Scalable Conformal Coating Strategies for Surface Engineering of BiVO4 Photoanodes

Weilong Qin, Ruiyuan Sun, Muhammad Bilal Akbar, Yang Zhou, Yongbo Kuang

Prog Chem ›› 2025, Vol. 37 ›› Issue (3) : 425-438.

Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
Prog Chem ›› 2025, Vol. 37 ›› Issue (3) : 425-438. DOI: 10.7536/PC240414
Review

Scalable Conformal Coating Strategies for Surface Engineering of BiVO4 Photoanodes

Author information +
History +

Abstract

Solar photoelectrochemical (PEC) water splitting holds significant importance for the development of sustainable green energy. With ongoing research, the BiVO4 photoanode, a core component of PEC systems, faces challenges in scaling up and maintaining long-term stability. The superiority of fully conformal coating strategies lies in their lack of substrate size constraints, ability to suppress photo-corrosion of the BiVO4 semiconductor, creation of multifunctional interfaces, and potential synergistic action with heterojunctions and promoter catalysts, which may facilitate the stable operation of large-scale PEC water splitting devices for over 1000 hours. This review briefly introduces the basic principles of PEC water splitting and the development status of representative devices, elaborates on the important concept and main design principles of fully conformal coatings aimed at large-scale photoanodes, summarizes recent advances in materials capable of achieving fully conformal deposition coatings, including molecular catalysts, metal oxides/hydroxides, carbonized/sulfurized/phosphorized materials, and metal-organic frameworks (MOFs), and discusses key characteristics of fully conformal coatings with greater development potential. Finally, it presents a prospective view on future trends in fully conformal coatings for BiVO4 photoanodes.

Contents

1 Introduction

2 Fundamentals of PEC water splitting and develop- ment status of PEC device

3 Basic principles of fully conformal coating strategy

3.1 Fully conformal coating and its importance

3.2 Primary design principles of fully conformal coating

4 Recent progress of fully conformal coating strategy

4.1 Molecular catalyst

4.2 Metal oxides/hydroxides

4.3 Carbide/Sulfide/Phosphide

4.4 Metal-organic framework

5 Conclusion and outlook

Key words

photoelectrochemical / bismuth vanadate / water splitting / conformal coating / surface engineering

Cite this article

Download Citations
Weilong Qin , Ruiyuan Sun , Muhammad Bilal Akbar , et al . Scalable Conformal Coating Strategies for Surface Engineering of BiVO4 Photoanodes[J]. Progress in Chemistry. 2025, 37(3): 425-438 https://doi.org/10.7536/PC240414

References

[1]
Kuang Y B Jia Q X Nishiyama H Yamada T Kudo A Domen K. Adv. Energy Mater.20166(2): 1501645.
[2]
Guo X T Liu X H Wang L. J. Mater. Chem. A202210(3): 1270.
[3]
Feng S W Fan S Y Li L Sun Z Y Tang H W Xu Y Fang L Wang C J. Nano Res. Energy20243(3): e9120117.
[4]
Wu J M Chen Y Pan L Wang P H Cui Y Kong D C Wang L Zhang X W Zou J J. Appl. Catal. B Environ.2018, 221: 187.
[5]
Kuang Y B Yamada T Domen K. Joule20171(2): 290.
[6]
Chen X Y Li Y R Shen S H. J. Phys. D: Appl. Phys.201851(16): 163002.
[7]
Vilanova A Dias P Lopes T Mendes A. Chem. Soc. Rev.202453(5): 2388.
[8]
Chi J S Jiang Z Yan J W Larimi A Wang Z L Wang L Z Shangguan W. Mater. Today Chem.2022, 26: 101060.
[9]
Gao R T Wang L. Angew. Chem. Int. Ed.202059(51): 23094.
[10]
Zhong D K Choi S Gamelin D R. J. Am. Chem. Soc.2011133(45): 18370.
[11]
Jeon T H Choi W Park H. Phys. Chem. Chem. Phys.201113(48): 21392.
[12]
Tolod K Hernández S Russo N. Catalysts20177(1): 13.
[13]
Pan J-B Shen S Chen L Au C T Yin S-F. Adv. Funct. Mater.202131(36): 2104269.
[14]
Li R. Chin. J. Catal.201738(1): 5.
[15]
Gao R-T Zhang J W Nakajima T He J L Liu X H Zhang X Y Wang L Wu L M. Nat. Commun.2023, 14: 2640.
[16]
Mane P Bagal I V Bae H Kadam A N Burungale V Heo J Ryu S W Ha J S. Int. J. Hydrog. Energy202247(94): 39796.
[17]
Cho I S Logar M Lee C H Cai L L Prinz F B Zheng X L. Nano Lett.201414(1): 24.
[18]
Pihosh Y Nandal V Higashi T Shoji R Bekarevich R Nishiyama H Yamada T Nicolosi V Hisatomi T Matsuzaki H Seki K Domen K. Adv. Energy Mater.202313(36): 2301327.
[19]
Li Z S Luo W J Zhang M L Feng J Y Zou Z G. Energy Environ. Sci.20136(2): 347.
[20]
Tilley S D. Adv. Energy Mater.20199(2): 1802877.
[21]
He Y M Hamann T Wang D W. Chem. Soc. Rev.201948(7): 2182.
[22]
Huang D W Li L T Wang K Li Y Feng K Jiang F. Nat. Commun.2021, 12: 3795.
[23]
Wu X M Zhao W D Hu Y C Xiao G H Ni H Y Ikeda S Ng Y Jiang F. Adv. Sci.20229(33): 2204029.
[24]
Yang J W Ji S G Jeong C S Kim J Kwon H R Lee T H Lee S A Cheon W S Lee S Lee H Kwon M S Moon J Kim J Y Jang H W. Energy Environ. Sci.202417(7): 2541.
[25]
Nishiyama H Yamada T Nakabayashi M Maehara Y Yamaguchi M Kuromiya Y Nagatsuma Y Tokudome H Akiyama S Watanabe T Narushima R Okunaka S Shibata N Takata T Hisatomi T Domen K. Nature2021598(7880): 304.
[26]
Landman A Halabi R Dias P Dotan H Mehlmann A Shter G E Halabi M Naseraldeen O Mendes A Grader G S Rothschild A. Joule20204(2): 448.
[27]
Andrei V Ucoski G M Pornrungroj C Uswachoke C Wang Q Achilleos D S Kasap H Sokol K P Jagt R A Lu H J Lawson T Wagner A Pike S D Wright D S Hoye R L Z MacManus-Driscoll J L Joyce H J Friend R H Reisner E. Nature2022608(7923): 518.
[28]
Zhou P Navid I A Ma Y J Xiao Y X Wang P Ye Z W Zhou B W Sun K Mi Z T. Nature2023613(7942): 66.
[29]
Zhao Y Ding C M Zhu J Qin W Tao X P Fan F T Li R G Li C. Angew. Chem. Int. Ed.202059(24): 9653.
[30]
Ahvenniemi E Akbashev A R Ali S M Bechelany M Berdova M Boyadjiev S Cameron D C Chen R Chubarov M Cremers V Devi A Drozd V Elnikova L Gottardi G Grigoras K Hausmann D M Hwang C S Jen S H Kallio T Kanervo J Khmelnitskiy I Kim D H Klibanov L Koshtyal Y Krause A O I Kuhs J Kärkkänen I Kääriäinen M L Kääriäinen T Lamagna L Łapicki A A Leskelä M Lipsanen H Lyytinen J Malkov A Malygin A Mennad A Militzer C Molarius J Norek M Özgit-Akgün Ç Panov M Pedersen H Piallat F Popov G Puurunen R L Rampelberg G Ras R H A Rauwel E Roozeboom F Sajavaara T Salami H Savin H Schneider N Seidel T E Sundqvist J Suyatin D B Törndahl T van Ommen J R Wiemer C Ylivaara O M E Yurkevich O. J. Vac. Sci. Technol. A Vac. Surf. Films201735(1): 010801.
[31]
Puurunen R L. Chem. Vap. Deposition201420(10-12): 332.
[32]
Cremers V Puurunen R L Dendooven J. Appl. Phys. Rev.20196(2): 021302.
[33]
Gao R T He D Wu L J Hu K Liu X H Su Y G Wang L. Angew. Chem. Int. Ed.202059(15): 6213.
[34]
Lee D K Choi K S. Nat. Energy20183(1): 53.
[35]
Kuang Y B Jia Q X Ma G J Hisatomi T Minegishi T Nishiyama H Nakabayashi M Shibata N Yamada T Kudo A Domen K. Nat. Energy2017, 2: 16191.
[36]
Bae D Seger B Vesborg P C K Hansen O Chorkendorff I. Chem. Soc. Rev.201746(7): 1933.
[37]
Yang N C Zhang S N Xiao Y J Qi Y Bao Y F Xu P Jin S Y Zhang F X. Angew. Chem. Int. Ed.202362(39): e202308729.
[38]
Hahn N T Hoang S Self J L Mullins C B. ACS Nano20126(9): 7712.
[39]
Xiu H Gao T S An N Wang Y Zhou Y Qi X P Liu D Y Kuang Y B. ACS Appl. Energy Mater.20225(4): 5127.
[40]
An N Tian H Z Zhou Y Zou Y L Xiu H Cao Y F Wang Y Li J M Liu D Y Kuang Y B. J. Energy Chem.2022, 66: 657.
[41]
Hong Y J Kang Y C. Carbon2015, 88: 262.
[42]
Chen Z Wang R Ma T Wang J L Duan Y Dai Z Z Xu J Wang H J Yuan J Y Jiang H L Yin Y W Li X G Gao M R Yu S H. Angew. Chem. Int. Ed.202160(25): 14124.
[43]
Lee H Dellatore S M Miller W M Messersmith P B. Science2007318(5849): 426.
[44]
Hu Y Zhou W Gong W Gao C Shen S Kong T Xiong Y. Angew. Chem. Int. Ed.2024, e202403520.
[45]
Zhang H Y Tian W J Duan X G Sun H Q Liu S M Wang S B. Adv. Mater.202032(18): 1904037.
[46]
Collomb M N Morales D V Astudillo C N Dautreppe B Fortage J. Sustain. Energy Fuels20204(1): 31.
[47]
Kärkäs M D Verho O Johnston E V Åkermark B. Chem. Rev.2014114(24): 11863.
[48]
Berardi S Drouet S Francàs L Gimbert-Suriñach C Guttentag M Richmond C Stoll T Llobet A. Chem. Soc. Rev.201443(22): 7501.
[49]
Dang K Liu S Q Wu L Tang D J Xue J Wang J M Ji H W Chen C C Zhang Y C Zhao J C. Natl. Sci. Rev.202411(4): nwae053.
[50]
Meng Q J Zhang B B Fan L Z Liu H D Valvo M Edström K Cuartero M de Marco R Crespo G A Sun L C. Angew. Chem. Int. Ed.201958(52): 19027.
[51]
Ran J H Bi S G Jiang H Y Telegin F Bai X Yang H J Cheng D S Cai G M Wang X. Cellulose201926(10): 6259.
[52]
Liu Y Q Xu Y L Zhong D J Yao H Y Zeng Y D Zhong N B Luo H. Colloids Surf. A Physicochem. Eng. Aspects2021, 612: 125941.
[53]
Lv Y R Huo R Yang S Y Liu Y Q Li X J Xu Y H. Sep. Purif. Technol.2018, 197: 281.
[54]
Celebi N Salimi K. J. Colloid Interface Sci.2022, 605: 23.
[55]
Peng Z Y Zhang J M Liu P P Claverie J Siaj M. ACS Appl. Mater. Interfaces202113(29): 34658.
[56]
Yin Q S Tan J M Besson C Geletii Y V Musaev D G Kuznetsov A E Luo Z Hardcastle K I Hill C L. Science2010328(5976): 342.
[57]
Wang Y Li F Zhou X Yu F S Du J Bai L C Sun L C. Angew. Chem. Int. Ed.201756(24): 6911.
[58]
Miao J M Lin C Yuan X J An Y Yang Y Li Z S Zhang K. Nat. Commun.2024, 15: 2023.
[59]
Wang X J Ye K H Yu X Zhu J Q Zhu Y Zhang Y M. J. Power Sources2018, 391: 34.
[60]
Lv Z Y Meng L X Cao F R Li L. Sci. China Mater.202265(6): 1512.
[61]
Deng Y H Liu W Xu R Gao R Huang N Zheng Y Huang Y P Li H Kong X Y Ye L Q. Angew. Chem. Int. Ed.202463(14): e202319216.
[62]
Han L Liu K Z Wang M H Wang K F Fang L M Chen H T Zhou J Lu X. Adv. Funct. Mater.201828(3): 1704195.
[63]
Guan P Bai H Y Wang F G Yu H Xu D B Fan W Q Shi W D. Chem. Eng. J.2019, 358: 658.
[64]
Gao Y Fan W Q Qu K G Wang F G Guan P Xu D B Bai H Y Shi W D. New J. Chem.201943(21): 8160.
[65]
Ruan M N Guo D D Jia Q X. Dalton Trans.202150(5): 1913.
[66]
Pan J Wang B Shen S Chen L Yin S. Angew. Chem. Int. Ed.202362(38): e202307246.
[67]
Zhang Y Lv H F Zhang Z Wang L Wu X J Xu H X. Adv. Mater.202133(15): 2008264.
[68]
Wang J C Zhang Y Bai J Li J H Zhou C H Li L Xie C Y Zhou T S Zhu H Zhou B X. J. Colloid Interface Sci.2023, 644: 509.
[69]
Cheng X Ji L B Bi Y Y Wang W Gao S T Li H L Shang N Z Gao W Feng C C Wang C. Chem. Eng. J.2023, 474: 145509.
[70]
Jia M Y Xiong W P Yang Z H Cao J Zhang Y R Xiang Y P Xu H Y Song P P Xu Z Y. Coord. Chem. Rev.2021, 434: 213780.
[71]
Liu C Colón B C Ziesack M Silver P A Nocera D G. Science2016352(6290): 1210.
[72]
Zhang B B Wang L Zhang Y J Ding Y Bi Y P. Angew. Chem. Int. Ed.201857(8): 2248.
[73]
Wen P Lei R B Cao X Ma Q Zhang G W Guo C X Wang X W Qiu Y J. Chem. Eng. J.2023, 454: 139983.
[74]
Lu X Y Ye K H Zhang S Q Zhang J N Yang J D Huang Y C Ji H B. Chem. Eng. J.2022, 428: 131027.
[75]
Yan J Q Li P Ji Y J Bian H Li Y Y Liu S F. J. Mater. Chem. A20175(40): 21478.
[76]
Zhou T S Chen S Wang J C Zhang Y Li J H Bai J Zhou B X. Chem. Eng. J.2021, 403: 126350.
[77]
Liu C H Zhang Y Yin G Shi T T Zhang Y Chen Z D. Inorg. Chem. Front.20229(24): 6431.
[78]
Yu L Q Xue K H Luo H H Liu C Liu H Y Zhu H F Zhang Y P. Chem. Eng. J.2023, 472: 144965.
[79]
Gil-Rostra J Castillo-Seoane J Guo Q Jorge Sobrido A B González-Elipe A R Borrás A. ACS Appl. Mater. Interfaces202315(7): 9250.
[80]
Zhang X M Zhai P L Zhang Y X Wu Y Z Wang C Ran L Gao J F Li Z W Zhang B Fan Z Z Sun L C Hou J G. J. Am. Chem. Soc.2021143(49): 20657.
[81]
Zhang X F Li H Kong W Q Liu H L Fan H B Wang M K. Electrochim. Acta2019, 300: 77.
[82]
Fang G Z Liu Z F Han C C. Appl. Surf. Sci.2020, 515: 146095.
[83]
Wang L Zhang T Su J Z Guo L J. Nano Res.202013(1): 231.
[84]
Yin H Guo Y Z Zhang N Wang Y Y Zhang S R Jiang R B. J. Mater. Chem. A202311(44): 24239.
[85]
Zhang Y J Xu L C Liu B Y Wang X Wang T S Xiao X Wang S C Huang W. ACS Catal.202313(9): 5938.
[86]
Ren X Q Dai Y L Wen X X Guo B R Shi C Q Huang X X Guo Y Li S W. Adv. Sustain. Syst.20248(3): 2300379.
[87]
Li S Li Y H Zhang J Liu X T Zhang K X Zhang Y Song X M. Appl. Surf. Sci.2023, 624: 156965.
[88]
Ding C M Shi J Y Wang D E Wang Z J Wang N Liu G J Xiong F Q Li C. Phys. Chem. Chem. Phys.201315(13): 4589.
[89]
Kodan N Ahmad M Mehta B R. Int. J. Hydrog. Energy202146(1): 189.
[90]
Rao P M Cai L L Liu C Cho I S Lee C H Weisse J M Yang P D Zheng X L. Nano Lett.201414(2): 1099.
[91]
Thirumalaisamy L Wei Z F Davies K R Allan M G McGettrick J Watson T Kuehnel M F Pitchaimuthu S. ACS Sustainable Chem. Eng.202412(8): 3044.
[92]
Feng C C Wang Z H Ma Y Zhang Y J Wang L Bi Y P. Appl. Catal. B Environ.2017, 205: 19.
[93]
Zeng G H Deng Y Q Yu X Zhu Y Fu X H Zhang Y M. J. Power Sources2021, 494: 229701.
[94]
Han X Wei Y K Su J Z Zhao Y. ACS Sustainable Chem. Eng.20186(11): 14695.
[95]
Guo M L Wan S P Li C L Zhang K. Rare Met.202241(11): 3795.
[96]
Hu R L Meng L X Zhang J X Wang X Wu S J Wu Z Zhou R Li L Li D S Wu T. Nanoscale202012(16): 8875.
[97]
Wang J K Sun J D Liu Y L Zhang X Cheng K Chen Y P Zhou F Z Luo J J Li T B Guo J J Xu B S. J. Colloid Interface Sci.2024, 666: 57.
[98]
Zhang K Jin B J Park C Cho Y Song X F Shi X J Zhang S L Kim W Zeng H B Park J H. Nat. Commun.2019, 10: 2001.
[99]
Song Y R Zhang X M Zhang Y X Zhai P L Li Z W Jin D F Cao J Q Wang C Zhang B Gao J F Sun L C Hou J G. Angew. Chem. Int. Ed.202261(16): e202200946.
[100]
Kirchon A Feng L Drake H F Joseph E A Zhou H-C. Chem. Soc. Rev.201847(23): 8611.
[101]
Li Y Wang Q Z Hu X S Meng Y She H D Wang L Huang J W Zhu G Q. Chem. Eng. J.2022, 433: 133592.
[102]
Pan J B Wang B H Wang J B Ding H Z Zhou W Liu X Zhang J R Shen S Guo J K Chen L Au C T Jiang L L Yin S F. Angew. Chem. Int. Ed.202160(3): 1433.
[103]
Song Y R Ren Y H Cheng H J Jiao Y Y Shi S B Gao L H Xie H M Gao J F Sun L C Hou J G. Angew. Chem. Int. Ed.202362(32): e202306420.
[104]
Xia L G Cheng X S Jiang L W Min Y L Yao W F Wu Q Xu Q J. J. Colloid Interface Sci.2024, 659: 676.
[105]
Kubendhiran S Chung R J Yougbaré S Lin L Y Wu Y F. Int. J. Hydrog. Energy202348(1): 101.

Funding

National Natural Science Foundation of China(22379153)
Ningbo Key R&D Program(2023Z147)
Ningbo 3315 Program(2023Z147)

Accesses

Citation

Detail

Sections
Recommended

/