Abbreviation (ISO4): Prog Chem
Editor in chief: Jincai ZHAO
Scalable Conformal Coating Strategies for Surface Engineering of BiVO4 Photoanodes
Weilong Qin, Ruiyuan Sun, Muhammad Bilal Akbar, Yang Zhou, Yongbo Kuang
Prog Chem ›› 2025, Vol. 37 ›› Issue (3) : 425-438.
Scalable Conformal Coating Strategies for Surface Engineering of BiVO4 Photoanodes
Solar photoelectrochemical (PEC) water splitting holds significant importance for the development of sustainable green energy. With ongoing research, the BiVO4 photoanode, a core component of PEC systems, faces challenges in scaling up and maintaining long-term stability. The superiority of fully conformal coating strategies lies in their lack of substrate size constraints, ability to suppress photo-corrosion of the BiVO4 semiconductor, creation of multifunctional interfaces, and potential synergistic action with heterojunctions and promoter catalysts, which may facilitate the stable operation of large-scale PEC water splitting devices for over 1000 hours. This review briefly introduces the basic principles of PEC water splitting and the development status of representative devices, elaborates on the important concept and main design principles of fully conformal coatings aimed at large-scale photoanodes, summarizes recent advances in materials capable of achieving fully conformal deposition coatings, including molecular catalysts, metal oxides/hydroxides, carbonized/sulfurized/phosphorized materials, and metal-organic frameworks (MOFs), and discusses key characteristics of fully conformal coatings with greater development potential. Finally, it presents a prospective view on future trends in fully conformal coatings for BiVO4 photoanodes.
1 Introduction
2 Fundamentals of PEC water splitting and develop- ment status of PEC device
3 Basic principles of fully conformal coating strategy
3.1 Fully conformal coating and its importance
3.2 Primary design principles of fully conformal coating
4 Recent progress of fully conformal coating strategy
4.1 Molecular catalyst
4.2 Metal oxides/hydroxides
4.3 Carbide/Sulfide/Phosphide
4.4 Metal-organic framework
5 Conclusion and outlook
photoelectrochemical / bismuth vanadate / water splitting / conformal coating / surface engineering
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
|
/
〈 |
|
〉 |