Ternary Random Strategy Applied in Active Layer of High Performance Non-Fullerene Organic Solar Cells

Chunyan Li, Xin Lin, Wen Wang, Hongyu Zhen

Prog Chem ›› 2024, Vol. 36 ›› Issue (9) : 1316-1335.

PDF(11647 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(11647 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (9) : 1316-1335. DOI: 10.7536/PC240204
Review

Ternary Random Strategy Applied in Active Layer of High Performance Non-Fullerene Organic Solar Cells

Author information +
History +

Abstract

in recent years,there has been significant progress in non-fullerene organic solar cells(NF-OSCs)due to the rapid development of narrow-bandgap small-molecule acceptor materials and the high-performance polymer donor materials,with the power conversion efficiency(PCE)approaching 20%.However,As the design of alternating D-A copolymer materials reaches saturation,there is an urgent need to develop more efficient conjugated polymer materials.the ternary random strategy has emerged to address this challenge.the advantages of the ternary random copolymerization,including easy energy level tuning,broad and strong absorption,and high molar absorptivity,which have attracted considerable attention in the field of organic solar cells.In this review,firstly,the advantages of the ternary random copolymerization strategy in modulating polymer properties and device performance are discussed.Through this strategy,the active layer morphology can be effectively regulated and optimized,and thus the charge transfer efficiency can be improved leading to the improved PCE.Furthermore,the application of the ternary random copolymerization into NF-OSCs is summarized from the perspectives of random polymer donors and acceptors.Finally,a summary and outlook of the further development of random polymers are presented.as expected,to understand the design concept and advantages of ternary random strategy would be beneficial for the development of organic solar cells。

Contents

1 Introduction

2 Advantages of random copolymerization strategy

3 Random polymer donors

3.1 PBDB series random polymer donor materials

3.2 D18 series random polymer donor materials

3.3 PTs series random polymer donor materials

3.4 PTB and PCE11 series random polymer donor materials

3.5 J series random polymer donor materials

4 Random polymer acceptors

4.1 NDI series random polymer acceptor materials

4.2 BTI series random polymer acceptor materials

4.3 PSMA series random polymer acceptor materials

5 Application of random copolymerization to OSCs stability

6 Conclusion and outlook

Key words

ternary random copolymerization / D-A copolymerization / non-fullerene organic solar cells / third units

Cite this article

Download Citations
Chunyan Li , Xin Lin , Wen Wang , et al. Ternary Random Strategy Applied in Active Layer of High Performance Non-Fullerene Organic Solar Cells[J]. Progress in Chemistry. 2024, 36(9): 1316-1335 https://doi.org/10.7536/PC240204

References

[1]
Meng D, Zheng R, Zhao Y P, Zhang E, Dou L T, Yang Y. Adv. Mater., 2022, 34(10): 2107330.
[2]
Zhang B, Yang F, Chen S S, Chen H Y, Zeng G, Shen Y X, Li Y W, Li Y F. Adv. Funct. Mater., 2022, 32(29): 2202011.
[3]
Zhou K K, Xian K H, Qi Q C, Gao M Y, Peng Z X, Liu J W, Liu Y, Li S M, Zhang Y D, Geng Y H, Ye L. Adv. Funct. Mater., 2022, 32(30): 2201781.
[4]
Li T F, Zhan X W. Acta Chim. Sin., 2021, 79(3): 257.
[5]
Zhu L, Zhang M, Xu J Q, Li C, Yan J, Zhou G Q, Zhong W K, Hao T Y, Song J L, Xue X N, Zhou Z C, Zeng R, Zhu H M, Chen C C, MacKenzie R C I, Zou Y C, Nelson J, Zhang Y M, Sun Y M, Liu F. Nat. Mater., 2022, 21(6): 656.
[6]
Wang J, Zheng Z, Bi P, Chen Z, Wang Y, Liu X, Zhang S, Hao X, Zhang M, Li Y, Hou J. Natl. Sci. Rev., 2023, 10(6): nwad085.
[7]
Tang C W. Appl. Phys. Lett., 1986, 48(2): 183.
[8]
Sariciftci N S, Smilowitz L, Heeger A J, Wudl F. Science, 1992, 258(5087): 1474.
[9]
Lin Y Z, Wang J Y, Zhang Z G, Bai H T, Li Y F, Zhu D B, Zhan X W. Adv. Mater., 2015, 27(7): 1170.
[10]
Yuan J, Zhang Y Q, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P. Joule, 2019, 3(4): 1140.
[11]
Yan C Q, Barlow S, Wang Z H, Yan H, Jen A K Y, Marder S R, Zhan X W. Nat. Rev. Mater., 2018, 3(3): 18003.
[12]
Wang J Y, Xue P Y, Jiang Y T, Huo Y, Zhan X W. Nat. Rev. Chem., 2022, 6(9): 614.
[13]
Cheng P, Li G, Zhan X W, Yang Y. Nat. Photonics, 2018, 12(3): 131.
[14]
Cui Y, Yao H F, Hong L, Zhang T, Xu Y, Xian K H, Gao B W, Qin J Z, Zhang J Q, Wei Z X, Hou J H. Adv. Mater., 2019, 31(14): 1808356.
[15]
Sun H L, Liu T, Yu J W, Lau T K, Zhang G Y, Zhang Y J, Su M Y, Tang Y M, Ma R J, Liu B, Liang J E, Feng K, Lu X H, Guo X G, Gao F, Yan H. Energy Environ. Sci., 2019, 12(11): 3328.
[16]
Xu Y X, Ji Q, Yin L Q, Zhang N, Liu T, Li N, He X C, Wen G Z, Zhang W, Yu L Y, Murto P, Xu X F. ACS Appl. Mater. Interfaces, 2021, 13(20): 23993.
[17]
An Q S, Wang J W, Ma X L, Gao J H, Hu Z H, Liu B, Sun H L, Guo X G, Zhang X L, Zhang F J. Energy Environ. Sci., 2020, 13(12): 5039.
[18]
Lu J Y, Wu J R, Huang B, Fang Y, Deng X M, Zhang J L, Chen S S, Jeong S, Liu J B, Yang C. Adv. Funct. Mater., 2024, 34(13): 2312545.
[19]
Guo Q, Lin J, Dong X L, Zhu L, Guo X, Liu F, Zhang M J. Chem. Eng. J., 2022, 431: 134117.
[20]
Cheng F L, Cui Y J, Ding F, Chen Z, Xie Q, Xia X X, Zhu P P, Lu X H, Zhu H M, Liao X F, Chen Y W. Adv. Mater., 2023, 35(30): 2300820.
[21]
Rehman Z U, Haris M, Ryu S U, Jahankhan M, Song C E, Lee H K, Lee S K, Shin W S, Park T, Lee J C. Adv. Sci., 2023, 10(24): 2302376.
[22]
Wu J N, Li G W, Fang J, Guo X, Zhu L, Guo B, Wang Y L, Zhang G Y, Arunagiri L, Liu F, Yan H, Zhang M J, Li Y F. Nat. Commun., 2020, 11: 4612.
[23]
Guo X, Fan Q P, Wu J N, Li G W, Peng Z X, Su W Y, Lin J, Hou L T, Qin Y P, Ade H, Ye L, Zhang M J, Li Y F. Angew. Chem. Int. Ed., 2021, 60(5): 2322.
[24]
Liao Z H, Yang K, Hou L C, Li J, Lv J, Singh R, Kumar M, Chen Q Q, Dong X Y, Xu T L, Hu C, Duan T N, Kan Z P, Lu S R, Xiao Z Y. Macromolecules, 2020, 53(20): 9034.
[25]
Zhou L Y, Meng L, Zhang J Y, Zhu C, Qin S C, Angunawela I, Wan Y, Ade H, Li Y F. Adv. Funct. Mater., 2022, 32(8): 2109271.
[26]
Wu J N, Guo X, Xiong M H, Xia X X, Li Q, Fang J, Yan X, Liu Q, Lu X H, Wang E G, Yu D H, Zhang M J. Chem. Eng. J., 2022, 446: 137424.
[27]
Cheng Y J, Jin H, Oh J, Huang X X, Lv R Z, Huang B, Ma Z F, Yang C, Chen L, Chen Y W. J. Mater. Chem. A, 2021, 9(14): 9238.
[28]
Zhang T, An C B, Lv Q L, Qin J Z, Cui Y, Zheng Z, Xu B W, Zhang S Q, Zhang J Q, He C, Hou J H. J. Energy Chem., 2021, 59: 30.
[29]
Jeong M, Oh J, Cho Y, Lee B, Jeong S, Lee S M, Kang S H, Yang C D. Adv. Funct. Mater., 2021, 31(35): 2102371.
[30]
Zhang T, Xu Y, Yao H F, Zhang J Q, Bi P Q, Chen Z H, Wang J W, Cui Y, Ma L J, Xian K H, Li Z, Hao X T, Wei Z X, Hou J H. Energy Environ. Sci., 2023, 16(4): 1581.
[31]
Lee J W, Jeong D, Kim D J, Phan T N L, Park J S, Kim T S, Kim B J. Energy Environ. Sci., 2021, 14(7): 4067.
[32]
Yang T Y, Liao C T, Duan Y W, Xu X P, Deng M, Yu L Y, Li R P, Peng Q. Adv. Funct. Mater., 2022, 32(51): 2208950.
[33]
Pang B, Liao C T, Xu X P, Peng S Q, Xia J L, Guo Y Y, Xie Y, Chen Y T, Duan C H, Wu H B, Li R P, Peng Q. Adv. Mater., 2023, 35(17): 2211871.
[34]
Wang T, Sun R, Shi M M, Pan F, Hu Z C, Huang F, Li Y F, Min J. Adv. Energy Mater., 2020, 10(22): 2000590.
[35]
Shang Z Y, Zhou L Y, Sun C K, Meng L, Lai W B, Zhang J Y, Huang W C, Li Y F. Sci. China Chem., 2021, 64(6): 1031.
[36]
Deng X M, Fang Y, Huang B, Liao F M, Liu K M, Zhang J L, Chen S S, Kim S, Yang C, Ye D N, Liu J B, Chen L. Chem. Commun., 2022, 58(84): 11823.
[37]
Tu S L, Lin X, Xiao L R, Zhen H Y, Wang W, Ling Q D. Mater. Chem. Front., 2022, 6(9): 1150.
[38]
Tu S L, Zhang L, Lin X, Xiao L R, Wang W, Ling Q D. J. Mater. Chem. C, 2022, 10(6): 2026.
[39]
Lin X, Tu S L, Xiao L R, Zhen H Y, Wang W, Ling Q D. Chem. Eng. J., 2023, 464: 142634.
[40]
Liu Q S, Jiang Y F, Jin K, Qin J Q, Xu J G, Li W T, Xiong J, Liu J F, Xiao Z, Sun K, Yang S F, Zhang X T, Ding L M. Sci. Bull., 2020, 65(4): 272.
[41]
Bai H R, An Q S, Zhi H F, Jiang M Y, Mahmood A, Yan L, Liu M Q, Liu Y Q, Wang Y, Wang J L. ACS Energy Lett., 2022, 7(9): 3045.
[42]
Liao Z H, Hu D Q, Tang H, Huang P H, Singh R, Chung S, Cho K, Kumar M, Hou L C, Chen Q Q, Yu W Y, Chen H Y, Yang K, Kan Z P, Liu F, Xiao Z Y, Li G, Lu S R. J. Mater. Chem. A, 2022, 10(14): 7878.
[43]
Lu H, Wang H, Ran G L, Li S, Zhang J Q, Liu Y H, Zhang W K, Xu X J, Bo Z S. Adv. Funct. Mater., 2022, 32(34): 2203193.
[44]
Wang H, Lu H, Chen Y N, Zhang A D, Liu Y Q, Li D W, Liu Y H, Xu X J, Bo Z S. Adv. Energy Mater., 2022, 12(16): 2104028.
[45]
Wang Q, Li M M, Peng Z X, Kirby N, Deng Y F, Ye L, Geng Y H. Sci. China Chem., 2021, 64(3): 478.
[46]
Yuan X Y, Zhao Y L, Xie D S, Pan L H, Liu X Y, Duan C H, Huang F, Cao Y. Joule, 2022, 6(3): 647.
[47]
Liao S H, Jhuo H J, Cheng Y S, Chen S A. Adv. Mater., 2013, 25(34): 4766.
[48]
Huang X X, Zhang L F, Cheng Y J, Oh J, Li C Q, Huang B, Zhao L, Deng J W, Zhang Y H, Liu Z J, Wu F Y, Hu X T, Yang C, Chen L, Chen Y W. Adv. Funct. Mater., 2022, 32(5): 2108634.
[49]
Liu Y H, Zhao J B, Li Z K, Mu C, Ma W, Hu H W, Jiang K, Lin H R, Ade H, Yan H. Nat. Commun., 2014, 5: 5293.
[50]
Pan F L, Luo M, Liu X C, Jiang H Y, Wang Z, Yuan D, Wang Q, Qing L C, Zhang Z S, Zhang L J, Zou Y P, Chen J W. J. Mater. Chem. A, 2021, 9(11): 7129.
[51]
Min J, Zhang Z G, Zhang S Y, Li Y F. Chem. Mater., 2012, 24(16): 3247.
[52]
Wang X C, Dou K K, Shahid B, Liu Z L, Li Y H, Sun M L, Zheng N, Bao X C, Yang R Q. Chem. Mater., 2019, 31(16): 6163.
[53]
Li X M, Liang Z Z, Wang H, Qiao S L, Liu Z L, Jiang H X, Chen W C, Yang R Q. J. Mater. Chem. A, 2020, 8(3): 1360.
[54]
Guo X, Fan Q, Cui C, Zhang Z, Zhang M J. Acta Phys.-Chim. Sin., 2018, 34(11): 1279.
[55]
Dai S X, Huang S, Yu H F, Ling Q D, Zhan X W. J. Polym. Sci. Part A Polym. Chem., 2017, 55(4): 682.
[56]
Dai S X, Cheng P, Lin Y Z, Wang Y F, Ma L C, Ling Q D, Zhan X W. Polym. Chem., 2015, 6(29): 5254.
[57]
Li X Z, Sun P, Wang Y L, Shan H Q, Xu J J, Song X, Xu Z X, Chen Z K. J. Mater. Chem. C, 2016, 4(11): 2106.
[58]
Li X Z, Sun P, Wang Y L, Shan H Q, Xu J J, You C, Xu Z X, Chen Z K. Polym. Chem., 2016, 7(12): 2230.
[59]
Chen D, Liu S Q, Liu J L, Han J H, Chen L, Chen Y W. ACS Appl. Polym. Mater., 2021, 3(4): 1923.
[60]
Zhang T, Lu M X, Wang W, Lv W, Cui J Y, Feng W H, Ling Q D. Dyes Pigm., 2017, 146: 169.
[61]
Kolhe N B, Tran D K, Lee H, Kuzuhara D, Yoshimoto N, Koganezawa T, Jenekhe S A. ACS Energy Lett., 2019, 4(5): 1162.
[62]
Chen D, Yao J, Chen L, Yin J P, Lv R Z, Huang B, Liu S Q, Zhang Z G, Yang C H, Chen Y W, Li Y F. Angew. Chem. Int. Ed., 2018, 57(17): 4580.
[63]
Chen D, Liu S Q, Oh J, Huang B, Lv R Z, Liu J B, Yang C, Chen L. ACS Appl. Mater. Interfaces, 2021, 13(15): 17892.
[64]
Liu X, Zhang C H, Duan C H, Li M M, Hu Z C, Wang J, Liu F, Li N, Brabec C J, Janssen R A J, Bazan G C, Huang F, Cao Y. J. Am. Chem. Soc., 2018, 140(28): 8934.
[65]
Sun H L, Liu B, Koh C W, Zhang Y J, Chen J H, Wang Y, Chen P, Tu B, Su M Y, Wang H, Tang Y M, Shi Y Q, Woo H Y, Guo X G. Adv. Funct. Mater., 2019, 29(42): 1903970.
[66]
Liu B, Sun H L, Koh C W, Su M Y, Tu B, Tang Y M, Liao Q G, Wang J W, Yang W L, Meng H, Woo H Y, Guo X G. Org. Mater., 2020, 2(3): 214.
[67]
Sun H L, Liu B, Wang Z Y, Ling S H, Zhang Y J, Zhang G Y, Wang Y, Zhang M, Li B L, Yang W L, Wang J W, Guo H, Liu F, Guo X G. J. Mater. Chem. C, 2020, 8(12): 4012.
[68]
Zhang Z G, Li Y F. Angew. Chem., Int. Ed., 2020, 60(9): 4422.
[69]
Du J Q, Hu K, Meng L, Angunawela I, Zhang J Y, Qin S C, Liebman-Pelaez A, Zhu C H, Zhang Z J, Ade H, Li Y F. Angew. Chem. Int. Ed., 2020, 59(35): 15181.
[70]
Wu Y, Wu Q, Wang W, Sun R, Min J. Sol. RRL, 2020, 4(11): 2000409.
[71]
Wu F Y, Liu J L, Liu J B, Oh J, Huang B, Chen D, Liu Z J, He Q N, Yang C, Chen L D. ChemElectroChem, 2021, 8(20): 3936.
[72]
Genene Z, Lee J W, Lee S W, Chen Q N, Tan Z P, Abdulahi B A, Yu D H, Kim T S, Kim B J, Wang E G. Adv. Mater., 2022, 34(6): 2107361.
[73]
Chen D, Liu S Q, Huang B, Oh J, Wu F Y, Liu J B, Yang C, Chen L, Chen Y W. Small, 2022, 18(20): 2200734.
[74]
Li Y, Li Q, Cai Y H, Jin H, Zhang J Q, Tang Z, Zhang C F, Wei Z X, Sun Y M. Energy Environ. Sci., 2022, 15(9): 3854.
[75]
Du J Q, Hu K, Zhu C, Zhang J Q, Zhang Z J, Wei Z X, Meng L, Li Y F. Macromolecules, 2022, 55(17): 7481.
[76]
Liu J B, Deng J W, Zhu Y Y, Geng X K, Zhang L F, Jeong S Y, Zhou D, Woo H Y, Chen D, Wu F Y, Chen L. Adv. Mater., 2023, 35(1): 2208008.
[77]
Lin Y C, Chen C H, Tsai B S, Hsueh T F, Tsao C S, Tan S, Chang B, Chang Y N, Chu T Y, Tsai C E, Chen C S, Yang Y, Wei K H. Adv. Funct. Mater., 2023, 33(26): 2215095.
[78]
Rivaton A, Chambon S, Manceau M, Gardette J L, Lemaître N, Guillerez S. Polym. Degrad. Stab., 2010, 95(3): 278.
[79]
Wang K, Li Y, Li Y. Macromolecular Rapid Communications, 2020, 41(4): 1900437.

Funding

National Natural Science Foundation of China(51573026)
National Natural Science Foundation of China(22261002)
National Natural Science Foundation of China(61804065)
Natural Science Foundation of Fujian Province(2020J01144)
PDF(11647 KB)

Accesses

Citation

Detail

Sections
Recommended

/