Research Process on Photoinduced Copper-Catalyzed Decarboxylative Coupling Reactions of Carboxylic Acids and Their Derivatives

Yanhong Liu, Dongju Zhang

Prog Chem ›› 2025, Vol. 37 ›› Issue (2) : 281-292.

PDF(9832 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9832 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (2) : 281-292. DOI: 10.7536/PC240411
Review

Research Process on Photoinduced Copper-Catalyzed Decarboxylative Coupling Reactions of Carboxylic Acids and Their Derivatives

Author information +
History +

Abstract

The visible-light-driven copper-catalyzed decarboxylative coupling reaction of carboxylic acids and their derivatives is a novel, efficient, and green synthetic method. It allows the construction of various carbon-carbon and carbon-heteroatom bonds for the synthesis of a wide range of high-value-added chemicals, making it a hot topic in the field of modern synthetic chemistry. In recent years, researchers worldwide have conducted extensive studies in this area, achieving a series of innovative results that have been widely applied in organic synthesis, materials science, and medicinal chemistry. This paper reviews the latest experimental and theoretical advances in the visible-light-driven copper-catalyzed decarboxylative coupling reactions of carboxylic acids and their derivatives, with a focus on several typical cross-coupling reactions that form C—X (X = C, N, O, S) bonds. It also discusses the future development prospects of this catalytic method.

Contents

1 Introduction

2 Mechanism of photocatalyst and copper complex co-catalysis

3 Photocatalyst and copper complex co-catalyzed carboxylic acid (ester) decarboxylative coupling reactions

3.1 C—C coupling

3.2 C—N coupling

3.3 C—O coupling

3.4 C—S coupling

4 Conclusion and outlook

Key words

photocatalysis / copper complex / carboxylic acid / decarboxylation / cross-coupling reaction

Cite this article

Download Citations
Yanhong Liu , Dongju Zhang. Research Process on Photoinduced Copper-Catalyzed Decarboxylative Coupling Reactions of Carboxylic Acids and Their Derivatives[J]. Progress in Chemistry. 2025, 37(2): 281-292 https://doi.org/10.7536/PC240411

References

[1]
Cherney A H, Kadunce N T, Reisman S E. Chem. Rev., 2015, 115(17): 9587.
[2]
Du B N, Chan C M, Au C M, Yu W Y. Acc. Chem. Res., 2022, 55(15): 2123.
[3]
Twilton J, Le C, Zhang P, Shaw M H, Evans R W, MacMillan D W C. Nat. Rev. Chem., 2017, 1(7): 0052.
[4]
Lu F D, Chen J, Jiang X, Chen J R, Lu L Q, Xiao W J. Chem. Soc. Rev., 2021, 50(22): 12808.
[5]
Chan A Y, Perry I B, Bissonnette N B, Buksh B F, Edwards G A, Frye L I, Garry O L, Lavagnino M N, Li B X, Liang Y F, Mao E, Millet A, Oakley J V, Reed N L, Sakai H A, Seath C P, MacMillan D W C. Chem. Rev., 2022, 122(2): 1485.
[6]
Lu F D, He G F, Lu L Q, Xiao W J. Green Chem., 2021, 23(15): 5379.
[7]
Zhang Y J, Ma D L, Zhang Z P. Arab. J. Chem., 2022, 15(7): 103922.
[8]
Engl S, Reiser O. Chem. Soc. Rev., 2022, 51(13): 5287.
[9]
Gavelle S, Innocent M, Aubineau T, Guérinot A. Adv. Synth. Catal., 2022, 364(24): 4189.
[10]
Beil S B, Chen T Q, Intermaggio N E, MacMillan D W C. Acc. Chem. Res., 2022, 55(23): 3481.
[11]
Lu Y J, Dai N N, Li M H, Tian W C, Li Q, Wang Z J, Tang K Q, Wei W T. Adv. Synth. Catal., 2024, 366(19): 4000.
[12]
Beaudelot J, Oger S, Peruško S, Phan T A, Teunens T, Moucheron C, Evano G. Chem. Rev., 2022, 122(22): 16365.
[13]
Cheng W M, Shang R. ACS Catal., 2020, 10(16): 9170.
[14]
Zhang Y J, Wang Q, Yan Z S, Ma D L, Zheng Y G. Beilstein J. Org. Chem., 2021, 17: 2520.
[15]
Ramani A, Desai B, Dholakiya B Z, Naveen T. Chem. Commun., 2022, 58(57): 7850.
[16]
Wei Y, Hu P, Zhang M, Su W P. Chem. Rev., 2017, 117(13): 8864.
[17]
Parida S K, Mandal T, Das S, Hota S K, De Sarkar S, Murarka S. ACS Catal., 2021, 11(3): 1640.
[18]
Varenikov A, Shapiro E, Gandelman M. Chem. Rev., 2021, 121(1): 412.
[19]
Prier C K, Rankic D A, MacMillan D W C. Chem. Rev., 2013, 113(7): 5322.
[20]
Tucker J W, Stephenson C R J. J. Org. Chem., 2012, 77(4): 1617.
[21]
Shaw M H, Twilton J, MacMillan D W C. J. Org. Chem., 2016, 81(16): 6898.
[22]
Cheung K P S, Sarkar S, Gevorgyan V. Chem. Rev., 2022, 122(2): 1543.
[23]
Liu L, Gu Y C, Zhang C P. J. Org. Chem., 2023, 88(13): 9372.
[24]
Beil S B, Bonnet S, Casadevall C, Detz R J, Eisenreich F, Glover S D, Kerzig C, Næsborg L, Pullen S, Storch G, Wei N, Zeymer C. JACS Au, 2024, 4(8): 2746.
[25]
Song L L, Cai L C, Gong L, Van der Eycken E V. Chem. Soc. Rev., 2023, 52(7): 2358.
[26]
Ullmann F, Bielecki J. Ber. Dtsch. Chem. Ges., 1901, 34(2): 2174.
[27]
Chodkiewicz W, Cadiot P, Hebd C R. Seances Acad. Sci., 1955, 241: 1055.
[28]
Stephens R D, Castro C E. J. Org. Chem., 1963, 28(12): 3313.
[29]
Corey E J, Posner G H. J. Am. Chem. Soc., 1967, 89(15): 3911.
[30]
Salih K S M, Baqi Y. Catalysts, 2020, 10(1): 4.
[31]
Gong L. Nat. Synth., 2022, 1(12): 915.
[32]
Dong X Y, Li Z L, Gu Q S, Liu X Y. J. Am. Chem. Soc., 2022, 144(38): 17319.
[33]
Choi J, Fu G C. Science, 2017, 356(6334): eaaf7230.
[34]
Xuan J, Xiao W J. Angew. Chem. Int. Ed., 2012, 51(28): 6828.
[35]
Acetylene Chemistry: Chemistry, Biology and Material Science. Eds.: Diederich F, Stang P, Tykwinski R. Wiley-VCH, 2004.
[36]
Lauder K, Toscani A, Scalacci N, Castagnolo D. Chem. Rev., 2017, 117(24): 14091.
[37]
Zhang H, Zhang P X, Jiang M, Yang H J, Fu H. Org. Lett., 2017, 19(5): 1016.
[38]
Xia H D, Li Z L, Gu Q S, Dong X Y, Fang J H, Du X Y, Wang L L, Liu X Y. Angew. Chem. Int. Ed., 2020, 59(39): 16926.
[39]
Wang Y B, Tan B. Acc. Chem. Res., 2018, 51(2): 534.
[40]
Wang D H, Zhu N, Chen P H, Lin Z Y, Liu G S. J. Am. Chem. Soc., 2017, 139(44): 15632.
[41]
Liang Y J, Sun G Y, Su Z M, Guan W. Dalton Trans., 2020, 49(43): 15276.
[42]
Wang J, Sánchez-Roselló M, Aceña J L, del Pozo C, Sorochinsky A E, Fustero S, Soloshonok V A, Liu H. Chem. Rev., 2014, 114(4): 2432.
[43]
Yang X Y, Wu T, Phipps R J, Toste F D. Chem. Rev., 2015, 115(2): 826.
[44]
Zhang H R, Chen D Q, Han Y P, Qiu Y F, Jin D P, Liu X Y. Chem. Commun., 2016, 52(79): 11827.
[45]
Purser S, Moore P R, Swallow S, Gouverneur V. Chem. Soc. Rev., 2008, 37(2): 320.
[46]
Kautzky J A, Wang T, Evans R W, MacMillan D W C. J. Am. Chem. Soc., 2018, 140(21): 6522.
[47]
Patel M, Desai B, Sheth A, Dholakiya B Z, Naveen T. Asian J. Org. Chem., 2021, 10(12): 3201.
[48]
Sha W X, Deng L L, Ni S Y, Mei H B, Han J L, Pan Y. ACS Catal., 2018, 8(8): 7489.
[49]
Lu F D, Lu L Q, He G F, Bai J C, Xiao W J. J. Am. Chem. Soc., 2021, 143(11): 4168.
[50]
Liu Y H, Feng A L, Zhu R X, Zhang D J. Chem. Sci., 2023, 14(17): 4580.
[51]
Duan S Z, Du Y, Wang L L, Tian X, Zi Y J, Zhang H B, Walsh P J, Yang X D. Angew. Chem. Int. Ed., 2023, 62(19): e202300605.
[52]
Shi J, Xu Q L, Ni Y Q, Li L, Pan F. Org. Lett., 2022, 24(25): 4609.
[53]
Treacy S M, Rovis T. J. Am. Chem. Soc., 2021, 143(7): 2729.
[54]
Dang H T, Haug G C, Nguyen V T, Vuong N T H, Nguyen V D, Arman H D, Larionov O V. ACS Catal., 2020, 10(19): 11448.
[55]
Hu R R, Leung N L C, Tang B Z. Chem. Soc. Rev., 2014, 43(13): 4494.
[56]
Mu Y C, Nguyen T T, Koh M J, Schrock R R, Hoveyda A H. Nat. Chem., 2019, 11(5): 478.
[57]
Tang F, Feng Y S, Cheng Z F, Zhang Q, Xu H J. Org. Lett., 2023, 25(21): 3916.
[58]
Mastandrea M M, Cañellas S, Caldentey X, Pericàs M A. ACS Catal., 2020, 10(11): 6402.
[59]
Vitaku E, Smith D T, Njardarson J T. J. Med. Chem., 2014, 57(24): 10257.
[60]
Talekar S S, Dutta S, Mane M V, Maity B. Eur. J. Org. Chem., 2024, 27(11): e202301312.
[61]
Monnier F, Taillefer M. Angew. Chem. Int. Ed., 2009, 48(38): 6954.
[62]
Forero-Cortés P A, Haydl A M. Org. Process Res. Dev., 2019, 23(8): 1478.
[63]
Ruiz-Castillo P, Buchwald S L. Chem. Rev., 2016, 116(19): 12564.
[64]
Zhao X, Liu Y H, Zhu R X, Liu C B, Zhang D J. Inorg. Chem., 2019, 58(19): 12669.
[65]
Till N A, Tian L, Dong Z, Scholes G D, MacMillan D W C. J. Am. Chem. Soc., 2020, 142(37): 15830.
[66]
Bellotti P, Huang H M, Faber T, Glorius F. Chem. Rev., 2023, 123(8): 4237.
[67]
Liang Y F, Zhang X H, MacMillan D W C. Nature, 2018, 559(7712): 83.
[68]
Zhang X H, Smith R T, Le C, McCarver S J, Shireman B T, Carruthers N I, MacMillan D W C. Nature, 2020, 580(7802): 220.
[69]
Mane M V, Dutta S, Cavallo L, Maity B. ACS Catal., 2023, 13(9): 6249.
[70]
Nguyen V T, Nguyen V D, Haug G C, Vuong N T H, Dang H T, Arman H D, Larionov O V. Angew. Chem. Int. Ed., 2020, 59(20): 7921.
[71]
Xiong N, Li Y, Zeng R. ACS Catal., 2023, 13(3): 1678.
[72]
Mao R Z, Frey A, Balon J, Hu X L. Nat. Catal., 2018, 1(2): 120.
[73]
Liu Y H, Yang Y Y, Zhu R X, Zhang D J. ACS Catal., 2020, 10(9): 5030.
[74]
Mao R Z, Balon J, Hu X L. Angew. Chem. Int. Ed., 2018, 57(30): 9501.
[75]
Barzanò G, Mao R Z, Garreau M, Waser J, Hu X L. Org. Lett., 2020, 22(14): 5412.
[76]
DiRocco D A, Dykstra K, Krska S, Vachal P, Conway D V, Tudge M. Angew. Chem. Int. Ed., 2014, 53(19): 4802.
[77]
Tang Z L, Ouyang X H, Song R J, Li J H. Org. Lett., 2021, 23(3): 1000.
[78]
Nakata T. Chem. Rev., 2005, 105(12): 4314.
[79]
Fuhrmann E, Talbiersky J. Org. Process Res. Dev., 2005, 9(2): 206.
[80]
Caron S. Practical Synthetic Organic Chemistry. Hoboken: Wiley, 2011. 237.
[81]
Enthaler S, Company A. Chem. Soc. Rev., 2011, 40(10): 4912.
[82]
MacQueen P M, Tassone J P, Diaz C, Stradiotto M. J. Am. Chem. Soc., 2018, 140(15): 5023.
[83]
Mao R Z, Balon J, Hu X L. Angew. Chem. Int. Ed., 2018, 57(41): 13624.
[84]
Li R H, Zhao Y L, Shang Q K, Geng Y, Wang X L, Su Z M, Li G F, Guan W. ACS Catal., 2021, 11(11): 6633.
[85]
Ma B, Chen Z Y, Ma M, Zhao Z, Long Y E, Chen D P, Yang J Y. Org. Chem. Front., 2024, 11(20): 5876.
[86]
Chen G L, He S H, Cheng L, Liu F. Org. Lett., 2021, 23(21): 8338.
[87]
Meek J S, Fowler J S. J. Org. Chem., 1968, 33(9): 3422.
[88]
Gilman H, Fothergill R E. J. Am. Chem. Soc., 1929, 51(11): 3501.
[89]
Qiu G, Zhou K D, Gao L, Wu J. Org. Chem. Front., 2018, 5(4): 691.
[90]
Mulina O M, Ilovaisky A I, Parshin V D, Terent’ev A O. Adv. Synth. Catal., 2020, 362(21): 4579.
[91]
Zhou Y, Yang W H, Dai N N, Feng J Y, Yang M Q, Gao W Q, Li Q, Deng C, Lu Z, Wei W T. Org. Lett., 2024, 26(24): 5074.
[92]
Hell S M, Meyer C F, Misale A, Sap J B I, Christensen K E, Willis M C, Trabanco A A, Gouverneur V. Angew. Chem. Int. Ed., 2020, 59(28): 11620.
[93]
Nguyen V T, Haug G C, Nguyen V D, Vuong N T H, Arman H D, Larionov O V. Chem. Sci., 2021, 12(18): 6429.
[94]
Bentley R. Chem. Soc. Rev., 2005, 34(7): 609.
[95]
He S H, Chen G L, Gong X Y, Ao G Z, Liu F. J. Org. Chem., 2023, 88(11): 6671.
[96]
Yoshida S, Yano T, Misawa Y, Sugimura Y, Igawa K, Shimizu S, Tomooka K, Hosoya T. J. Am. Chem. Soc., 2015, 137(44): 14071.
[97]
Zhang M J, Liu L X, Tan Y H, Jing Y, Liu Y X, Wang Z W, Wang Q M. Angew. Chem. Int. Ed., 2024, 63(6): e202318344.
[98]
Nguyen V D, Trevino R, Greco S G, Arman H D, Larionov O V. ACS Catal., 2022, 12(14): 8729.

Funding

National Natural Science Foundation of China(22303045)
National Natural Science Foundation of China(22273051)
Research Project on Undergraduate Education and Teaching Reform of Shandong Province(Z2022169)
Research Project on Undergraduate Education and the Teaching Reform of Shandong University(2024Z07)
PDF(9832 KB)

Accesses

Citation

Detail

Sections
Recommended

/