Experimental Preparation of Borophene and Its Application in Sensors

Shifan Chen, Yi Liu, Xiang Liu, Qian Tian, Guoan Tai

Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1119-1133.

PDF(7999 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(7999 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (8) : 1119-1133. DOI: 10.7536/PC240122
Review

Experimental Preparation of Borophene and Its Application in Sensors

Author information +
History +

Abstract

borophene,as an emerging single-element two-dimensional material,has attracted great interest from researchers due to its excellent properties such as high carrier mobility,mechanical compliance,optical transparency,ultrahigh thermal conductivity,and superconductivity.These properties make it an ideal candidate for research fields such as energy,sensors,and information storage.Guided by the pioneering experimental work in 2015,new achievements in experimental synthesis and practical applications of borophene continue emerging,which has driven the development of borophene from experimental synthesis to practical applications.based on the introduction of the special properties and innovative synthesis methods,we mainly review the application of borophene in the field of sensors.Finally,some reasonable discussions on potential issues and challenges for future researches are provided Based on the current state of research。

Contents

1 Introduction

2 Characteristics of borophene

2.1 Electrical properties

2.2 Optical properties

2.3 Mechanical properties

2.4 Magnetic properties

3 Preparation of borophene

3.1 Synthesis of borophene on substrate surface

3.2 Substrate-free synthesis of borophene

4 The application of borophene in sensors

4.1 Borophene gas sensor

4.2 Borophene pressure sensor

4.3 Borophene heterojunction humidity sensor

5 Conclusion and outlook

Key words

two-dimensional material / borophene / pressure sensor / humidity sensor / gas sensor

Cite this article

Download Citations
Shifan Chen , Yi Liu , Xiang Liu , et al . Experimental Preparation of Borophene and Its Application in Sensors[J]. Progress in Chemistry. 2024, 36(8): 1119-1133 https://doi.org/10.7536/PC240122

References

[1]
Osada M, Sasaki T. Adv. Mater., 2012, 24(2): 210.
[2]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.
[3]
Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B, Le Lay G. Appl. Phys. Lett., 2010, 96(18): 183102.
[4]
Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L, Wu K H. Nano Lett., 2012, 12(7): 3507.
[5]
Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G. Phys. Rev. Lett., 2012, 108(15): 155501.
[6]
Bianco E, Butler S, Jiang S S, Restrepo O D, Windl W, Goldberger J E. ACS Nano, 2013, 7(5): 4414.
[7]
Dávila M E, Le Lay G. Sci. Rep., 2016, 6: 20714.
[8]
Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D, Ye P D. ACS Nano, 2014, 8(4): 4033.
[9]
Batmunkh M, Vimalanathan K, Wu C C, Bati A S R, Yu L P, Tawfik S A, Ford M J, MacDonald T J, Raston C L, Priya S, Gibson C T, Shapter J G. Small Meth., 2019, 3(5): 1800521.
[10]
Liu Z F, Sun Y L, Cao H Q, Xie D, Li W, Wang J O, Cheetham A K. Nat. Commun., 2020, 11: 3917.
[11]
Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C C, Zhi C Y. ACS Nano, 2010, 4(6): 2979.
[12]
Zhi C Y, Bando Y, Tang C C, Kuwahara H, Golberg D. Adv. Mater., 2009, 21(28): 2889.
[13]
Huang J Z, Deng X L, Wan H, Chen F S, Lin Y F, Xu X J, Ma R Z, Sasaki T. ACS Sustainable Chem. Eng., 2018, 6(4): 5227.
[14]
Li J H, Yan H T, Wei W, Li X F, Meng L J. ChemElectroChem, 2018, 5(21): 3222.
[15]
Hou C, Tai G, Wu Z H, Hao J Q. ChemPlusChem, 2020, 85(9): 2186.
[16]
Zhao J J, Liu H S, Yu Z M, Quhe R G, Zhou S, Wang Y Y, Liu C C, Zhong H X, Han N N, Lu J, Yao Y G, Wu K H. Prog. Mater. Sci., 2016, 83: 24.
[17]
Liu N N, Bo G Y, Liu Y N, Xu X, Du Y, Dou S X. Small, 2019, 15(32): 1805147.
[18]
Carvalho A, Wang M, Zhu X, Rodin A S, Su H B, Castro Neto A H. Nat. Rev. Mater., 2016, 1(11): 16061.
[19]
Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M. Small, 2015, 11(6): 640.
[20]
Zhang K L, Feng Y L, Wang F, Yang Z C, Wang J. J. Mater. Chem. C, 2017, 5(46): 11992.
[21]
McGuire M. Crystals, 2017, 7(5): 121.
[22]
Zhang Z H, Penev E S, Yakobson B I. Chem. Soc. Rev., 2017, 46(22): 6746.
[23]
Zhai H J, Alexandrova A N, Birch K A, Boldyrev A I, Wang L S. Angew. Chem. Int. Ed., 2003, 42(48): 6004.
[24]
Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S. Nat. Chem., 2014, 6(8): 727.
[25]
Gonzalez Szwacki N, Sadrzadeh A, Yakobson B I. Phys. Rev. Lett., 2007, 98(16): 166804.
[26]
Li F, Jin P, Jiang D E, Wang L, Zhang S B, Zhao J, Chen Z. J. Chem. Phys., 2012, 136: 074302.
[27]
Li H, Shao N, Shang B, Yuan L F, Yang J L, Zeng X C. Chem. Commun., 2010, 46(22): 3878.
[28]
Prasad D L V K, Jemmis E D. Phys. Rev. Lett., 2008, 100(16): 165504.
[29]
Boustani I. Surf. Sci., 1997, 3702-3: 355.
[30]
Tang H, Ismail-Beigi S. Phys. Rev. Lett., 2007, 99(11): 115501.
[31]
Yang X B, Ding Y, Ni J. Phys. Rev. B, 2008, 77(4): 041402.
[32]
Wu X J, Dai J, Zhao Y, Zhuo Z W, Yang J L, Zeng X C. ACS Nano, 2012, 6(8): 7443.
[33]
Liu Y Y, Penev E S, Yakobson B I. Angew. Chem. Int. Ed., 2013, 52(11): 3156.
[34]
Hou C, Tai G, Liu Y, Wu Z T, Liang X C, Liu X. Nano Res. Energy, 2023, 2: e9120051.
[35]
Wu Z H, Tai G A, Shao W, Wang R, Hou C. Nanoscale, 2020, 12(6): 3787.
[36]
Omambac K M, Petrović M, Bampoulis P, Brand C, Kriegel M A, Dreher P, Janoschka D, Hagemann U, Hartmann N, Valerius P, Michely T, Meyer zu Heringdorf F J, Horn-von Hoegen M. ACS Nano, 2021, 15(4): 7421.
[37]
Wu Z H, Tai G, Liu R S, Shao W, Hou C, Liang X C. J. Mater. Chem. A, 2022, 10(15): 8218.
[38]
Tai G, Xu M P, Hou C, Liu R S, Liang X C, Wu Z T. ACS Appl. Mater. Interfaces, 2021, 13(51): 60987.
[39]
Kiraly B, Liu X, Wang L, Zhang Z, Mannix A J, Fisher B L, Yakobson B I, Hersam M C, Guisinger N P. ACS Nano, 2019, 13: 3816.
[40]
Liu X L, Li Q C, Ruan Q Y, Rahn M S, Yakobson B I, Hersam M C. Nat. Mater., 2022, 21: 35.
[41]
Chen C Y, Lv H F, Zhang P, Zhuo Z W, Wang Y, Ma C, Li W B, Wang X G, Feng B J, Cheng P, Wu X J, Wu K H, Chen L. Nat. Chem., 2022, 14(1): 25.
[42]
Chahal S, Ranjan P, Motlag M, Yamijala S S R K C, Late D J, Sadki E H S, Cheng G J, Kumar P. Adv. Mater., 2021, 33(34): 2102039.
[43]
Liang X C, Hao J Q, Zhang P Y, Hou C, Tai G A. Nanotechnology, 2022, 33(50): 505601.
[44]
Ma D, Wang R, Zhao J, Chen Q, Wu L, Li D, Su L, Jiang X, Luo Z, Ge Y. Nanoscale, 2020, 12: 5313.
[45]
Chen K, Wang Z M, Wang L, Wu X Z, Hu B J, Liu Z, Wu M H. Nano Micro Lett., 2021, 13(1): 138.
[46]
Lin H J, Shi H D, Wang Z, Mu Y W, Li S D, Zhao J J, Guo J W, Yang B, Wu Z S, Liu F. ACS Nano, 2021, 15: 17327.
[47]
Tai G, Liu B, Hou C, Wu Z T, Liang X C. Nanotechnology, 2021, 32(50): 505606.
[48]
Meng Z, Stolz R M, Mendecki L, Mirica K A. Chem. Rev., 2019, 119(1): 478.
[49]
Liu J, Jiang X T, Zhang R Y, Zhang Y, Wu L M, Lu W, Li J Q, Li Y C, Zhang H. Adv. Funct. Mater., 2019, 29(6): 1807326.
[50]
Someya T, Amagai M. Nat. Biotechnol., 2019, 37(4): 382.
[51]
Long M, Wang P, Fang H, Hu W. Adv. Funct. Mater., 2019, 29: 1803807.
[52]
Ranjan P, Sahu T K, Bhushan R, Yamijala S S, Late D J, Kumar P, Vinu A. Adv. Mater., 2019, 31: 1900353.
[53]
Liu R S, Hou C, Liang X C, Wu Z T, Tai G. Nano Res., 2023, 16(4): 5826.
[54]
Tan C L, Liu Z D, Huang W, Zhang H. Chem. Soc. Rev., 2015, 44(9): 2615.
[55]
Xu M P, Wang R, Bian K, Hou C, Wu Y X, Tai G. Nanotechnology, 2022, 33(7): 075601.
[56]
Shen J L, Yang Z, Wang Y T, Xu L C, Liu R P, Liu X G. J. Phys. Chem. C, 2021, 125(1): 427.
[57]
Penev E S, Bhowmick S, Sadrzadeh A, Yakobson B I. Nano Lett., 2012, 12(5): 2441.
[58]
Penev E S, Kutana A, Yakobson B I. Nano Lett., 2016, 16(4): 2522.
[59]
Feng B J, Zhang J, Liu R Y, Iimori T, Lian C, Li H, Chen L, Wu K H, Meng S, Komori F, Matsuda I. Phys. Rev. B, 2016, 94(4): 041408.
[60]
Feng B J, Sugino O, Liu R Y, Zhang J, Yukawa R, Kawamura M, Iimori T, Kim H, Hasegawa Y, Li H, Chen L, Wu K H, Kumigashira H, Komori F, Chiang T C, Meng S, Matsuda I. Phys. Rev. Lett., 2017, 118(9): 096401.
[61]
Tai G, Hu T, Zhou Y, Wang X, Kong J, Zeng T, You Y, Wang Q. Angew. Chem. Int. Edit., 2015, 54: 15473.
[62]
Peng B, Zhang H, Shao H Z, Xu Y F, Zhang R J, Zhu H Y. J. Mater. Chem. C, 2016, 4(16): 3592.
[63]
Adamska L, Sadasivam S, Foley J J IV, Darancet P, Sharifzadeh S. J. Phys. Chem. C, 2018, 122(7): 4037.
[64]
Lherbier A, Botello-Méndez A R, Charlier J C. 2D Mater., 2016, 3(4): 045006.
[65]
Wang H F, Li Q F, Gao Y, Miao F, Zhou X F, Wan X G. New J. Phys., 2016, 18(7): 073016.
[66]
Le M Q, Mortazavi B, Rabczuk T. Nanotechnology, 2016, 27(44): 445709.
[67]
Mortazavi B, Rahaman O, Dianat A, Rabczuk T. Phys. Chem. Chem. Phys., 2016, 18(39): 27405.
[68]
Zhang Z H, Yang Y, Penev E S, Yakobson B I. Adv. Funct. Mater., 2017, 27(9): 1605059.
[69]
Zhou X F, Oganov A R, Wang Z H, Popov I A, Boldyrev A I, Wang H T. Phys. Rev. B, 2016, 93(8): 085406.
[70]
Jiang J W, Wang X C, Song Y. Comput. Mater. Sci., 2018, 153: 10.
[71]
Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P. Science, 2015, 350(6267): 1513.
[72]
Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H. Nat. Chem., 2016, 8(6): 563.
[73]
Zhong Q, Zhang J, Cheng P, Feng B J, Li W B, Sheng S X, Li H, Meng S, Chen L, Wu K H. J. Phys.: Condens. Matter, 2017, 29(9): 095002.
[74]
Wang Y, Kong L, Chen C, Cheng P, Feng B, Wu K, Chen L. Adv. Mater., 2020, 32: e2005128.
[75]
Zhong Q, Kong L J, Gou J, Li W B, Sheng S X, Yang S, Cheng P, Li H, Wu K H, Chen L. Phys. Rev. Materials, 2017, 1(2): 021001.
[76]
Wu R, Gozar A, Bozovic I. npj Quantum Mater., 2019, 4:40.
[77]
Wu R T, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Božović I, Gozar A. Nat. Nanotechnol., 2019, 14(1): 44.
[78]
Li W B, Kong L J, Chen C Y, Gou J, Sheng S X, Zhang W F, Li H, Chen L, Cheng P, Wu K H. Sci. Bull., 2018, 63(5): 282.
[79]
Vinogradov N A, Lyalin A, Taketsugu T, Vinogradov A S, Preobrajenski A. ACS Nano, 2019, 13(12): 14511.
[80]
Wu Z H, Tai G, Liu R S, Hou C, Shao W, Liang X C, Wu Z T. ACS Appl. Mater. Interfaces, 2021, 13(27): 31808.
[81]
Li H L, Jing L, Liu W W, Lin J J, Tay R Y, Tsang S H, Teo E H T. ACS Nano, 2018, 12(2): 1262.
[82]
Hao J Q, Tai G, Zhou J X, Wang R, Hou C, Guo W L. ACS Appl. Mater. Interfaces, 2020, 12(15): 17669.
[83]
Hou C, Tai G, Hao J Q, Sheng L H, Liu B, Wu Z T. Angew. Chem. Int. Ed., 2020, 59(27): 10819.
[84]
Shao W, Tai G, Hou C, Wu Z H, Wu Z T, Liang X C. ACS Appl. Electron. Mater., 2021, 3(3): 1133.
[85]
Hou C, Tai G, Liu B, Wu Z H, Yin Y H. Nano Res., 2021, 14(7): 2337.
[86]
Shukla V, Wärnå J, Jena N K, Grigoriev A, Ahuja R. J. Phys. Chem. C, 2017, 121(48): 26869.
[87]
Cho B, Yoon J, Hahm M G, Kim D H, Kim A R, Kahng Y H, Park S W, Lee Y J, Park S G, Kwon J D. J. Mater. Chem. C, 2014, 2: 5280.
[88]
Yuan W J, Liu A R, Huang L, Li C, Shi G Q. Adv. Mater., 2013, 25: 766.
[89]
Cui S M, Pu H H, Wells S A, Wen Z H, Mao S, Chang J B, Hersam M C, Chen J H. Nat. Commun., 2015, 6: 8632.
[90]
Pham T, Li G H, Bekyarova E, Itkis M E, Mulchandani A. ACS Nano, 2019, 13(3): 3196.
[91]
Zeng Y, Qiao L, Bing Y F, Wen M, Zou B, Zheng W T, Zhang T, Zou G T. Sens. Actuat. B Chem., 2012, 173: 897.
[92]
Hou C, Tai G, Liu Y, Liu X. Nano Res., 2022, 15(3): 2537.
[93]
Hou C, Tai G, Liu Y, Liu R S, Liang X C, Wu Z T, Wu Z H. Nano Energy, 2022, 97: 107189.
[94]
Zhou Y H, Wang Q, Zhang X Y, He X Y, Ning R J, Rong D, Zeng W, Wei N, Xiong Y, Wang S L, Liao T Q. Nano Energy, 2022, 104: 107970.
[95]
Shen J L, Yang Z, Wang Y T, Xu L C, Liu R P, Liu X G. Appl. Surf. Sci., 2020, 504: 144412.
[96]
Hou C, Tai G, Liu Y, Wu Z T, Wu Z H, Liang X C. J. Mater. Chem. A, 2021, 9(22): 13100.
[97]
Liu X, Hou C, Liu Y, Chen S F, Wu Z T, Liang X C, Tai G. J. Mater. Chem. A, 2023, 11(45): 24789.
[98]
Smith A D, Elgammal K, Niklaus F, Delin A N, Fischer A C, Vaziri S, Forsberg F, Råsander M, Hugosson H, Bergqvist L, Schröder S, Kataria S, Östling M, Lemme M C. Nanoscale, 2015, 7(45): 19099.
[99]
Zhang D Z, Tong J, Xia B K. Sens. Actuat. B Chem., 2014, 197: 66.
[100]
Li B, Tian Q, Su H, Wang X, Wang T, Zhang D. Sensors and Actuators B: Chemical, 2019, 299: 126973.
[101]
Tan Y H, Yu K, Yang T, Zhang Q F, Cong W T, Yin H H, Zhang Z L, Chen Y W, Zhu Z Q. J. Mater. Chem. C, 2014, 2(27): 5422.

Funding

National Natural Science Foundation of China(61774085)
Natural Science Foundation of Jiangsu Province(BK20201300)
Priority Academic Program Development of Jiangsu Higher Education Institutions.
PDF(7999 KB)

Accesses

Citation

Detail

Sections
Recommended

/