Research Progress and Challenges in Infrared Applications of MXene Materials

Yubin Li, Guoliang Dai, Jie Fan, Hong Xiao

Prog Chem ›› 2024, Vol. 36 ›› Issue (9) : 1336-1348.

PDF(226220 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(226220 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (9) : 1336-1348. DOI: 10.7536/PC240120
Review

Research Progress and Challenges in Infrared Applications of MXene Materials

Author information +
History +

Abstract

MXene is a two-dimensional transition metal carbon/nitrogen compound or carbon-nitrogen compound obtained from MAX phase materials by chemical etching followed by ultrasonic or intercalation treatment.It has the properties of two-dimensional atomic layer structure,abundant components,metallic conductivity,large specific surface area and active surface,etc.It has distinct infrared absorption in the near-infrared and mid\far-infrared bands,and has attracted extensive attention from researchers in recent years in a number of infrared applications,such as infrared camouflage,photothermal conversion,and photovoltaic effect.in this paper,the properties of MXene materials in the infrared band are reviewed in detail,including the high absorbance and localized surface plasmon resonance effect in the near-infrared band and the infrared low-emission properties in the mid/far-infrared band.Further based on its infrared properties,the research progress of its applications in popular fields such as infrared camouflage,broadband absorber,passive radiant heating,photothermal conversion and photovoltaic effect is summarized.Finally,the main problems of the current research on MXene materials in the infrared field and the future development direction are prospected。

Contents

1 Introduction

2 Infrared properties of MXene

2.1 Near-infrared optical properties

2.2 Middle/far infrared optical properties

3 Research on infrared application of MXene

3.1 Broadband absorber

3.2 Infrared camouflage

3.3 Photothermal conversion

3.4 Passive radiation heating

3.5 Infrared photoelectric detection

4 Conclusion and outlook

Key words

MXene / infrared / infrared camouflage / photothermal conversion / passive radiant heating / photovoltaic effect

Cite this article

Download Citations
Yubin Li , Guoliang Dai , Jie Fan , et al. Research Progress and Challenges in Infrared Applications of MXene Materials[J]. Progress in Chemistry. 2024, 36(9): 1336-1348 https://doi.org/10.7536/PC240120

References

[1]
Patil S A, Marichev K O, Patil S A, Bugarin A. Surf. Interfaces, 2023, 38: 102873.
[2]
Xie K F, Wang J, Xu S Y, Hao W, Zhao L, Huang L, Wei Z. Mater. Des., 2023, 228: 111867.
[3]
Yang Y S, Chen K C, Dang B K, Wang C, Chen Y P, Liu M, Li Y Y, Zhang X C, Sun Q F. Chem. Eng. J., 2023, 468: 143661.
[4]
Cover M F, Warschkow O, Bilek M M, McKenzie D R. J. Phys.: Condens. Matter, 2009, 21(30): 305403.
[5]
Yang J J, Zhang X F, Zhang X, Wang L, Feng W, Li Q. Adv. Mater., 2021, 33(14): 2004754.
[6]
Ashton M, Hennig R G, Broderick S R, Rajan K, Sinnott S B. Phys. Rev. B, 2016, 94(5): 054116.
[7]
Sun Z M. Int. Mater. Rev., 2011, 56(3): 143.
[8]
Barsoum M W. Prog. Solid State Chem., 2000, 28(1-4): 201.
[9]
Khazaei M, Arai M, Sasaki T, Estili M, Sakka Y. Phys. Chem. Chem. Phys., 2014, 16(17): 7841.
[10]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.
[11]
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. ACS Nano, 2012, 6(2): 1322.
[12]
Sokol M, Natu V, Kota S, Barsoum M W. Trends Chem., 2019, 1(2): 210.
[13]
Li P X, Guan G Z, Shi X, Lu L, Fan Y C, Xu J, Shang Y Y, Zhang Y J, Wei J Q, Guo F M. Rare Met., 2023, 42(4): 1249.
[14]
Yang Z C, Chen Y H, Chen G, Wang J S, Li H Y. Heliyon, 2023, 9(9): e19197.
[15]
Gounzari M, Belkassmi Y, Kotri A, Bouzelmad M, El Maimouni L. Chin. J. Phys., 2022, 80: 275.
[16]
Xu X D, Zhang Y L, Sun H Y, Zhou J W, Yang F, Li H, Chen H, Chen Y C, Liu Z, Qiu Z P, Wang D, Ma L P, Wang J W, Zeng Q G, Peng Z Q. Adv. Electron. Mater., 2021, 7(7): 2000967.
[17]
Wu H, Gu J X, Li Z C, Liu W X, Bao H, Yue Y N. J. Phys.: Condens. Matter, 2022, 34(15): 155704.
[18]
Shen M M, Ni J H, Cao Y X, Yang Y Y, Wang W J, Wang J F. J. Mater. Sci. Technol., 2023, 133: 32.
[19]
Nashim A, Parida K. Sustain. Mater. Technol., 2022, 32: e00439.
[20]
Zhang Y L, Yan Y, Qiu H, Ma Z L, Ruan K P, Gu J W. J. Mater. Sci. Technol., 2022, 103: 42.
[21]
Zhang W, Ji X X, Ma M G. Chem. Eng. J., 2023, 458: 141402.
[22]
Li Y, Xiong C, Huang H, Peng X D, Mei D Q, Li M, Liu G Z, Wu M C, Zhao T S, Huang B L. Adv. Mater., 2021, 33(41): 2103054.
[23]
Du X Y, Li X X, Zhang Y X, Guo X Y, Li Z J, Cao Y X, Yang Y Y, Wang W J, Wang J F. Nano Res., 2023, 16(2): 3326.
[24]
Abou Houran M, Adhavan B, Baqir M A, Saqlain M. Opt. Quantum Electron., 2023, 55(7): 572.
[25]
Alzahrani F A, Sorathiya V. Optik, 2023, 272: 170242.
[26]
Xu Z J, Ding X, Li S K, Huang F Z, Wang B J, Wang S P, Zhang X, Liu F H, Zhang H. ACS Appl. Mater. Interfaces, 2022, 14(35): 40396.
[27]
Wang S, Zhang Z H, Wei S H, He F, Li Z, Wang H H, Huang Y, Nie Z. Acta Biomater., 2021, 130: 138.
[28]
Wang Z H, Li H B, Luo M L, Chen T H, Xia X F, Chen H L, Ma C Y, Guo J, He Z W, Song Y F, Liu J, Jiang X T, Zhang H. ACS Appl. Nano Mater., 2020, 3(4): 3513.
[29]
He Y Y, Wu X W, Hu G B, Ke W D. J. Energy Storage, 2023, 73: 109217.
[30]
Su Y, Zhao X M, Feng Z. Text. Res. J., 2023, 93(13-14): 3128.
[31]
Su Y, Yu B, Zhao X M. Text. Res. J., 2023, 93(21-22): 5047.
[32]
Zhuge F W, Zheng Z, Luo P, Lv L, Huang Y, Li H Q, Zhai T Y. Adv. Mater. Technol., 2017, 2(8): 1700005.
[33]
Fan S H, Raman A. Natl. Sci. Rev., 2018, 5(2): 132.
[34]
Kang Y F, Yang H T, Wang C, Fan Q, Lei X M, Zhang H F, Zhu G F, Wang C. Opt. Commun., 2023, 546: 129743.
[35]
Su Y, Zhao X M, Han Y. Polymers, 2023, 15(14): 3055.
[36]
Han M K, Zhang D Z, Singh A, Hryhorchuk T, Eugene Shuck C, Zhang T, Bi L Y, McBride B, Shenoy V B, Gogotsi Y. Mater. Today, 2023, 64: 31.
[37]
Rodrigues M S, Costa D, Domingues R P, Apreutesei M, Pedrosa P, Martin N, Correlo V M, Reis R L, Alves E, Barradas N P, Sampaio P, Borges J, Vaz F. Appl. Surf. Sci., 2018, 438: 74.
[38]
Bansal A, Sekhon J S, Verma S S. Plasmonics, 2014, 9(1): 143.
[39]
Dong Z M, Yang W L, Liu X M, Gao Y C, Yang Z T, Lin J Q. Optik, 2021, 237: 166729.
[40]
Jian C C, Zhang J Q, Ma X C. RSC Adv., 2020, 10(22): 13277.
[41]
Zhao X P, Chen Y, Niu R X, Tang Y, Chen Y N, Su H N, Yang Z W, Jing X N, Guan H, Gao R, Meng L J. Adv. Mater., 2024, 36(8): 2307839.
[42]
Dong J W, Luo S L, Ning S P, Yang G, Pan D, Ji Y X, Feng Y Z, Su F M, Liu C T. ACS Appl. Mater. Interfaces, 2021, 13(50): 60478.
[43]
Gonçalves M, Melikyan A, Minassian H, Makaryan T, Petrosyan P, Sargsian T. Photonics, 2021, 8(2): 36.
[44]
Mokkath J H. Phys. Chem. Chem. Phys., 2021, 23(45): 25807.
[45]
Muhammed M M, Mokkath J H. Mater. Today Chem., 2023, 29: 101447.
[46]
Li L, Shi M K, Liu X Y, Jin X X, Cao Y X, Yang Y Y, Wang W J, Wang J F. Adv. Funct. Mater., 2021, 31(35): 2101381.
[47]
Cui J X, Wu J, Mi L, Feng A H, Yu Y, Yu Y. ACS Appl. Nano Mater., 2023, 6(19): 18354.
[48]
Tian Y L, Zhang X, Dou S L, Zhang L P, Zhang H M, Lv H M, Wang L L, Zhao J P, Li Y. Sol. Energy Mater. Sol. Cells, 2017, 170: 120.
[49]
Lu F F, Tan P Y, Ren D F, Han Y G. Dyes Pigm., 2022, 200: 110179.
[50]
Gong C, Su W M, Zhang Y, Chen P, Liu W W. Optik, 2018, 171: 204.
[51]
Elrashidi A, Tharwat M M. Opt. Quantum Electron., 2021, 53(8): 426.
[52]
Wang Y Y, Zhang Y, Fan M H, Zhang J, Zhou C B. Phys. Scr., 2023, 98(6): 065516.
[53]
Jakšić Z, Obradov M, Tanasković D, Jakšić O, Vasiljević Radović D. Opt. Quantum Electron., 2020, 52(2): 83.
[54]
Cui W, Li L Q, Xue W W, Xu H, He Z H, Liu Z M. Results Phys., 2021, 23: 104072.
[55]
Wang J Q, Wu Z, Xing Y Q, Li B J, Huang P, Liu L. Small, 2023, 19(14): 2207051.
[56]
Abou Houran M, Armghan A, Baqir M A, Aliqab K, Saqlain M, Alsharari M. Int. J. Therm. Sci., 2023, 193: 108452.
[57]
Chaudhuri K, Alhabeb M, Wang Z X, Shalaev V M, Gogotsi Y, Boltasseva A. ACS Photonics, 2018, 5(3): 1115.
[58]
Zhang W G, Xu G Y, Zhang J C, Wang H H, Hou H L. Opt. Mater., 2014, 37: 343.
[59]
Shi Y N, Ding X Y, Pan K C, Gao Z H, Du J, Qiu J. J. Mater. Chem. A, 2022, 10(14): 7705.
[60]
Shi T, Zheng Z H, Liu H, Wu D Z, Wang X D. Nanomaterials, 2021, 11(11): 3038.
[61]
Peng L, Liu D Q, Cheng H F, Zhou S, Zu M. Adv. Opt. Mater., 2018, 6(23): 1801006.
[62]
Shibata Y, Suizu R E, Awaga K, Hirotani J, Omachi H. Appl. Phys. Express, 2023, 16(3): 037001.
[63]
Wang J F, He J B, Kan D X, Chen K Y, Song M S, Huo W T. Crystals, 2022, 12(8): 1034.
[64]
Wang Q X, Ma C K, Yang D X, Lu S W, Liu X M, Guo Y L, Hu X F. Compos. Commun., 2023, 40: 101609.
[65]
Ma H X, Wang J Q, Wang J F, Shang K, Yang Y, Fan Z M. Diam. Relat. Mater., 2023, 131: 109587.
[66]
Deng Z M, Jiang P Z, Wang Z G, Xu L, Yu Z Z, Zhang H B. Small, 2023, 19(46): 2304278.
[67]
Liu Z X, Zhang G X, Chen W T, Wang J X, Zhang B L, Zhang Q Y. Carbon, 2022, 196: 410.
[68]
Ji Q H, Sheng X X, Li X L, Liu S, Chen Q F, Guo P Z, Yang Y B, Huang Y Y, Zhang G L, Lu X, Qu J P. Chem. Eng. J., 2023, 476: 146671.
[69]
Xiao X, Ma H, Zhang X P. ACS Nano, 2021, 15(8): 12826.
[70]
Yao L, Pan L K, Zhou S X, Liu H X, Mei H, Li Y, Dassios K G, Colombo P, Cheng L F, Zhang L T. Mater. Horiz., 2023, 10(9): 3404.
[71]
Zhang X, Yang Y Z, Xue P, Valenzuela C, Chen Y H, Yang X, Wang L, Feng W. Angew. Chem. Int. Ed., 2022, 61(42): 2211030.
[72]
Jing J J, Liu H, Wang X D. Adv. Funct. Materials, 2023, 34(2) :2309269.
[73]
Li B X, Luo Z, Yang W G, Sun H, Ding Y, Yu Z Z, Yang D Z. ACS Nano, 2023, 17(7): 6875.
[74]
Li K Q, Lin C J, Liu G Z, Wang G, Ma W, Li M, Li Y, Huang B L. Adv. Mater., 2024, 36(7): 2308189.
[75]
Lu F F, Shi D N, Tan P Y, Han Y G. Chem. Eng. J., 2022, 450: 138324.
[76]
Li K R, Li Z P, Xiong Z, Wang Y X, Yang H T, Xu W X, Jing L, Ding M, Zhu J, Ho J S, Chen P Y. Adv. Funct. Mater., 2022, 32(23): 2110534.
[77]
Chen Z, Chen M J, Yan H J, Zhou P, Chen X Y. Appl. Therm. Eng., 2020, 178: 115561.
[78]
Chen M J, He Y R, Ye Q, Zhang Z D, Hu Y W. Int. J. Heat Mass Transf., 2019, 130: 1133.
[79]
Yin Y, Chen H B, Zhao X, Yu W T, Su H, Chen Y, Lin P C. Energy Convers. Manag., 2022, 266: 115804.
[80]
Bing N C, Wu G Z, Yang J, Chen L F, Xie H Q, Yu W. Sol. Energy Mater. Sol. Cells, 2022, 240: 111684.
[81]
Lenert A, Nam Y, Bierman D M, Wang E N. Opt. Express, 2014, 22(S6): A1604.
[82]
Zhao B, Liu J, Hu M K, Ao X Z, Li L X, Xuan Q D, Pei G. Renew. Energy, 2023, 205: 763.
[83]
Li K R, Chang T H, Li Z P, Yang H T, Fu F F, Li T T, Ho J S, Chen P Y. Advanced Energy Materials, 2019, 9(34): 1901687.
[84]
Cao Y, Weng M M, Mahmoud M H H, Elnaggar A Y, Zhang L, El Azab I H, Chen Y, Huang M N, Huang J T, Sheng X X. Adv. Compos. Hybrid Mater., 2022, 5(2): 1253.
[85]
Liu S, Quan B Q, Yang Y B, Wu H, Chen Q F, Li G, Tao Z Z, Zhu C B, Lu X, Qu J P. J. Energy Storage, 2023, 67: 107592.
[86]
Wang H, Li X K, Luo B Q, Wei K, Zeng G Y. Energy, 2021, 227: 120483.
[87]
Du X S, Qiu J H, Deng S, Du Z L, Cheng X, Wang H B. ACS Sustainable Chem. Eng., 2020, 8(14): 5799.
[88]
Zuo X X, Chang K, Zhao J, Xie Z Z, Tang H W, Li B, Chang Z R. J. Mater. Chem. A, 2016, 4(1): 51.
[89]
Lin H, Gao S S, Dai C, Chen Y, Shi J L. J. Am. Chem. Soc., 2017, 139(45): 16235.
[90]
Yu X H, Cai X K, Cui H D, Lee S W, Yu X F, Liu B L. Nanoscale, 2017, 9(45): 17859.
[91]
Lu Y, Zhang X G, Hou X Q, Feng M, Cao Z, Liu J. Nanoscale, 2021, 13(42): 17822.
[92]
Bi R, Li Y D, Wu Y H, Zheng C T, Wang D D. Infrared Phys. Technol., 2023, 132: 104765.
[93]
Lei L Q, Shi S, Wang D, Meng S, Dai J G, Fu S H, Hu J L. ACS Nano, 2023, 17(3): 1803.
[94]
Hsu P C, Song A Y, Catrysse P B, Liu C, Peng Y C, Xie J, Fan S H, Cui Y. Science, 2016, 353(6303): 1019.
[95]
Peng Y C, Chen J, Song A Y, Catrysse P B, Hsu P C, Cai L L, Liu B F, Zhu Y Y, Zhou G M, Wu D S, Lee H R, Fan S H, Cui Y. Nat. Sustain., 2018, 1(2): 105.
[96]
Li R, Ma X Y, Li J M, Cao J, Gao H Z, Li T S, Zhang X Y, Wang L C, Zhang Q H, Wang G, Hou C Y, Li Y G, Palacios T, Lin Y X, Wang H Z, Ling X. Nat. Commun., 2021, 12: 1587.
[97]
He M Y, Zhao B C, Yue X J, Chen Y F, Qiu F X, Zhang T. Nano Energy, 2023, 116: 108821.
[98]
Li L, Liu W, Liu Q, Chen Z. Adv. Funct. Materials, 2022, 32(22): 2200548.
[99]
Ma Z, Zhao D, She C, Yang Y, Yang R. Mater. Today Phys., 2021, 20: 100465.
[100]
Zhao D L, Lu X, Fan T Z, Wu Y S, Lou L, Wang Q W, Fan J T, Yang R G. Appl. Energy, 2018, 218: 282.
[101]
Zhao B C, Li C Z, Chen Y F, Tian Q, Yurekli Y, Qiu F X, Zhang T. Cellulose, 2023, 30(8): 5171.
[102]
Lan C T, Xu F, Pan C X, Guo Z H, Pu X. Chem. Eng. J., 2023, 472: 144662.
[103]
Yan B B, Zhou M, Yu Y Y, Xu B, Cui L, Wang Q, Wang P. Compos. Part A Appl. Sci. Manuf., 2022, 160: 107038.
[104]
Liu X H, Miao J L, Fan Q, Zhang W X, Zuo X W, Tian M W, Zhu S F, Zhang X J, Qu L J. ACS Appl. Mater. Interfaces, 2021, 13(47): 56607.
[105]
Dong X X, Cao Y M, Wang C, Wu B, Zheng M, Xue Y B, Li W, Han B, Zheng M, Wang Z S, Zhuo M P. ACS Appl. Mater. Interfaces, 2023, 15(9): 12032.
[106]
Wang W J, Zhu Y N, Ghosh P, Li Q. J. Phys.: Conf. Ser., 2022, 2242(1): 012008.
[107]
Yan B B, Bao X M, Gao Y L, Zhou M, Yu Y Y, Xu B, Cui L, Wang Q, Wang P. Adv. Fiber Mater., 2023, 5(6): 2080.
[108]
Zhu Y N, Wang W J, Zhou Y W, Qin R, Qin B, Zhou T Z, Qiu M, Li Q. Laser Photonics Rev., 2023, 17(11): 2300293.
[109]
Shi M K, Shen M M, Guo X Y, Jin X X, Cao Y X, Yang Y Y, Wang W J, Wang J F. ACS Nano, 2021, 15(7): 11396.
[110]
Li J B, Ma W L, Jiang L, Yao N J, Deng J, Qiu Q X, Shi Y, Zhou W, Huang Z M. ACS Appl. Mater. Interfaces, 2022, 14(12): 14331.
[111]
Li H S. Sens. Rev., 2017, 37(1): 26.
[112]
Li H S, Zhang X Q, Gao J C. IEEE Sens. J., 2019, 19(9): 3296.
[113]
Song J L, Feng W R, Ren Y S, Zheng D N, Dong H T, Zhu R, Yi L Y, Hu J F. Vacuum, 2018, 155: 1.
[114]
Zheng D Y, Dong X Y, Lu J, Niu Y R, Wang H. Small, 2022, 18(7): 2105188.
[115]
Yang H, Chen W, Zheng X M, Yang D S, Hu Y Z, Zhang X Z, Ye X, Zhang Y, Jiang T, Peng G, Zhang X A, Zhang R Y, Deng C Y, Qin S Q. Nanoscale Res. Lett., 2019, 14(1): 371.
[116]
Cao D X, Guo Z Y, Liang F B, Yang X D, Huang H Y. Acta Phys. Sin., 2012, 61(13): 138502.
[117]
Zhou Q Q, Liu Y, Wang L, Wang K, Chen H D, Zheng H L, Zhou Y, Hu Z W, Peng Z Q, Wan J M, Wang B. Chem. Eng. J., 2023, 469: 143926.
[118]
Liu Z X, El-Demellawi J K, Bakr O M, Ooi B S, Alshareef H N. ACS Nano, 2022, 16(5): 7904.
[119]
Shen H, Xue L W, Ma Y W, Huang H B, Chen L G. Adv. Mater. Technol., 2023, 8(2): 2101639.

Funding

National Natural Science Foundation of China(52173191)
PDF(226220 KB)

Accesses

Citation

Detail

Sections
Recommended

/