Synthesis and Cancer Biomedical Applications of Dendrimer-Based Fluorescence Imaging Agents

Linjie Yue, Lingxiu He, Na Liu, Risong Pan, Jingyi Zhu

Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1186-1199.

PDF(20549 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(20549 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1186-1199. DOI: 10.7536/PC240101
Review

Synthesis and Cancer Biomedical Applications of Dendrimer-Based Fluorescence Imaging Agents

Author information +
History +

Abstract

as a molecular imaging technique with high sensitivity and high spatial resolution,fluorescence imaging is widely used in cancer diagnosis and therapy.However,commonly used fluorescence imaging agents,such as small-molecule fluorescent dyes and fluorescent inorganic nanoparticles,have defects such as poor photostability,rapid metabolism in vivo,and low accumulation at lesion sites,which limit their application in the field of cancer fluorescence imaging.in recent years,the appearance of dendrimer has provided a new strategy for the development of nano-scale fluorescence imaging agents.A dendrimer is composed of three parts,including a central core,internal repeating units and abundant terminal functional groups.the excellent structure of dendrimer enables it to load small-molecule fluorescent dyes or fluorescent inorganic nanoparticles to achieve early fluorescence monitoring of cancer and evaluate its distribution and metabolism in vivo.Additionally,some amino-terminated dendrimers can be used to monitor their uptake by cancer cells through their intrinsic fluorescence.the introduction of dendrimer greatly improves the water solubility and biocompatibility of fluorescent dyes and fluorescent inorganic nanoparticles,and the surface functionalization of dendrimer could achieve their tissue-specific delivery.Most importantly,the protection of dendrimer can greatly avoid fluorescence quenching and achieve long-time fluorescence imaging.Therefore,this review mainly describes various kinds of dendrimer-based fluorescence imaging agents,summarizes their synthesis methods and their applications in cancer fluorescence imaging,and prospects for their future development。

Contents

1 Introduction

2 Functionalized dendrimer with fluorescence property

2.1 Intrinsically fluorescent dendrimer

2.2 Dendrimer loaded with fluorescent dye molecules

2.3 Dendrimer loaded with fluorescent inorganic nanoparticles

3 Conclusion and outlook

Key words

molecular imaging / dendrimer / fluorescence imaging / nanocarrier / biomedical application

Cite this article

Download Citations
Linjie Yue , Lingxiu He , Na Liu , et al . Synthesis and Cancer Biomedical Applications of Dendrimer-Based Fluorescence Imaging Agents[J]. Progress in Chemistry. 2024, 36(8): 1186-1199 https://doi.org/10.7536/PC240101

References

[1]
Xia C F, Dong X S, Li H, Cao M M, Sun D Q, He S Y, Yang F, Yan X X, Zhang S L, Li N, Chen W Q. Chin. Med. J., 2022, 135(5): 584.
[2]
Gavas S, Quazi S, Karpiński T M. Nanoscale Res. Lett., 2021, 16(1): 173.
[3]
Raj S, Khurana S, Choudhari R, Kesari K K, Kamal M A, Garg N, Ruokolainen J, Das B C, Kumar D. Semin. Cancer Biol., 2021, 69: 166.
[4]
Gowd V, Ahmad A, Tarique M, Suhail M, Zughaibi T A, Tabrez S, Khan R. Semin. Cancer Biol., 2022, 86: 624.
[5]
Li H, Kim Y, Jung H, Hyun J Y, Shin I. Chem. Soc. Rev., 2022, 51(21): 8957.
[6]
Zhao Z X, Swartchick C B, Chan J. Chem. Soc. Rev., 2022, 51(3): 829.
[7]
Liu Q, Tian J W, Tian Y, Sun Q C, Sun D, Wang F F, Xu H J, Ying G L, Wang J G, Yetisen A K, Jiang N. ACS Nano, 2021, 15(1): 515.
[8]
Dou W T, Han H H, Sedgwick A C, Zhu G B, Zang Y, Yang X R, Yoon J, James T D, Li J, He X P. Sci. Bull., 2022, 67(8): 853.
[9]
Kedrzycki M S, Leiloglou M, Ashrafian H, Jiwa N, Thiruchelvam P T R, Elson D S, Leff D R. Ann. Surg. Oncol., 2021, 28(7): 3738.
[10]
Yang R Q, Lou K L, Wang P Y, Gao Y Y, Zhang Y Q, Chen M, Huang W H, Zhang G J. Small Methods, 2021, 5 (3): 2001006.
[11]
Yin X R, Cheng Y F, Feng Y, Stiles W R, Park S H, Kang H, Choi H S. Adv. Drug Deliv. Rev., 2022, 189: 114483.
[12]
Fan X X, Xia Q M, Zhang Y Y, Li Y R, Feng Z, Zhou J, Qi J, Tang B Z, Qian J, Lin H. Adv. Healthc. Mater., 2021, 10(24): e2101043.
[13]
Hötzer B, Medintz I L, Hildebrandt N. Small, 2012, 8(15): 2297.
[14]
Neijenhuis L K A, de Myunck L D A N, Bijlstra O D, Kuppen P J K, Hilling D E, Borm F J, Cohen D, Mieog J S D, Steup W H, Braun J, Burggraaf J, Vahrmeijer A L, Hutteman M. Life, 2022, 12(3): 446.
[15]
Trzepiński P, Klajnert-Maculewicz B. J. Chem. Technol. Biotechnol., 2017, 92(6): 1157.
[16]
Kojima C, Nagai K. Polymers, 2022, 14(20): 4314.
[17]
Wang L F, Qian Y. Biomater. Sci., 2023, 11(4): 1459.
[18]
Zhong H M, Wu Y X, Yu S R, Wang X, He K D, Li D, Cao Y T, Gan N. Anal. Chem., 2021, 93(14): 5691.
[19]
Li Q, Gu W, Liu K, Xiao N, Zhang J, Shao L L, Li L, Zhang S T, Li P. RSC Adv., 2016, 6(78): 74560.
[20]
Mathejczyk J E, Pauli J, Dullin C, Napp J, Tietze L F, Kessler H, Resch-Genger U, Alves F. Mol. Imag., 2011, 10(6): 7290.2011. 00018.
[21]
Vats K, Sharma R, Sharma A K, Sarma H D, Satpati D. J. Pept. Sci., 2021, 28 (2): 111156.
[22]
Fatima M, Sheikh A, Hasan N, Sahebkar A, Riadi Y, Kesharwani P. Eur. Polym. J., 2022, 170: 111156.
[23]
Oliveira I M, Gonçalves C, Oliveira E P, Simón-Vázquez R, da Silva Morais A. Adv. Mater. Sci., 2021, 121: 111845.
[24]
Arora V, Abourehab M A S, Modi G, Kesharwani P. Eur. Polym. J., 2022, 180: 111635.
[25]
Kesharwani P, Chadar R, Shukla R, Jain G K, Aggarwal G, Abourehab M A S, Sahebkar A. J. Biomater. Sci. Polym. Ed., 2022, 33(18): 2433.
[26]
Feng H H, Pang L, Cong H L, Shen Y Q, Yu B. Integr. Ferroelectr., 2019, 197 (1): 99.
[27]
Taratula O, Schumann C, Duong T, Taylor K L, Taratula O. Nanoscale, 2015, 7(9): 3888.
[28]
Yang S K, Zimmerman S C. Adv. Funct. Mater., 2012, 22(14): 3023.
[29]
Kim Y, Kim S H, Tanyeri M, Katzenellenbogen J A, Schroeder C M. Biophys. J., 2013, 104(7): 1566.
[30]
Al-Jamal K T, Ruenraroengsak P, Hartell N, Florence A T. J. Drug Target., 2006, 14(6): 405.
[31]
Tsai Y J, Hu C C, Chu C C, Imae T. Biomacromolecules, 2011, 12(12): 4283.
[32]
Wang G Y, Fu L B, Walker A, Chen X F, Lovejoy D B, Hao M C, Lee A, Chung R, Rizos H, Irvine M, Zheng M, Liu X H, Lu Y Q, Shi B Y. Biomacromolecules, 2019, 20(5): 2148.
[33]
Michlewska S, Kubczak M, Maroto-Díaz M, Sanz del Olmo N, Ortega P, Shcharbin D, Gomez Ramirez R, Javier de la Mata F, Ionov M, Bryszewska M. Biomolecules, 2019, 9(9): 411.
[34]
Taratula O, Schumann C, Naleway M A, Pang A J, Chon K J, Taratula O. Mol. Pharmaceutics, 2013, 10(10): 3946.
[35]
Cong H L, Wang K Q, Zhou Z H, Yang J J, Piao Y, Yu B, Shen Y Q, Zhou Z X. ACS Nano, 2020, 14(5): 5887.
[36]
Chen Z Y, Peng Y T, Li Y C, Xie X X, Wei X D, Yang G, Zhang H X, Li N X, Li T T, Qin X, Li S, Wu C H, You F M, Yang H, Liu Y Y. ACS Nano, 2021, 15(10): 16683.
[37]
Tsuchimochi M, Hayama K, Toyama M, Sasagawa I, Tsubokawa N. EJNMMI Res., 2013, 3(1): 33.
[38]
Bukun Y, Zaim M, Senel M, Sagir T, Kiyak B Y, Isık S. Int. J. Polym. Mater. Polym. Biomater., 2024, 73(10): 917.
[39]
Nagai K, Sato T, Kojima C. Bioorg. Med. Chem. Lett., 2021, 33: 127726.
[40]
Graves E, Weissleder R, Ntziachristos V. Curr. Mol. Med., 2004, 4(4): 419.
[41]
Fan Y, Sun W J, Shi X Y. Small Meth., 2017, 1(12): 1700224.
[42]
Gao M J, Zhao H D, Wang Z H, Zhao Y B, Zou X Y, Sun L. Adv. Powder Technol., 2021, 32(6): 1972.
[43]
Plunkett S, El Khatib M, Şencan İ, Porter J E, Kumar A T N, Collins J E, Sakadžić S, Vinogradov S A. Nanoscale, 2020, 12(4): 2657.
[44]
Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Nat. Meth., 2008, 5(9): 763.
[45]
Sobhanan J, Anas A, Biju V. Chem. Rec., 2023, 23(3): e202200253.
[46]
Kuang H, Zhao Y, Ma W, Xu L G, Wang L B, Xu C L. Trac Trends Anal. Chem., 2011, 30(10): 1620.
[47]
Mekuria S L, Addisu K D, Chou H Y, Hailemeskel B Z, Tsai H C. Colloids Surf. B Biointerfaces, 2018, 167: 54.
[48]
Ding C P, Huang Y J, Shen Z Y, Chen X Y. Adv. Mater., 2021, 33 (32): 2007768.
[49]
Awasthi P, An X Y, Xiang J J, Kalva N, Shen Y Q, Li C Y. Nanoscale, 2020, 12(9): 5678.
[50]
Huang X Q, Tang M. J. Appl. Toxicol., 2021, 41(3): 342.
[51]
Li Y K, Zhong D, Zhou C, Tu Z X, Mao H L, Yang J, Zhang H, Luo K, Gong Q Y, Gu Z W. Adv. Funct. Mater., 2021, 31(34): 2103272.
[52]
Liu Y H, Huang H, Cao W J, Mao B D, Liu Y, Kang Z H. Mater. Chem. Front., 2020, 4(6): 1586.
[53]
Ma J, Kang K, Zhang Y J, Yi Q Y, Gu Z W. ACS Appl. Mater. Interfaces, 2018, 10(50): 43923.
[54]
Li D, Lin L Z, Fan Y, Liu L, Shen M W, Wu R, Du L F, Shi X Y. Bioact. Mater., 2021, 6(3): 729.
[55]
Sun C N, Gradzielski M. Adv. Colloid Interface Sci., 2022, 300: 102579.
[56]
Ouyang Z J, Gao Y, Shen M W, Shi X Y. Mater. Today Bio., 2021, 10: 100111.
PDF(20549 KB)

Accesses

Citation

Detail

Sections
Recommended

/