X J, Zhao J K, Xue W Q, Li J W, Liu C X, Li X, Jiang Q, Bao J, Zeng J, Yu T, Xia C. Nat. Catal., 2022, 5(5): 388.
[81]
Weliwatte N S, Minteer S D. Joule, 2021, 5(10): 2564.
[82]
He Y, Wang S R, Han X Y, Shen J Y, Lu Y W, Zhao J Z, Shen C P, Qiao L. ACS Appl. Mater. Interfaces, 2022, 14(20): 23364.
[83]
Sahoo P C, Singh A, Kumar M, Gupta R P, Puri S K, Ramakumar S S V. Mol. Catal., 2021, 514: 111845.
[84]
Zeng J Y, Wang X S, Liu X H, Li Q R, Feng J, Zhang X Z. Natl. Sci. Rev., 2023, 10(7): nwad142.
[85]
Ye J, Yu J, Zhang Y Y, Chen M, Liu X, Zhou S G, He Z. Appl. Catal. B Environ., 2019, 257: 117916.
[86]
Ma J Y, Yan Z, Sun X D, Jiang Y Q, Duan J L, Feng L J, Zhu F P, Liu X Y, Xia P F, Yuan X Z. Proc. Natl. Acad. Sci. U. S. A., 2024, 121(4): e2317058121.
[87]
Liang G J, Xu X C, Chen X L, Wu J, Song W, Wei W Q, Liu J, Li X M, Liu L M, Gao C. Chem. Eng. J., 2023, 477: 147152.
[88]
Qin Y J, Wang K C, Xia Q, Yu S Q, Zhang M N, An Y, Zhao X D, Zhou Z. Chem. Eng. J., 2023, 451: 138789.
[89]
Ashida Y, Onozuka Y, Arashiba K, Konomi A, Tanaka H, Kuriyama S, Yamazaki Y, Yoshizawa K, Nishibayashi Y. Nat. Commun., 2022, 13: 7263.
[90]
Editorial. Nat. Synth, 2023, 2(7): 581.
[91]
Ye D P, Tsang S C E. Nat. Synth, 2023, 2(7): 612.
[92]
Steinberg K, Yuan X T, Klein C K, Lazouski N, Mecklenburg M, Manthiram K, Li Y Z. Nat. Energy, 2023, 8(2): 138.
[93]
Brown K A, Harris D F, Wilker M B, Rasmussen A, Khadka N, Hamby H, Keable S, Dukovic G, Peters J W, Seefeldt L C, King P W. Science, 2016, 352(6284): 448.
[94]
Bie C B, Wang L X, Yu J G. Chem, 2022, 8(6): 1567.
[95]
Zhou P, Navid I A, Ma Y J, Xiao Y X, Wang P, Ye Z W, Zhou B W, Sun K, Mi Z T. Nature, 2023, 613(7942): 66.
[96]
Yang X, Nielsen C P, Song S J, McElroy M B. Nat. Energy, 2022, 7(10): 955.
[97]
Chen Y, Yin Y N, Wang J L. Int. J. Hydrog. Energy, 2021, 46(7): 5053.
[98]
Martins M, Toste C, Pereira I A C. Angew. Chem. Int. Ed., 2021, 60(16): 9055.
[99]
Honda Y, Shinohara Y, Watanabe M, Ishihara T, Fujii H. ChemBioChem, 2020, 21(23): 3389.
[100]
Lv X X, Huang W C, Gao Y, Chen R, Chen X W, Liu D Q, Weng L, He L C, Liu S Q. Nano Res., 2024, 17(6): 5390.
[101]
Wei W, Sun P Q, Li Z, Song K S, Su W Y, Wang B, Liu Y Z, Zhao J. Sci. Adv., 2018, 4(2): eaap9253.
[102]
Wang L, Shi S L, Liang J, Wang B, Xing X W, Zeng C P. Green Chem., 2023, 25(16): 6336.
[103]
Krasnovsky A A, Nikandrov V V. FEBS Lett., 1987, 219(1): 93.
[104]
Zuo W L, Yu Y D, Huang H. Water Res., 2021, 195: 116984.
[105]
Ding R, Yan W F, Wu Y, Xiao Y, Gang H Y, Wang S H, Chen L X, Zhao F. Water Res., 2018, 143: 589.
[106]
Zhang L, Fan R N, Dong T J, Dou Q H, Peng Y Z, Ni S Q, Yang J C. Bioresour. Technol., 2024, 394: 130280.
[107]
Zhang S Y, Li C H, Ke C D, Liu S J, Yao Q, Huang W L, Dang Z, Guo C L. Water Res., 2023, 243: 120339.
[108]
Shi H F, Fan W B, Jiang X B, Chen D, Hou C, Wang Y X, Mu Y, Shen J Y. Water Res. X, 2024, 22: 100214.
[109]
Chen X Y, Feng Q Y, Cai Q H, Huang S F, Yu Y Q, Zeng R J, Chen M, Zhou S G. Environ. Sci. Technol., 2020, 54(17): 10820.
[110]
Pi S S, Yang W J, Feng W, Yang R J, Chao W X, Cheng W B, Cui L, Li Z D, Lin Y L, Ren N Q, Yang C, Lu L, Gao X. Nat. Sustain., 2023, 6(12): 1673.
[111]
Chen M, Zhou X F, Yu Y Q, Liu X, Zeng R J, Zhou S G, He Z. Environ. Int., 2019, 127: 353.
[112]
Guo M W, Wang C, Qiao S. iScience, 2023, 26(5): 106725.
[113]
Huang S F, Chen M, Diao Y M, Feng Q Y, Zeng R J, Zhou S G. Environ. Sci. Technol., 2022, 56(7): 4632.
[114]
Chen S S, Chen J, Zhang L L, Huang S F, Liu X, Yang Y T, Luan T G, Zhou S G, Nealson K H, Rensing C. ISME J., 2023, 17(5): 712.
[115]
Huang S F, Chen K Y, Chen X Y, Liao H P, Zeng R J, Zhou S G, Chen M. Environ. Sci. Technol., 2023, 57(20): 7733.
[116]
Zhou X F, Huang S F, Chen X Y, Jianxiong Zeng R, Zhou S G, Chen M. Chem. Eng. J., 2023, 468: 143667.
[117]
Wang Y Y, Ma B, He C, Xia D H, Yin R. Environ. Sci. Technol., 2023, 57(24): 9064.
[118]
Shi H F, Jiang X B, Chen D, Li Y, Hou C, Wang L J, Shen J Y. Water Res., 2020, 187: 116464.
[119]
Du Y M, Guo J B, Hou Y N, Song Y Y, Lu C C, Han Y, Li H B. Environ. Sci. Nano, 2022, 9(5): 1819.
[120]
Sun P Q, Li K L, Lin K, Wei W, Zhao J. ACS Appl. Nano Mater., 2022, 5(7): 9754.
[121]
Wang H L, Le Y L, Sun J Z. J. Hazard. Mater., 2022, 431: 128596.
[122]
Chen M, Cai Q H, Chen X Y, Huang S F, Feng Q Y, Majima T, Zeng R J, Zhou S G. Environ. Sci. Technol., 2022, 56(8): 5161.
[123]
Dong T J, Zhang L, Hao S W, Yang J C, Peng Y Z. Water Res., 2024, 255: 121532.
[124]
Chen Z, Li J, Zhang J, Wang H H, Zeng Y Q, Wang F, Huang P, Chen X L, Ge L Y, Dahlgren R A, Gao H, Huang X F. J. Clean. Prod., 2024, 435: 140497.

Funding

National Natural Science Fund for Distinguished Young Scholars(52225001)
PDF(16700 KB)

Accesses

Citation

Detail

Sections
Recommended

/